Two Fast Parallel GCD Algorithms of Many Integers

Sidi Mohamed SEDJELMACI

Laboratoire d'Informatique Paris Nord, France.

ISSAC 2017, Kaiserslautern, 24-28 July 2017.

Motivations

- GCD of two integers: Used in CAS as a low operation, cryptography, etc.
 - -Sequential: $O(n \log^2 n \log \log n)$, Knuth (70)-Schönhage (71).
 - -Parallel: $O_{\epsilon}(n/\log n)$ time with $O(n^{1+\epsilon})$ processors, Chor-Goldreich (90), Sorenson (94) and Sedjelmaci (08). This problem is still open in parallel (P-complet or NC?)
- GCD of many integers: polynomial computations, matrix computations, HNF and SNF.
 - -Sequential: Blan(63), Brad(70), Hav(98), Cop(99), etc.
 - -Parallel: Not addressed?

Name	Year	Worst-case
Euclid	~ -300	$O(n^2)$
Lehmer	1938	$O(n^2)$
Stein	1961	$O(n^2)$
Knuth	1970	$O(\log^4 nM(n))$
Schönhage	1971	$O(\log nM(n))$
Brent-Kung	1983	$O(n^2)$
Jebelean-Weber	1993	$O(n^2)$
Sorenson	1994	$O(n^2/\log n)$
Stehlé et al.	2004	$O(\log nM(n))$
Möhler	2008	$O(\log nM(n))$

Table 1: Sequential GCD Algorithms for two integers.

Authors	Time	Nb. of proc.	Model
Brent-Kung, 1983	O(n)	O(n)	Systolic
Purdy, 1983	O(n)	O(n)	Systolic
Kannan et al., 1987	$O(n \frac{\log \log n}{\log n})$	$O(n^{2+\epsilon})$	PRAM-crcw
Adleman et al., rand., 1988	$O(\log^2 n)$	$e^{O(\sqrt{n\log n})}$	PRAM-crcw
Chor-Goldreich, 1990	$O(n/\log n)$	$O(n^{1+\epsilon})$	PRAM-crcw
Sorenson, 1994	$O(n/\log n)$	$O(n^{1+\epsilon})$	PRAM-crcw
Sedjelmaci, 2008	$O(n/\log n)$	$O(n^{1+\epsilon})$	PRAM-crcw
Sorenson, rand., 2010	$O(n \frac{\log \log n}{\log n})$	$O(n^{6+\epsilon})$	PRAM-erew

Table 2: Parallel GCD Algorithms for two integers.

Our results:

- The GCD of n integers of O(n) bits can be achieved in $O(n/\log n)$ time with $O(n^{2+\epsilon})$ processors in CRCW PRAM model in the worst case.
- The GCD of m integers of O(n) bits can be achieved in $O(n/\log n)$ time with $O(mn^{1+\epsilon})$ processors in CRCW PRAM model, with $2 \le m \le n^{3/2}/\log n$.
- We suggest an extended GCD version for many integers and a algorithm to solve linear Diophantine equations.
- To our knowledge, it is the first time that we have this parallel performance for computating the GCD of many integers.

Notation:

A is a vector of n (or m) integers of O(n) bits:

$$A = (a_0, a_1, \dots a_{n-1}), \text{ with } a_i \ge 0, n \ge 4$$

- An integer parameter k satisfying $\log k = \theta(\log n)$.
- $gcd(A) = gcd(a_0, a_1, \cdots a_{n-1}).$
- gcd(0,0) = 0.
- We use the PRAM (Parallel Random Access Machine) model of computation and CRCW PRAM (Concurrent Read Concurrent Write) sub-model.

Main idea for designing fast parallel GCD algorithm for many integers:

Find a small integer α Repeat

 $a_I := \alpha$;

 $a_j := a_j \mod \alpha$; (in parallel, $\forall j \neq I$)

Until almost all the integers a_i are zeros.

How to find a small α ?

Pigeonhole like techniques:

Lemma 1: Let $A = \{a_1, a_2, \dots, a_n\}$ be a set of n <u>distinct</u> positive integers, such that $n \geq 2$ and $a_n/n < a_1 < a_2 < \dots < a_n$. Then

$$\exists i \in \{1, 2, \dots, n-1\} \quad \text{s.t.} : \quad a_{i+1} - a_i < \frac{a_n}{n}.$$

A straightforward consequence is the following:

Corollary 1:

Let $A = \{a_1, a_2, \dots, a_n\}$ be a set of n distinct positive integers, with $n \geq 2$, then

$$\min \{a_k, |a_i - a_j| > 0\} \le \frac{\max \{a_i\}}{n}, \text{ where } 1 \le k, i, j \le n.$$

We derive the following algorithm:

```
Input: A set A = \{a_0, a_1, \dots, a_{n-1}\} of n integers of O(n) bits, n \ge 4.
Output: gcd(a_0, a_1, \dots, a_{n-1}). \alpha := a_0; I := 0; p := n;
    While (\alpha > 1) Do
            For (i = 0) to (n - 1) ParDo
                    If (0 < a_i \le 2^n/p) Then \{ \alpha := a_i ; I := i ; \}
            Endfor
            If (\alpha > 2^n/p) Then /* Compute in parallel I, J and \alpha */
                    \alpha := \min \{ |a_i - a_i| > 0 \} = a_I - a_J ; a_I := \alpha ;
            Endif
            For (i = 0) to (n - 1) ParDo /* Reduce all the a_i's */
                    If (i \neq I) Then a_i := a_i \mod \alpha;
            Endfor /* \forall i, 0 \leq a_i \leq \alpha */
            If (\forall i \neq I, a_i = 0) Then Return \alpha;
            p := np; /* p is O(\log n) bits larger */
    Endwhile
   Return \alpha.
```

The Δ -GCD Algorithm (Poster, ISSAC 2013)

Example (Δ -GCD): Let A = (912672, 815430, 721161, 565701, 662592).

After 4 iterations, we obtain GCD(A) = 3. n = 20.

$$\begin{pmatrix} 912672 \\ 815430 \\ 721161 \\ 565701 \\ \alpha = 58569 \\ (I, J) = (2, 4) \end{pmatrix} \rightarrow \begin{pmatrix} 34137 \\ 54033 \\ 58569 \\ 38580 \\ 18333 \\ \hline 4443 \\ (0, 3) \end{pmatrix} \rightarrow \begin{pmatrix} 4443 \\ 717 \\ 810 \\ 3036 \\ \hline 561 \\ \hline 93 \\ (1, 2) \end{pmatrix} \rightarrow \begin{pmatrix} 72 \\ 93 \\ 66 \\ 60 \\ \hline 3 \\ \hline 3 \\ (4, -) \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \hline 3 \\ \hline 3 \\ (4, -) \end{pmatrix}$$

Drawbacks of the pigeonhole technique

- The number of distinct integers is important. If there are only $O(\log n)$ distinct integers in A, then the pigeonhole technique will reduce the bit size of the integers by $O(\log \log n)$ bits and the number of iterations in the main while loop will be $O(n/\log \log n)$.
- What happens if $\alpha = 0$? For example, if n = 8 and A = (255, 255, 193, 161, 129, 97, 65, 65).

There are only two pairs of integers that match in their 3 most significant bits, namely (255, 255) and (65, 65). Unfortunately, in both cases $\alpha = 0$.

- Comparing the $O(n^2)$ pairs of integers (a_i, a_j) to find a small $\alpha = a_i - a_j > 0$ in constant parallel time needs $O(n^3)$ processors.

Solution: Use other techniques

- Consider $O(\sqrt{n})$ integers and compute their differences $a_i a_j$ to find $\alpha > 0$. There are O(n) comparisons done in constant time with $O(n^{2+\epsilon})$ processors.
- In case it fails, use a Lehmer-like reduction (R_{ILE} , ISSAC'2001).
- In case all the R_{ILE} give zero, then **reduce** transformation will right-shift all the zeros of A and we continue the process with this new A.

The Lehmer-like reduction: R_{ILE} and Ext- R_{ILE} .

The R_{ILE} and Ext- R_{ILE} algorithms are described in Sed-ISSAC'01 and Sed-JDA'08. ILE stands for Improved Lehmer Euclid:

(1) R_{ILE} is defined by

Input: $u \ge v \ge 0$, $k = 2^m$; $m = \theta(\log n)$.

Output: $R_{ILE}(u, v) = |au + bv| < 2v/k$, with $1 \le |a| \le k$.

- Roughly speaking, $R_{ILE}(u, v)$ computes the continued fractions.
- (2) : Ext- R_{ILE} is the extended version of R_{ILE} i.e.: we add the Bézout matrix M such that: $(0 \le i, j \le |\sqrt{n}|)$

$$M \times (a_i, a_j)^T = (R_i, R_j)$$
; $R_j = R_{ILE}$.
 $0 \le R_j < R_i$ and $gcd(R_i, R_j) = gcd(a_i, a_j)$.
 $R_j < (2/k) \max \{a_i, a_j\}$.

Example: Let u = 1759291 and v = 1349639. Their binary representations are respectively:

11010110 $1100000111011_2 = 1759291$ **10100100** $110000000111_2 = 1349639$

We have n = p = 21. For m = 3, we obtain $\lambda = 2m + 2 = 8$, $u_1 = 214$ and $v_1 = 164$ (the leading bits of u_1 and v_1 are in bold). Using EEA with u_1 and v_1 , we obtain in turn q, r, b and a (r = au + bv):

q	r	a	b
	214	1	0
	164	0	1
1	50	1	-1
3	14	-3	4
3	8	10	-13

In our example, we obtain a = -3, b = 4, $r = 14 < v_1/k = 164/8 = 20.50$ and

$$R_{ILE} = |-3u + 4v| = 120683 < v/8 = 168704.88$$

Properties of R_{ILE} and Ext- R_{ILE} :

- Parallel complexity: $O(n/\log n)_{\epsilon}$ time with $O(n^{1+\epsilon})$ processors on CRCW PRAM (ISSAC'01).
- It computes efficiently in parallel the Bézout coefficients with the same parallel performance (JDA'08).

High level description of Δ -2 GCD algorithm.

- **Test** 1: Is there a small enough $a_i > 0$ so that we can consider it straightforwardly as an α ?
- **Test** 2: Does the pigeonhole algorithm provide an $\alpha > 0$?
- **Test** 3: Use a new transformation R based on continued fractions (Sed-ISSAC'01) and test if R > 0?

If Test 3 fails, i.e.: $R_j(a_i, a_j) = 0$ for all (a_i, a_j) , with $i, j \leq \sqrt{n}$, then $(R_i, R_j) = (R_i, 0)$ and $(a_i, a_j) \leftarrow (0, R_i)$.

A new transformation called **reduce** right-shifts all the zeroes in A. We reduce by half the number of $O(\sqrt{n})$ positive integers considered (the other half of integers are all zeroes). Moreover, it could be iterated at most $O(\sqrt{n})$ times since, at each step, we add $O(\sqrt{n})$ new zeros in the vector A.

```
\Delta-2 GCD algorithm,:
Input: A vector A = (a_0, a_1, \dots, a_{n-1}), n \ge 4 \text{ and } \max\{a_i\} < 2^n.
Output: gcd(a_0, a_1, \dots, a_{n-1}).
    (\alpha, I) := (a_0, 0) \; ; \; p := n \; ; \; N := |\sqrt{n}| \; ;
    While (\alpha > 1) Do
        For (i = 0) to (n - 1) ParDo
            If (0 < a_i \le 2^n/p) then \{(\alpha, I) := (a_i, i); S := 1 \};
            else S := 0; /* No small a_i */
        Endfor
        If (S=0) then (\alpha, I) := pigeonhole(A, N);
        If (I = -1) then R := 0; /* The pigeonhole fails */
           For (i, j = 0) to (N - 1) ParDo x_{ij} := R_{ILE}(a_i, a_j);
             If (x_{ij} > 0) then \{ (\alpha, I) := (x_{ij}, i) ; R := 1 ; a_I := x_{ij} \}
                 /* We can divide all the a_i's by \alpha = x_{ij} */
                Endif
            Endfor
```

```
\begin{aligned} & \textbf{If} \; (R=0) \quad /^* \; \forall \, i,j \;, \, R_{ILE}(a_i,a_j) = 0 \; ^*/\\ & \textbf{then} \; A := \texttt{reduce}(A,N) \;; \\ & \textbf{Endif} \\ & \textbf{Endif} \\ & \textbf{If} \; (I \geq 0) \; \textbf{then} \; A := \texttt{remainder}(A,\alpha,I) \;; \\ & \textbf{If} \; (\exists \, a_k \neq 0 \; \text{s.t.:} \; \forall \, i \neq k \, \Rightarrow \, a_i = 0) \; \; \textbf{then} \; \textbf{Return} \; a_k \;; \\ & p := np \;; \; /^* \; p \; \text{is} \; O(\log n) \; \text{bits larger} \; ^*/ \\ & \textbf{Endwhile} \end{aligned}
```

Return α .

The remainder procedure just divides all the components of A by α and consider their remainders. It proceeds as follows:

Input:
$$A = (a_0, \dots, a_{n-1})$$
, with $n \ge 4$, $0 \le I \le n - 1$, and $\alpha > 0$.

Output:
$$A' = (a'_0, \dots, a'_{n-1})$$
, s.t.: $a'_i = a_i \mod \alpha$ for all $i \neq I$ and $a'_I = a_I = \alpha$.

$$a_I = \alpha$$
;
For $(i = 0)$ to $(n - 1)$ ParDo
If $(i \neq I)$ then $a_i := a_i \mod \alpha$;

Endfor

Return A.

The pigeonhole algorithm is based on Corollary 1 with the first $O(\sqrt{n})$ integers of A, namely $(a_0, a_1, \dots, a_{N-1})$, with $N = \lfloor \sqrt{n} \rfloor$. The algorithm returns a pair (α, I) such that $\alpha = a_I - a_J > 0$ is small enough or, in the case there is no such pair, it returns $(\alpha, I) = (a_0, -1)$.

- Unlike the pigeonhole principle, the transformation reduce will guarantee the termination and the parallel performance of the $\Delta 2$ -GCD algorithm. In fact, it could be iterated at most $O(\sqrt{n})$ times since, at each step, we add $O(\sqrt{n})$ new zeros in the vector A.
- An example for reduce: Let n = 10 and $N = \lfloor \sqrt{n} \rfloor = 3$. Let A = (350, 150, 260, 390, 330, 550, 343, 411, 503, 739), with $\max\{A\} < 2^n = 1024$. We only consider the first 6 = 2N integers of A, i.e.: (350, 150, 260, 390, 330, 550). We obtain for

$$(a_0, a_1) = (350, 150)$$
, the Bézout matrix $M = \begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix}$ and

 $M \times (350, 150) = (R_0, R_1) = (50, 0)$. Similarly $(R_2, R_3) = (130, 0)$, $(R_4, R_5) = (110, 0)$ and reduce returns: A = (50, 130, 110, 343, 411, 503, 739, 0, 0, 0).

• So reduce(A, 3) gives rise to 3 zeroes in A.

```
BA GCD algorithm (Best Approximation), no pigeonhole:
Input: A = (a_0, a_1, \dots, a_{n-1}), a_i > 0, n \ge 4, \max\{a_i\} < 2^n.
Output: gcd(a_0, a_1, \dots, a_{n-1}).
    (\alpha, I) := (a_0, 0) \; ; \; p := n \; ; \; N := |\sqrt{n}| \; ;
    While (\alpha > 1) Do
        For (i = 0) to (n - 1) ParDo
           If (0 < a_i \le 2^n/p) then (\alpha, I) := (a_i, i) else I := -1;
        Endfor
        If (I = -1) then /* No small a_i */
            R := 0;
            For (i, j = 0) to (N - 1) ParDo
              x_{ij} := R_{ILE}(a_i, a_j);
              If (x_{ij} > 0) then \{(\alpha, I) := (x_{ij}, i) ; a_I := x_{ij}; R = 1\}
                   /* We can divide all the a_i's by x_{ij} */
              Endif
            Endfor
```

```
If (R=0) then A:=\operatorname{reduce}(A,N);

/* R=0 \text{ means } \forall i,j , \ R_{ILE}(a_i,a_j)=0 */

Endif

If (I\geq 0) then A:=\operatorname{remainder}(A,\alpha,I);

/* \text{ We divide all the } a_i\text{'s but } a_I \text{ by } \alpha>0 */

If (\exists \, a_k\neq 0 \text{ s.t.: } \forall \, i\neq k\Rightarrow a_i=0) then

Return a_k;

p:=np;

Endwhile
```

Return α .

Correctness of Δ -2 and BA GCD algorithms

• Main idea: Unimodular matrices preserve GCD, i.e.:

$$det(M) = \pm 1 \implies \gcd(M \times A) = \gcd(A).$$

• The matrices associated with pigeonhole, remainder and $\text{Ext-}R_{ILE}$ are all unimodular.

Matrix associated with $\alpha = a_0 < \max\{A\}/n$.

$$\begin{vmatrix} 1 & -1 & 0 & \cdots & 0 \\ -q_1 & q_1 + 1 & 0 & \cdots & 0 \\ -q_2 & q_2 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ -q_{n-1} & q_{n-1} & 0 & \cdots & 1 \end{vmatrix}$$

Matrix associated with
$$\alpha = a_0 - a_1 < \max\{A\}/n$$
: $a'_0 = a_0 - a_1$;

$$a'_{i} = a_{i} - q_{i}\alpha = -q_{i}a_{0} + q_{i}a_{1} + a_{i};$$

$$\begin{vmatrix} s_0 & t_0 & 0 & 0 & 0 & \cdots & 0 \\ s_1 & t_1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & s_2 & t_2 & 0 & \cdots & 0 \\ 0 & 0 & s_3 & t_3 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & s_{n-2} & t_{n-2} \\ 0 & 0 & 0 & 0 & \cdots & s_{n-1} & t_{n-1} \end{vmatrix} .$$

Matrix associated with
$$(a'_{2i}, a'_{2i+1}) = \text{Ext-}R_{ILE}(a_{2i}, a_{2i+1})$$
:
 $(a'_0, a'_1) = (s_0a_0 + t_0a_1, s_1a_0 + t_1a_1)$;
 $(a'_2, a'_3) = (s_2a_2 + t_2a_3, s_3a_2 + t_3a_3)$;

Complexity analysis of Δ -2 and BA algorithms

Let S = number of iterations in the while loop.

At each iteration $i, 1 \leq i \leq S$, we note

•
$$A^{(i)} = (a_0^{(i)}, \dots, a_j^{(i)}, \dots, a_{n-1}^{(i)}).$$

• k_i = the largest bit size of the quotients $\lfloor a_j^{(i)}/\alpha_i \rfloor$.

Then the key points are:

•
$$S = O(n/\log n)$$
.

$$\bullet \quad \sum_{i=1}^{S} k_i = O(n).$$

- The proof is given in details in the paper.

Proposition: (Complexity of remainder)

- Let t_i be the parallel time cost at iteration i.
- Let k_i be the largest bit size of the quotients $\lfloor a_j^{(i)}/\alpha_i \rfloor$.

Then the time complexity of remainder is:

Total time: $\sum_{i=1}^{S} t_i = O(n/\log n)$

Nb. of processors: $O(n^{2+\epsilon})$.

Ideas of the proof:

- Use look-up tables (arithmetics with big numbers)
- Split the sum in three parts w.r.t. the bit size of k_i :

$$k_i \le \log n$$
 or $\log n \le k_i \le \log^2 n$ or $k_i \ge \log^2 n$.

Theorem: The $\Delta 2$ -GCD and BA algorithms compute in parallel the GCD of m integers of O(n) bits in length, in $O(n/\log n)$ time using $O(m n^{1+\epsilon})$ processors in CRCW PRAM model, for any $\epsilon > 0$ and m, such that: $2 \le m \le n^{3/2}/\log n$.

Proof (sketch):

- Ext- R_{ILE} , pigeonhole and remainder can be done with this parallel bound. (They all deal with the bit size of integers)
- Since reduce (deals with the number of non zero integers) adds $O(\sqrt{n})$ zeroes in A and A has initially m integers, so the number of calls is at most $O(m/\sqrt{n})$. So

$$m/\sqrt{n} \le n^{3/2}/(\sqrt{n}\log n) = n/\log n.$$

CONCLUSION

- We generalize the parallel performance of computing the GCD of two integers (CHG'90, SOR'94, SED'01) to the case of many integers.
- The parallel time for computing the GCD of m integers of O(n) bits can be achieved in $O(n/\log n)$ parallel time with $O(m\,n^{1+\epsilon})$ processors.
- The parallel time does not depend on the number m of integers if it satisfies $2 \le m \le n^{3/2}/\log n$.
- We suggest an extended GCD version for many integers as well as an algorithm to solve linear Diophantine equations.
- To our knowledge, it is the first time that we find deterministic algorithms which compute the GCD of many integers with this parallel performance and polynomial work.

LATEST NEWS!!

No **pigeonhole** in BA-GCD algorithm \Longrightarrow no comparison, we can consider all the m integers (not only \sqrt{n})

$$(a_{2i}, a_{2i+1}) \longrightarrow (R_{2i}, R_{2i+1}), \ 0 \le i \le \lfloor (m-1)/2 \rfloor.$$

- There are at most $O(\log m)$ calls for reduce (A is halved each time).
- $-\log m = O(n/\log n) \Longrightarrow m = 2^{O(n/\log n)}.$

Theorem (Modified BA-GCD algorithm): There exist a parallel algorithm computing the GCD of m integers of O(n) bits in $O(n/\log n)$ time with $O(mn^{1+\epsilon})$ processors. This result is valid for any m in the range: $2 \le m \le 2^{O(n/\log n)}$.