Two Fast Parallel GCD Algorithms of Many
Integers

Sidi Mohamed SEDJELMACI

Laboratoire d’Informatique Paris Nord, France.

ISSAC 2017, Kaiserslautern, 24-28 July 2017 .

Motivations '

e GCD of two integers: Used in CAS as a low operation,

cryptography, etc.

-Sequential: O(nlog® nloglogn), Knuth (70)-Schénhage (71).
-Parallel: O.(n/logn) time with O(n'™¢) processors,

Chor-Goldreich (90), Sorenson (94) and Sedjelmaci (08).
This problem is still open in parallel (P-complet or NC ?7)

e GCD of many integers: polynomial computations, matrix
computations, HNF and SNF.

-Sequential: Blan(63), Brad(70), Hav(98), Cop(99), etc.
-Parallel: Not addressed 7

Name Year Worst-case

Euclid ~ —300 O(n?)
Lehmer 1938 O(n?)
Stein 1961 O(n?)
Knuth 1970 O(log* nM(n))

Schonhage 1971 O(lognM(n))

Brent-Kung 1983 O(n?)
Jebelean-Weber 1993 O(n?)
Sorenson 1994 O(n?/logn)
Stehlé et al. 2004 O(lognM (n))
Mohler 2008 O(lognM (n))

Table 1: Sequential GCD Algorithms for two integers.

Authors Time Nb. of proc. Model

Brent-Kung, 1983

Purdy, 1983

Kannan et al., 1987

Adleman et al., rand., 1988
Chor-Goldreich, 1990 0,
Sorenson, 1994

Sedjelmaci, 2008 O
Sorenson, rand., 2010 @,

n) O(n) Systolic

n) Systolic
1olg log n) PRAM-crcw
ogmn
log n) PRAM-crew
/logn) PRAM-crew
/logn) PRAM-crew
/logn) PRAM-crew

log logn) PRAM-erew

log n

(
(
(n
(
(n
(n
(n
(n

Table 2: Parallel GCD Algorithms for two integers.

Our results:

e The GCD of n integers of O(n) bits can be achieved in
O(n/logn) time with O(n?'¢) processors in CRCW PRAM model

in the worst case.

e The GCD of m integers of O(n) bits can be achieved in

O(n/logn) time with O(mn'*¢) processors in CRCW PRAM
model, with 2 < m < n3/2/log n.

e We suggest an extended GCD version for many integers and a

algorithm to solve linear Diophantine equations.

e To our knowledge, it is the first time that we have this parallel

performance for computating the GCD of many integers.

Notation:
A is a vector of n (or m) integers of O(n) bits:
A= (ag,a1, - ay_1), with a; >0, n >4

e An integer parameter k satisfying log k = 0(logn).

e gcd(A) = ged(ag, a1, an_1).

e gcd(0,0) = 0.

e We use the PRAM (Parallel Random Access Machine) model of
computation and CRCW PRAM (Concurrent Read Concurrent
Write) sub-model.

Main idea for designing fast parallel GCD algorithm for many
integers:

Find a small integer a
Repeat

ar .—

a; := a; mod «; (in parallel, Vj # I)

Until almost all the integers a; are zeros.

How to find a small o ?

Pigeonhole like techniques:

Lemma 1: Let A = {a1,as,---,a, } be a set of n distinct positive

integers, such that n > 2 and a,,/n < a1 < as < --- < a,. Then
a
d¢ € {1,2,---,72—1} s.t.: aj41—a; < —
n
A straightforward consequence is the following:

Corollary 1:

Let A= {a1,as2,---,a, } be a set of n distinct positive integers,
with n > 2, then

min {ag , |a; —a; | > 0} < max{az-}’ where 1<k, i,j<n.
n

We derive the following algorithm :

Input: A set A ={ao,a1, - ,an—1 } of n integers of O(n) bits, n > 4.
Output: ged(ao, a1, -, an—1). a:=aog; I:=0; p:=n;
While (o > 1) Do
For (i =0) to (n — 1) ParDo
If(0<a; <2"/p) Then { a:=a;; [:=1i; }
Endfor
If (a > 2" /p) Then /* Compute in parallel I, J and o */
a:=min{|a;—a; | >0}=ar—as ; ar:=a ;

Endif

For (i =0) to (n — 1) ParDo /* Reduce all the a;’s */
If (i #1) Then a; := a; mod o ;
Endfor /*Vi, 0<a; <a*/
If(Vi#1,a;,=0) Then Return « ;
p:=mnp; /*pis O(logn) bits larger */
Endwhile

Return «.

The A-GCD Algorithm (Poster, ISSAC 2013)

Example (A-GCD): Let A = (912672, 815430, 721161, 565701, 662592).

After 4 iterations, we obtain GCD(A) = 3. n = 20.

912672
815430
721161
565701
662592

o = 58569

)

\ (1)) = (2.4))

34137 \
54033
58569
38580
18333
4443

\ ©0.3) /

(4443 \

717
810
3036
561
93

0-1

\ (1,2) /

72

(93 \
66
60

3

\ (4,-) /

w O O O O

\ STOP)

Drawbacks of the pigeonhole technique

- The number of distinct integers is important. If there are only
O(logn) distinct integers in A, then the pigeonhole technique will
reduce the bit size of the integers by O(loglogn) bits and the

number of iterations in the main while loop will be O(n/loglogn).

- What happens if « =0 7 For example, if n = 8 and
A = (255,255,193, 161,129, 97,65, 65).

There are only two pairs of integers that match in their 3 most
significant bits, namely (255, 255) and (65,65). Unfortunately, in
both cases a = 0.

- Comparing the O(n?) pairs of integers (a;, a;) to find a small

a = a; —a; > 0 in constant parallel time needs O(n?) processors.

Solution: Use other techniques

- Consider O(4/n) integers and compute their differences a; — a; to

find o > 0. There are O(n) comparisons done in constant time with

O(n?*¢) processors.
- In case it fails, use a Lehmer-like reduction (R;rg, ISSAC’2001).

- In case all the R;p g give zero, then reduce transformation will
right-shift all the zeros of A and we continue the process with this
new A.

11

The Lehmer-like reduction: R;;,r and Ext-R;; g.

The R;pr and Ext-R;; g algorithms are described in Sed-ISSAC’01
and Sed-JDA’08. ILE stands for Improved Lehmer Euclid :

(1) RrpE is defined by

Input: u>v >0, k=2";m =6(logn).

Output: Ripp(u,v) = |lau + bv| < 2v/k, with 1 < |a| < k.

- Roughly speaking, R;rg(u,v) computes the continued fractions.

(2) : Ext-R;pp is the extended version of Ry i.e.: we add the
Bézout matrix M such that: (0 <1,j < [+/n])

M x (ai,a;)" = (Ri,R;) ; Rj=Rire.
0 < R; < R; and gcd(R;, R;) = ged(a;,a;).
R; < (2/k) max{a;,a;}.

EXAMPLE: Let v =1759291 and v = 1349639. Their binary
representations are respectively:

11010110 1100000111011, = 1759291
10100100 11000000001115 = 1349639

We have n = p = 21. For m = 3, we obtain A = 2m + 2 = 8§,
up = 214 and vy = 164 (the leading bits of u; and v; are in bold).

Using EEA with u; and v, we obtain in turn ¢, r, b and a
(r = au+ bv) :

In our example, we obtain a = —3, b = 4,
r=14 <wvi/k =164/8 = 20.50 and

Rirp =|—3u+4v] = 120683 < v/8 = 168 704.88

Properties of R;;r and Ext-R;; g :

e Parallel complexity: O(n/logn). time with O(n!™¢) processors

on CRCW PRAM (ISSAC’01).

e It computes efficiently in parallel the Bézout coefficients with

the same parallel performance (JDA’08).

High level description of A-2 GCD algorithm.

- Test 1: Is there a small enough a; > 0 so that we can consider it
straightforwardly as an o 7
- Test 2: Does the pigeonhole algorithm provide an o« > 07

- Test 3: Use a new transformation R based on continued fractions
(Sed-ISSAC’01) and test if R > 0 7

If Test 3 fails, i.e.: Rj(a;,a;) =0 for all (a;,a;), with ¢, < +/n,

then (R;, R;) = (R;,0) and (a;,a;) <— (0, R;).

A new transformation called reduce right-shifts all the zeroes in A.
We reduce by half the number of O(y/n) positive integers
considered (the other half of integers are all zeroes). Moreover, it
could be iterated at most O(/n) times since, at each step, we add
O(y/n) new zeros in the vector A.

A-2 GCD algorithm,:
Input: A vector A = (ag,a1,---,an_-1), n > 4 and max{a;} < 2™.

Output: ged(ag, a1, -, an_1).

(e, I) :(a,o,()) p:=n; N:
While (o > 1) D
For (i =0) to (n — 1) ParDo
If (0 <a; <2"/p) then {(a,1]) = (a;,7); S:=1 };
else S :=0; /* No small a; */
Endfor
If (S =0) then (o,) := pigeonhole(A, N);
If (I =—1) then R :=0; /* The pigeonhole fails */
For (i, =0) to (N — 1) ParDo z;; := Rrrg(a;,a;);
If (z;; > 0) then { (o,]) := (z;j,i); R:=1; a5 :=x;; }
/* We can divide all the a;’s by a = x;; */
Endif
Endfor

If (R=0) /*Vij, Rip(a,a;)=0%
then A := reduce(A, N);
Endif
Endif
If (I >0) then A := remainder(A,a,[);
If (Jax #0s.t.: Vi#k = a; =0) then Return ay;

p:=mnp; /* pis O(logn) bits larger */
Endwhile

Return «.

The remainder procedure just divides all the components of A by
« and consider their remainders. It proceeds as follows:

Input: A = (ag, - ,an_1), withn>4,0<1T<n-—1,
and a > 0.

Output: A" = (aj,---,a,,_1), s.t.: a; = a; mod «

for all i« # I and o} = a; = a.

ar = a;
For (i =0) to (n — 1) ParDo

If (i # I) then a; := a; mod « ;
Endfor
Return A.

The pigeonhole algorithm is based on Corollary 1 with the first
O(y/n) integers of A, namely (ag,a1,--,an_1), with N = |\/n].

The algorithm returns a pair («, I) such that o = ay —ay > 0 is

small enough or, in the case there is no such pair, it returns
(CM, I) = (CL(), —1)

e Unlike the pigeonhole principle, the transformation reduce will

guarantee the termination and the parallel performance of the
A2-GCD algorithm. In fact, it could be iterated at most O(1/n)

times since, at each step, we add O(y/n) new zeros in the vector A.

e An example for reduce: Let n =10 and N = |\/n] = 3. Let

A = (350, 150, 260, 390, 330, 550, 343, 411, 503, 739), with

max {A} < 2" = 1024. We only consider the first 6 = 2N integers
of A, i.e.: (350,150, 260,390,330, 550). We obtain for

1 -2
-3 7
M x (350,150) = (Ro, Ry) = (50,0). Similarly (R, Rs) = (130,0),
(R4, R5) = (110,0) and reduce returns:
A = (50,130, 110, 343, 411,503, 739, 0, 0, 0).

(ag,a1) = (350, 150), the Bézout matrix M =

e So reduce(A, 3) gives rise to 3 zeroes in A.

BA GCD algorithm (Best Approximation), no pigeonhole:
Input: A = (ag,a1, - -,an_1), a; >0, n >4, max{a;} < 2".
Output: ged(ag, a1, ,an_1).

(a, I) :(aO,O) p:=n; N:
While (o« > 1) D
For (i =0) to (n — 1) ParDo
If (0 <a; <2"/p) then (a,]):= (a;,i) else I := —1;
Endfor
If (I =—1) then /* No small a; */
R :=0;
For (i,j =0) to (N — 1) ParDo
z;; = Rripp(ai,a;);
If (z;; > 0) then {(a, 1) := (x4;,1) ;a1 := x;;; R =1}
/* We can divide all the a;’s by x;; */
Endif
Endfor

If (R=0) then A := reduce(A,N);
/* R=0means Vi,j, Rrre(a;,a;)=07%/
Endif
If (1 >0) then A := remainder(A,a,1);
/* We divide all the a;’s but a;y by a >0 */
If (Jar #0s.t.: Vi# k= a; =0) then

Return ay ;

P =np;
Endwhile

Return «.

‘Correctness of A-2 and BA GCD algorithms.

e Main idea: Unimodular matrices preserve GCD, i.e.:
det(M)=+1 = ged(M x A) = ged(A).

e The matrices associated with pigeonhole, remainder and

Ext-R;r g are all unimodular.

q'n—] O O e o o 1

Matrix associated with o = ag < max {A}/n.

—qn-1 Gqn—1 0 -+ 1

Matrix associated with a = ag — a3 < max {A}/n:

/I .
g = ag — aq ,

/ .
a; = a; — ¢;x = —q;ap + q;a1 + Q5 ;

Sn—2 tn—2

0 "t Sp—1 tn—l

Matrix associated with (a5;,as;,) = Ext-Rrre (a2, a2it+1):

(ag,ay) = (soag + toai, s1ag + t1a1) ;
(ah,a%) = (s2az + taas, ssas + tsas) ;

‘Complexity analysis of A-2 and BA algorithms.

Let S = number of iterations in the while loop.

At each iteration 7z, 1 < < S, we note

.A(i>:(aé’i),---,a§i> a?).

y s Un—1
e k; = the largest bit size of the quotients Lay) Ja] .
Then the key points are:
e S=0(n/logn).

¢ Zf:l ki = O(n).

- The proof is given in details in the paper.

Proposition: (Complexity of remainder)

e Let t; be the parallel time cost at iteration .
e Let k; be the the largest bit size of the quotients Lay) [|.

Then the time complexity of remainder is:

Total time: -, t; =0(n/logn)

1=

Nb. of processors: O(n**e).

Ideas of the proof:

- Use look-up tables (arithmetics with big numbers)
- Split the sum in three parts w.r.t. the bit size of k; :
k; <logn or logn <k; < log2n or k; > loan.

Theorem: The A2-GCD and BA algorithms compute in parallel
the GCD of m integers of O(n) bits in length, in O(n/logn) time
using O(mn'*¢) processors in CRCW PRAM model, for any € > 0
and m, such that: 2 < m < n3/2/logn.

Proof (sketch):

e Iixt-R;; E, pigeonhole and remainder can be done with this
parallel bound. (They all deal with the bit size of integers)

e Since reduce (deals with the number of non zero integers) adds

O(y/n) zeroes in A and A has initially m integers, so the number of
calls is at most O(m/y/n). So

m/v/n < n3/?/(y/nlogn) = n/logn.

‘ CONCLUSION .

e We generalize the parallel performance of computing the GCD of
two integers (CHG’90, SOR’94, SED’01) to the case of many
integers.

e The parallel time for computing the GCD of m integers of O(n)

bits can be achieved in O(n /logn) parallel time with O(mn!*¢)

pProcessors.

e The parallel time does not depend on the number m of integers if
it satisfies 2 < m < n3/2/logn.

e We suggest an extended GCD version for many integers as well as

an algorithm to solve linear Diophantine equations.

e To our knowledge, it is the first time that we find deterministic
algorithms which compute the GCD of many integers with this
parallel performance and polynomial work.

LATEST NEWS !!

No pigeonhole in BA-GCD algorithm = no comparison, we can
consider all the m integers (not only /n)

(@i, a2iy1) — (Rai, Roiy1), 0<i<|[(m—1)/2].
- There are at most O(logm) calls for reduce (A is halved each

time).

- logm = O(n/logn) = m = 20"/ logn),

Theorem (Modified BA-GCD algorithm) : There exist a parallel
algorithm computing the GCD of m integers of O(n) bits in
O(n/logn) time with O(mn!™¢) processors. This result is valid for
any m in the range: 2 < m < 20(n/logn)

