Streaming and communication
complexity of Hamming distance

Tatiana Starikovskaya
IRIF, Université Paris-Diderot

(Joint work with Raphaél Clifford, ICALP’16)

Approximate pattern matching

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Approximate pattern matching

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

“Big Data” Applications
» Computational biology
» Signal processing

» Text retrieval

Standard algorithms: Q(n) space

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
» T = stream of characters

» Length of the text and size of the universe are extremely large
» Can’t store a copy of T or P

» Space = total space used; Time = time per character of T

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
» T = stream of characters

» Length of the text and size of the universe are extremely large
» Can’t store a copy of T or P

» Space = total space used; Time = time per character of T

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
» T = stream of characters

» Length of the text and size of the universe are extremely large
» Can’t store a copy of T or P

» Space = total space used; Time = time per character of T

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
» T = stream of characters

» Length of the text and size of the universe are extremely large
» Can’t store a copy of T or P

» Space = total space used; Time = time per character of T

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
» T = stream of characters

» Length of the text and size of the universe are extremely large
» Can’t store a copy of T or P

» Space = total space used; Time = time per character of T

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
» T = stream of characters
» Length of the text and size of the universe are extremely large

» Can’t store a copy of T or P

» Space = total space used; Time = time per character of T

Text T

Pattern P

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
» T = stream of characters

» Length of the text and size of the universe are extremely large
» Can’t store a copy of T or P

» Space = total space used; Time = time per character of T

TextT
[g‘a a b c a a‘

Pattern P

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
» T = stream of characters

» Length of the text and size of the universe are extremely large
» Can’t store a copy of T or P

» Space = total space used; Time = time per character of T

Text T
[(ﬁ:”ai‘a b c a a a‘

Pattern P

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
» T = stream of characters
» Length of the text and size of the universe are extremely large

» Can’t store a copy of T or P

» Space = total space used; Time = time per character of T

Pattern P

Model of computation

Problem
Pattern P of length n, text T
Find the Hamming distance between P and each n-length substring of T

Model
» T = stream of characters
» Length of the text and size of the universe are extremely large

» Can’t store a copy of T or P

» Space = total space used; Time = time per character of T

Pattern P

What is known: Hamming distance

» All distances

» Space Q(n) [Folklore]

» Time (9(log2 n) [Clifford et al., CPM’11]

What is known: Hamming distance

» All distances

» Space Q(n) [Folklore]
» Time (9(log2 n) [Clifford et al., CPM’11]
» Only distances < k [Clifford et al., SODA’16]
» Exact values: space O(k? polylogn), time O(v/klogk + polylogn)

» (1 +¢)-approx.: space O (e 2k? polylogn), time O (&% polylogn)

This work:

(1+€)-Approximate HDs problem

]

Lower bounds:
reduction to a CC problem

¥

Upper bounds:
show a streaming algorithm

This work:

(1+€)-Approximate HDs problem

]

Lower bounds:
reduction to a CC problem

Let's discuss that!

¥

Upper bounds:
show a streaming algorithm

Lower bound for all HDs, approximate

Bob Charlie

3-parties CC problem
» Alice holds the pattern, Bob holds T[1,n], Charlie holds
T[n+1,2n]

» Charlie’s output: (1 + ¢)-HD for each alignment of P and T
Min. communication between Alice, Bob, and Charlie?

Lower bound for all HDs, approximate

Bob Charlie

» Streaming algorithm: T = stream, not allowed to store a copy of P
or T, output = (1 +¢)-HDs

» At time = n it stores all the information needed to compute the
(1+¢)-HDs

» Comm. protocol: send this information from A and B to C

» Lower bound for the CC problem = streaming lower bound

This work:

(1+€)-Approximate HDs problem

]

Lower bounds:
reduction to a CC problem

¥

Upper bounds:
show a streaming algorithm

This work:
(1+€)-Approximate HDs problem

1] L]
Lower bounds: Upper bounds:
reduction to a CC problem show a streaming algorithm

‘ Simpler CC problem:

S:paities|CC problem ‘ B and C know the pattern

This work:
(1+€)-Approximate HDs problem

1] L]
Lower bounds: Upper bounds:
reduction to a CC problem show a streaming algorithm

Simpler CC problem:
B and C know the pattern

‘ 3-parties CC problem ‘

Upper
bounds

This work:
(1+€)-Approximate HDs problem

1] L]
Lower bounds: Upper bounds:
reduction to a CC problem show a streaming algorithm

Simpler CC problem:
B and C know the pattern

‘ 3-parties CC problem ‘

Upper
bounds

This work:

(1+€)-Approximate HDs problem

]

Lower bounds:
reduction to a CC problem

‘ 3-parties CC problem ‘

¥

Upper bounds:
show a streaming algorithm

Simpler CC problem:
B and C know the pattern

Upper
bounds

Communication complexity

Simpler CC problem: B and C know the pattern

Lower bound: Q(c ' log*=1n)

Bob Charlie

‘b aab a a,

» Window counting: (1 + ¢)-approx. of #(b) in a sliding window of
width n = (1 +¢)-approx. of HD between P=aa...aand T

» Q(e'log? = 'n) bits [Datar et al., 2013]

3-parties CC problem

Lower bound: Q(c'log?c'n +=2logn)

Bob Charlie

» Output = (1 +¢)-HD between T[1,n] and T[n + 1,2n] =
(1 +¢)-approx. of HD between T = T[1,n]00...0 (Bob and
Charlie) and P = T[n + 1,2n] (Alice)

» Q(e2logn) bits [Jayram & Woordruff, 2013]

Important notion: (1 + ¢)-approximate sketch for HD

Intuition

» Sketch of a string is a very short vector

» Ly-distance between sketches » HD between strings

Important notion: (1 + ¢)-approximate sketch for HD

Intuition

» Sketch of a string is a very short vector

» Ly-distance between sketches » HD between strings

Formal definition (binary alphabets)

» Y = 1/ x n matrix of IID unbiased +1 random variables

£1 1 ...\ (S[1]
sketch(S) :(il)(8[2])

length = 1/¢2 v S

Important notion: (1 + ¢)-approximate sketch for HD
Formal definition (binary alphabets)

» Y = 1/ x n matrix of IID unbiased +1 random variables

sketch(S) =YS
————

length = 1/¢2

Important notion: (1 + ¢)-approximate sketch for HD
Formal definition (binary alphabets)

» Y = 1/ x n matrix of IID unbiased +1 random variables
sketch(S) =YS

——

length = 1/¢2

Lemma
(1-¢)-HD(S1,S2) <&? - |sketch(S1) — sketch(S2)[3 < (1 +¢) -HD(S1,S2)

Proof

Important notion: (1 + ¢)-approximate sketch for HD
Formal definition (binary alphabets)

» Y = 1/ x n matrix of IID unbiased +1 random variables

sketch(S) =YS
————

length = 1/¢2

Lemma
(1-¢)-HD(S1,S2) <&? - |sketch(S1) — sketch(S2)[3 < (1 +¢) -HD(S1,S2)

Proof
E[52-|sketch(51)—sketch(52)|§] = E[52-|Y(51—Sg)|§] = 52-IE[|Y(81—52)|§] =

Important notion: (1 + ¢)-approximate sketch for HD
Formal definition (binary alphabets)

» Y = 1/ x n matrix of IID unbiased +1 random variables

sketch(S) =YS
————

length = 1/¢2

Lemma
(1-¢)-HD(S1,S2) <&? - |sketch(S1) — sketch(S2)[3 < (1 +¢) -HD(S1,S2)

Proof
E[e? |sketch(S1)-sketch(S2)[2] = E[e%|Y(S1-S2)|3] = e E[|Y(51-S2)[3] =
=2 E[S); (Y(S1-52))] = E[(Y1(S1-52))] = IS1 - Sa}

Important notion: (1 + ¢)-approximate sketch for HD
Formal definition (binary alphabets)

» Y = 1/ x n matrix of IID unbiased +1 random variables

sketch(S) =YS
————

length = 1/¢2

Lemma
(1-¢)-HD(S1,S2) <&? - |sketch(S1) — sketch(S2)[3 < (1 +¢) - HD(S1,S2)

Proof
E[Ez : |sketch(51) - SketCh(Sz)%] = ‘Sl - Sz|§

Important notion: (1 + ¢)-approximate sketch for HD

Formal definition (binary alphabets)

» Y = 1/ x n matrix of IID unbiased +1 random variables

sketch(S) =YS
————
length = 1/¢2

Lemma
(1-¢)-HD(S1,S2) <&? - |sketch(S1) — sketch(S2)[3 < (1 +¢) - HD(S1,S2)

Proof
E[Ez : |sketch(51) - SketCh(Sz)%] = ‘Sl - Sz|§

Var[e? - [sketch(Sy) — sketch(S)[3] = €2 - Var[(Y1 (S - Sz))z] <

Important notion: (1 + ¢)-approximate sketch for HD
Formal definition (binary alphabets)

» Y = 1/ x n matrix of IID unbiased +1 random variables

sketch(S) =YS
————

length = 1/¢2

Lemma
(1-¢)-HD(S1,S2) <&? - |sketch(S1) — sketch(S2)[3 < (1 +¢) - HD(S1,S2)

Proof
E[Ez : |sketch(51) - SketCh(Sz)%] = ‘Sl - Sz|§

2
Var[e? - [sketch(Sy) — sketch(S2)[3] = € - Var[(Y1(S1 - S2)) 7] <
<2 E[(Y1(S1-S2))*] <22C-E[(Y1(S1 - $2))°]2 = £2C-|S1 - Sa3

Important notion: (1 + ¢)-approximate sketch for HD

Formal definition (binary alphabets)

» Y = 1/ x n matrix of IID unbiased +1 random variables

sketch(S) =YS
————
length = 1/¢2

Lemma
(1-¢)-HD(S1,S2) <&? - |sketch(S1) — sketch(S2)[3 < (1 +¢) - HD(S1,S2)

Proof
E[Ez : |sketch(51) - SketCh(Sz)%] = ‘Sl - Sz|§

Var[e? - [sketch(S1) - sketch(S2)[3] < €2C - |S1 - S}

Important notion: (1 + ¢)-approximate sketch for HD
Formal definition (binary alphabets)
» Y = 1/ x n matrix of IID unbiased +1 random variables
sketch(S) =YS

——

length = 1/¢2

Lemma

(1-¢)-HD(S1,S2) <&? - |sketch(S1) — sketch(S2)[3 < (1 +¢) - HD(S1,S2)
Proof

E[Ez ' |sketch(51) - SketCh(Sz)%] = ‘Sl - Sz|§

Var[e? - [sketch(S1) - sketch(S2)[3] < €2C - |S1 - S}

By Chebyshev’s inequality, with constant probability:
(1-¢)-|S1 - S2|3 < &2 - |sketch(S1) — sketch(S2)[3 < (1 +¢) -|S1 - S2[3

Important notion: (1 + ¢)-approximate sketch for HD

One more trick

» Y can be generated from O(logn) random bits (random —
preudorandom)

Important notion: (1 + ¢)-approximate sketch for HD

One more trick

» Y can be generated from O(logn) random bits (random —
preudorandom)

Summary

» Sketch of a string is a vector of length O(s~2logn) bits

» Sketches give (1 + ¢)-approximation of HD

Simpler CC problem: B and C know the pattern

Bob Charlie

» B knows T[1,n], C knows T[n + 1,2n], B and C know P

» Observation: C doesn’t need any information to compute HDs
between suffixes of P and T[n + 1,2n]

Simpler CC problem: B and C know the pattern

HD < (1/£)10

N
HD < (1/)3 é

HD < (1/£)2

» Select O(log_n) prefixes of the pattern
» First prefix: Prefix of maximal length ¢; with HD < (1/¢)?
» Second prefix: Prefix of maximal length ¢, > ¢; with HD < (1/¢)3

Simpler CC problem: B and C know the pattern

HD < (1/£)10

HD < (1/£)2

N
HD < (1/)3 é

» Divide prefix j into 1/2 blocks with HD < (1/e)~!

Simpler CC problem: B and C know the pattern

HD < (1/£)10

HD < (1/¢)3

HD < (1/£)2

» Divide prefix j into 1/2 blocks with HD < (1/e)~!

» Compute O(1/c?) sketches for the text

Simpler CC problem: B and C know the pattern

HD < (1/£)10

HD < (1/£)2

Bob l

! [sketch 1 sketch 1 sketch r sketch

N
HD < (1/)3 é
2__

» Divide prefix j into 1/ blocks with HD < (1/e)~!
» Compute O(1/c?) sketches for the text
» Send the block borders and the sketches to Charlie

Simpler CC problem: B and C know the pattern

HD < (1/£)10

HD < (1/¢)3

HD < (1/£)2

VAV AVAVAV/NG

Bob

Simpler CC problem: B and C know the pattern

HD < (1/£)10

HD < (1/£)2

Bob l

e ____ [sketch T sketeh 1 skeee | sketch

.
Z

HD < (1/¢)3 §
<l
>__

» Find the shortest prefix containing P

Simpler CC problem: B and C know the pattern

HD < (1/£)10

HD < (1/¢)3

HD < (1/£)2

» Find the shortest prefix containing P

» HD(P,, T): use sketches — (1 + ¢)-approximation

Simpler CC problem: B and C know the pattern

HD < (1/£)10

HD < (1/¢)3
[[[
HD < (1/¢)?
l

» Find the shortest prefix containing P

» HD(P,, T): use sketches — (1 + ¢)-approximation

» HD(P;, T): use the prefix’s block — additive error < ¢ - HD(P, T)

Simpler CC problem: B and C know the pattern

HD < (1/£)10 \
Z
HD < (1/¢)3 §
[I [
HD < (1/¢)? <
l
777777777777777777777 _sketch

v

HD(P,, T): use sketches

v

CC = O(s*log®n) [Lower bound: Q(z"'log?="!

Find the shortest prefix containing P

— (1 + ¢)-approximation

HD(P;, T): use the prefix’s block — additive error < e-HD(P,T)

n)l

This work:
(1+¢€)-Approximate HDs problem

v | v

Upper bounds:
show a streaming algorithm

e

Simpler CC problem:
B and C know the pattern
. J

3-parties CC problem

/

Upper
bounds

\

3-parties CC problem

» B knows T[1,n], C knows T[n + 1,2n], only A knows P

» Observation: C doesn’t need any information to compute HDs
between suffixes of P and his part of the text

» Can’t use prefixes of P to approximate T — C doesn’t know P

3-parties CC problem

Bob B B B B B B B B

» Divide the text T into blocks of length B = \/n

» Compute a sketch of each block

» Large Hamming distance: HD (prefix of P, T) > B/e
» HD(P;, T): use sketches to compute (1 + ¢)-approx. H’'
» HD(P,, T): ignore

3-parties CC problem

Bob B B B B B B B B

» Divide the text T into blocks of length B = \/n

» Compute a sketch of each block

» Large Hamming distance: HD (prefix of P, T) > B/e
» HD(P;, T): use sketches to compute (1 + ¢)-approx. H’'
» HD(P,, T): ignore

Lemma
H' is a good approximation of HD

Proof
1. H <(1+¢)-HD(P5,T) < (1+¢)-HD

2. H'>(1-¢)-HD(P3,T) > (1-¢)-HD -HD(Py,T) > (1 - 2¢) - HD

3-parties CC problem
Bob B B B B B B

» Small Hamming distance: HD (prefix of P, T) > B/e
» If #(®) in a block < 1, B sends it to C

» Starting from the first block where #(®) > 2, T and P can be
encoded in small space (periodicity)

» C can restore P and T from the encoding and compute HDs

» CC = O(1/2\/nlogn) ©
[Lower bound: Q(c2logn + ¢ ' log” = 'n)]

This work:
(1+¢€)-Approximate HDs problem

v | v

Upper bounds:
show a streaming algorithm

Ve N
Simpler CC problem:
B and C know the pattern
A8 J

Streaming algorithm

Streaming algorithm

Text T
o ___ L skeeh]
Pattern P
Reminder

» Y = 1/¢% x n matrix of IID unbiased +1 random variables

» sketch(S)=Y-S

Problem
» How to maintain the sketch of T?

» We don’t have random access to T and we can’t store many of its
characters

Streaming algorithm

B B B B
| sketch | sketch | sketch | sketch |
super-sketch

Reminder
» Y = (1/£%) x n matrix of IID unbiased +1 random variables

» sketch(S) =Y S

New notion: super-sketch
» 0; — IID unbiased +1 variables
» super-sketch = 3 o; - sketch;

» Analysis: similar to sketches

Streaming algorithm

777777777777 B B B B ~
] [[T sketch [sketch [sketch] |
super-sketch
|§§§§§§|r>;” | |
P[1,B-1i] PB-i+1,n-1i] Pln-i+1,n]

» HD between P[B-i+ 1,n—1i] and T: super-sketch

» Store a super-sketch for each (n - B)-length substring of P
» B = /n/e super-sketches in total
» At each block border compute a super-sketch of the last n/B
blocks from their sketches

» O(n/B) = O(e+/n) time, can be de-amortized

Streaming algorithm

B B B B B i}
o L,,,,{]Ll—l l g
simpler CC proble super-sketch sketch
|§§§§§§| ; iy | |
P[1,B-1] P[B-i+1,n-1] Pln-i+1,n]

» HD between the of P and T: sketch

Streaming algorithm

R - B B B B -
L L,,,,{]Ll—l l g
simpler CC proble super-sketch sketch
P[1,B-i] P[B-i+1,n-i] Pln-i+1,n]
» HD between the of P and T: sketch

» HD between the prefix of P and T: similar to the simpler CC
problem for the pattern P[1,B]

simpler CC problem

P[\l‘,‘B 1]

Complexity: O(1/e3/nlog”n) bits of space, O(1/e2log” n) time @

This work:
(1+¢€)-Approximate HDs problem

B and C know the pattern

Y
(Simpler CC problem: J
(8

Y
(3-parties CC problem J
C

