A phase transition in block-
weighted random maps

Séminaire au LIPN
13 septembre 2022

Zephyr Salv
William Fleurat

LIGM, Université Gustave Eiffel



Planar maps

Planar map m = embedding on the sphere of a connected
planar graph, considered up to homeomorphisms
Map = graph + cyclic order on
neighbours

+

® ®
- Rooted planar map = map endowed with a marked oriented

edge (represented by an arrow);

. Size | m| = number of edges;

« Corner (does not exist for graphs !) = space between an
oriented edge and the next one for the trigonometric order.




Universality results for planar maps

Enumeration: xkp "'n >

[Tutte 1963, Drmota, Noy, Yu 2020];

Distance between vertices: n [Chassaing,
Schaeffer 2004];

Scaling limit: Brownian sphere for arbitrary
Maps [Bettinelli, Jacob, Miermont 2014];

Universality:
« Same enumeration;

« Same scaling limit, e.g. for
quadrangulations [Miermont 2013],
triangulations & 2g-angulations [Le Gall

2013], simple quadrangulations [Addario--5i
Berry, Albenque 2017]. :
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Universality results for planar trees

Enumeration: kp ~"'n =32,

Distance between vertices: 71172

[Flajolet, Odlyzko 1982];

Scaling limit: Brownian tree [Aldous 1993,
Le Gall 2006];

Universality:
« Same enumeration,

« Same scaling limit, even for some
classes of maps; e.g. outerplanar

maps [Caraceni 2016], maps with a

boundary of size >> nl/?

2015]. \

Models with (very) constrained boundaries

[Bettinelli
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Motivation

Interpolating model?
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2-connectivity

Cut vertex: vertex that when removed disconnects the map

2-connected: no cut vertex (=to be able to disconnect, at
least two vertices must be removed)

Block = maximal (for inclusion) 2-connected submap

6 /47



2-connectivity

Cut vertex: vertex that when removed disconnects the map

2-connected: no cut vertex (=to be able to disconnect, at
least two vertices must be removed)

Block = maximal (for inclusion) 2-connected submap

6 /47



Motivation

Condensation phenomenon: a
large block concentrates a

macroscopic part of the mass
[Banderier, Flajolet, Schaeffer, Soria 2001;

Jonsson, Stefansson 2011].

Only small blocks.

Interpolating model?
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Outline of the talk

A phase transition in block-weighted random maps

l.  Approach
Il. Largest blocks

I1l. Similar model: quadrangulations
IV. Scaling limits
V. Perspectives
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|. Approach



Model

Goal: parameter that affects the typical number of blocks.

> 0,
 #blocks(m) ’:‘% { I
We choose: P, (m) = where “%n={maps of size i},
’ Z, me ./,

Z, ., = normalisation.

Inspired by [Bonzom 2016].

« u = 1: uniform distribution on maps of size n;
« u — 0: minimising the number of blocks (=2-connected maps);

« 4 — 00: maximising the number of blocks (= trees!).

Given u, asymptotic behaviour whenn — 00?
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ForM, < P, ,

u<9/5

Results

u=9/5

u>9/5

Enumeration

Size of

- the largest
block

- the second
one

Scaling limit of
M

n
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Decomposition of a map into blocks

. . _ m|. #blocks(m
Insplratlon from [Tutte 1963] M(Za l/t) — 2 Zl lbl (m)
me/
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Results
For M, < IP’W u < 9/5 u=9/5 u>9/5

—Ny —5/2 —Ny —5/3 —Ny —3/2

Enumeration p(u) p(u)

[Bonzom 2016]

p(u)

Size of

- the largest
block

- the second
one

Scaling limit of
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Decomposition of a map into blocks: properties

- Internal node (with k children) of T, <> block of m of size k/2;

. m is entirely determined by 7,,, and (b, v € T ,,) where b, is the
block of m represented by vin 7.

1), gives the block sizes of arandom map M,

14/47



Galton-Watson trees for map blocks

1-Galton-Watson tree : random tree where the number of

children of each node is given by y independently, with y =
probability law on N.
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1-Galton-Watson tree : random tree where the number of

children of each node is given by u independent
probability law on N.

y, with 1 =

Theore

fM, < P

n,u’

then 1;, has the law of a Galton-Watson tree

of reproduction law 17" conditioned to be of size 2n, with

Byy*ulio

({1 2k}) = B+ 1 —u

u> 0
y € (0,4/27]
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Galton-Watson trees for map blocks

1-Galton-Watson tree : random tree where the number of

children of each node is given by u independently, with u =
probability law on N.

Theore
fM, < P

of reproduction law " conditioned to be of size 2n, with

B,y ulio
P2k} = — >0
uB(y)+ 1 —u y € (0,4/27]

_— then 1;, has the law of a Galton-Watson tree

=> Choice of y?
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Phase transition

When is u”** critical? (= E(u) = 17?)

]
F(') =1 © u =

2yB'(y) = B(y) + 1

™~

covers [9/5, + o0) when y covers (0,pp = 4/27].

Theorem

- Ifu < 9/5, then E(¢”") < 1. The mean is maximal for
y = 4/277 and then u”"(2k) ~ Cuk_S/z;

« Ifu=9/5andy =4/27, then E(”") = 1 and

ﬂy,u(Zk) o Cuk—5/2;

 If u > 9/5 and yis well chosen, then
U2k ~ c k™",

E(u) = 1 and




Phase transition
1 ue=9/5

4/27
0.14-

0.124

0.10~

0.08~

0.06-

1

| y=4/27

0.04~

yStl.u= /
2yB'(y) = B(y) + 1

Critical GW

| Subcritical
0.02- GW

00'1"9/5'2'514‘5'5":5"'1
“Map regime” “Tree regime”
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Il. Largest blocks




Properties of 7,

u<9/5 u=9/5 u>9/5
Iu)’(u),u({zk}) N Cuk—5/2 N Cuﬂbltck—S/z
Variance 00 < 00
Galton-
subcritical ritical
Watson tree ca critica

Tool: panson 2012] = extensive study of the degrees in Galton-
Watson trees

Properties on trees give properties of maps.
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ForM, < P, ,

Size L, , of the k-th largest block

u<9/5 u=9/5 u>9/5

L

n,

L

n,

0.8 -

0.6 -

0.4+

0.2+

1

2

Size of the linear block X n—

N (1 _ [E(,u4/27’“))n

[Stufler 2020] In(n)  5In(n(n))

O(n*"°) 2In () 4ln (i)

27y 27y

+ O(1)

2/3
(n")
[Stufler 2020]
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Rough intuition

u<9/5 u=9/5 u>9/5
ﬂy(u),u({Zk}) ~ C'uk_S/2 ~ Cuﬂ'b]fk_S/z
Galton- subcritical critical
Watson tree

Dichotomy between situations:
« Subcritical: condensation, cf [Jonsson Stefansson 2011];

« Supercritical: behaves as maximum of independent
variables.
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Results

ForM, < P, , u<9/5 u=9/5 u>9/5

Enumeration p(u)~"'n=>"? p(u)"'n =" p(u)~"n="?
[Bonzom 2016]

Size of "

- thelargest |~ (I —E@™")n /3 In(w) _ _ Slndn@) | 5,
block . On") 21n<27y) 41n<2‘7‘y)

- the second On~")
one [Stufler 2020]

Scaling limit of
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l11. Similar model:
quadrangulations




Quadrangulations
Def: map with all faces of degree 4.

Simple quadrangulation = no multiple edges.

Size | q| = number of faces.

V)| =[ql+2 [E(@)]| =2]q].

2447



Construction of a quadrangulation from a simple core
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Construction of a quadrangulation from a simple core
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Construction of a quadrangulation from a simple core
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Block tree for a quadrangulation
D ()
&

With a weight u on blocks: O(z, u) = uS(zO*(z,u)) + 1 — u

Remember: M(z, u) = uB(zM?*(z,u)) + 1 — u
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Map

Tutte’s bijection m——

Quadrangulation

RS

[Tutte 1963]

2747



ot | |

Tutte’s bijection for 2-connected maps

Cut vertex => multiple edge

2-connected maps <=> simple quadrangulations

[Brown 1965]
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Block trees under Tutte’s bijection




Implications on results

u#blocks(q)
We choose: P, (q) = ~ where
n,u
u> 0,
@, = {quadrangulations of size n},
qe q,,
/= normalisation.

n,u

Results on the size of (2-connected) blocks can be transferred
immediately for quadrangulations and their simple blocks.
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Results

ForM, < P, , u<9/5 u=9/5 u>9/5
Enumeration p(u)—n -5/2 p(u)—n —-5/3 p(u)—n -3/2
[Bonzom 2016] for 2-c case

Size of .

- thelargest |~ (I —E@™")n /3 In() __ 3Indn@) 5,
block . Sl 21n<27y) 41n<2‘7‘y>

- the second On")
one [Stufler 2020]

Scaling limit of
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V. Scaling limits



Scaling limits
Convergence of the whole object considered as a metric
space (with the graph distance), after renormalisation.

du,v) =4
Mn e I]:Dn,u

What is the limit of the sequence of metric spaces ((M,, al/n?))nEN ?

(Convergence for Gromov-Hausdorff metric)
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Scaling limits of Galton-Watson trees

Theorem For M, < P, ,

c3(u) —
i TMn - J,.

L fu>9/35,

%)
—_— = C/
ba
Stable tree of index 3/2 T 5/, — \
Brownian tree I, (Aldous’s CRT)

|. Kortchemski
by d e n? »f’" ‘ ‘v' v
5 3 :x. = 4 T g
37 i 2% %) _‘ 7 o
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Scaling limits of Galton-Watson trees

Theorem For M, < P, ,

c3(u) —
. fu>9/5, Ty — I,
nl12 "~ M,

)
If u =9/5—— — T 2.

Proof

 Scaling limit of critical Galton-Watson trees with finite
variance [Aldous 1993, Le Gall 2006];

 Scaling limit of critical Galton-Watson with infinite variance
and nice tails [Duquesne 2003].
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Scaling limit of supercritical and critical maps

Theorem ForM, < P, ,

- Ifu > 9/5,

C5(u)

o .
pl2 ¢

- If u =9/5,

[Stufler 2020]

|. Kortchemski
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Supercritical and critical cases (1) -

Difficult part = show that distances in m behave like distances
in1,,. We show

ﬁ
Ve|,e, € E(M,),dy (e, €;) = KdTMn(el’ e,).

37/47



Supercritical and critical cases (2) =

Let k = [E("diameter" bipointed block). By a “law of large
numbers”-type argument

dMn(el, 82) ~ KdTM (61, 62) .
" Difficult for the

critical case => use
diameter estimates
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Scaling limits of subcritical maps
Theorem If u < 9/5, for M,, & P, , a quadrangulation,

C,(u)
/4 M, = 5.

Moreover, M, and its simple core converge jointly to the
same Brownian sphere.

3y
N S
\ |
N A
- &

We expect the same scaling _ js
limits for maps but the
scaling limit of 2-connected
maps is not yet proved.

¥4

J. Bettinelli
See [Addario-Berry, Wen 2019] for a similar result and method
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Subcritical case (1) s

O Decorations = groups of smaller blocks
\ '\/

Large block of size
O(n)

Diameter of a decoration < number of blocks X max diameter of blocks
< diam(Ty; ) X (O(n*"))"**° = diam(Ty,; ) x O(n'"°*+°)

TMn is a subcritical ~ _ 0(n 1/6+25) _ 0(n 1/4) \
Galton-Watson tree

[Chapuy Fusy Giménez Noy 2015]
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Subcritical case (1) s

O Decorations = groups of smaller blocks
\ \/

Large block of size
O(n)

Diameters of decorations = o(n'’%).

Diameter of a decoration < number of blocks X max diameter of blocks
< diam(Ty; ) X (O(n*"))"**° = diam(Ty,; ) x O(n'"°*+°)

TMn is a subcritical ~ _ 0(71 1/6+25) _ 0(n 1/4) \
Galton-Watson tree

[Chapuy Fusy Giménez Noy 2015]
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Subcritical case (2) s

@ O Decorations = groups of smaller blocks

Large block of size

On) The scaling limit of
M, (rescaled by n1/4)
Is the scaling limit of
uniform blocks!

1/4)

Scaling limit of uniform ~ (rescaled by n
« 2-connected maps = brownian sphere (assumed);

« Simple quadrangulations = Brownian sphere [Addario-Berry
Albenque 2017].

M /47



Results

ForM, < P, , u < 9/5 u=9/5 u>9/5
Enumeration p(u)—nn—S/Z p(u)—nn—SB p(u)—nn—3/2
Bonzom 2016 for 2-c case

Size of

. the largest |~ (1 = E@**"")n Gy Stadaey)

@(nZ/S) p T (1)
block 21n (—) 41n (-)
2/3 27y 27y

- the second On")
one [Stufler 2020]

—
1 1/4 M, =3, 1 M, = 7,
| [Stufler 2020]
.

Scaling limit of

:\’_\ \ “1 dx/‘
3

J. Bettinelli R
Assuming the convergence of 2-

connected maps towards the
brownian sphere

42/47
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V. Perspectives




Extension to other models

[Banderier, Flajolet, Schaeffer, Soria 2001]:

TABLE 3. Composition schemas, of the form M = C o H + D,
except the last one where M = (1 + M) x (C o H).

maps, M(z)

cores, C'(z)

submaps, H(z) coreless, D(z)

all, M1 (Z)

bridgeless,

or loopless M3 (2)

z/(1 — z(1 4 M))? z(1 4+ M)?

loopless M»(z) simple M3(z2) z2(14+ M) —
all, M1(z) nonsep., M4 (z2) z(1+ M)? —
nonsep. My(z) — z nonsep. simple M5(z) 2(1+ M) -
nonsep. M4(z)/z —2 3-connected Ms(2) M z+2M?/(1 + M)
bipartite, B1(z) bip. simple, B2(z) z(14+ M) -
bipartite, B1(z) bip. bridgeless, B3(z) z/(1 —z(1 + M))? z(1+ M)?
bipartite, B1(2) bip. nonsep., B4(z) z(1+ M)? —
bip. nonsep., B4(z)  bip. ns. smpl, Bs(2) z2(14+ M) -
singular tri., T4 (z2) triang., z + 272(2) z(14+ M)° —
triangulations, T»(z) irreducible tri., T3(z2) 2(1+ M)? w —
16/7 Nea/a7
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Critical window?

Phase transition very sharp => what if u = 9/5 * e(n)?

. Block size results still hold if u, = 9/5 — e(n), e3n - oo;

» Foru, =9/5 + e(n), conjecture L, | ~ 2.76438 e~ In(e’n)

when £°n — o0 (analogous to [Bollobas 19841's result for

Erd6s-Rényi graphs!);

» Results exist for scaling limits in ER graphs [Addario-Berry,
Broutin, Goldschmidt 2010], Open guestion Iin our case.

Is there a critical window? If so, what is its width?
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Perspectives

u, =9/5 —¢en =9/5 +
forM, > P u<9/5 " W u=9/5 ‘> 9/5
| £n — oo en — o0
Ln,1 ~ (1 _ [E(,u4/27’“))n
@(n 2/ 3) ~ 2.7648 ¢ 2 In(&3n) 211<<i 7 i<2<_>>> + o)
L,, @(n2/3)
Scaling limit e(n) = nc
of M,
Cl(u) C4 C2 C3(M)
— —= g ?
oy M - &, n(l—a)/4M” S, 7 M, — T, stabletree" 7 M -

Admitting the convergence of 2-connected
maps towards the brownian map

Pink = work in progress
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Thank you!



