A phase transition in blockweighted random maps

Séminaire au LIPN 13 septembre 2022

> Zéphyr Salvy William Fleurat

LIGM, Université Gustave Eiffel

Planar maps

Planar map \mathfrak{m} = embedding on the sphere of a connected planar graph, considered up to homeomorphisms

- Rooted planar map = map endowed with a marked oriented edge (represented by an arrow);
- Size |m| = number of edges;
- Corner (does not exist for graphs!) = space between an oriented edge and the next one for the trigonometric order.

Universality results for planar maps

- Enumeration: $\kappa \rho^{-n} n^{-5/2}$ [Tutte 1963, Drmota, Noy, Yu 2020];
- Distance between vertices: $n^{1/4}$ [Chassaing, Schaeffer 2004];
- Scaling limit: Brownian sphere for arbitrary maps [Bettinelli, Jacob, Miermont 2014];
- Universality:
 - Same enumeration;
 - Same scaling limit, e.g. for quadrangulations [Miermont 2013], triangulations & 2q-angulations [Le Gall 2013], simple quadrangulations [Addario-Berry, Albenque 2017].

Universality results for planar trees

- Enumeration: $\kappa \rho^{-n} n^{-3/2}$;
- Distance between vertices: $n^{1/2}$ [Flajolet, Odlyzko 1982];
- Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];
- Universality:
 - Same enumeration,
 - Same scaling limit, even for some classes of maps; e.g. outerplanar maps [Caraceni 2016], maps with a boundary of size >> $n^{1/2}$ [Bettinelli 2015].

Brownian tree \mathcal{T}_e

Motivation

Interpolating model?

2-connectivity

Cut vertex: vertex that when removed disconnects the map

2-connected: no cut vertex (=to be able to disconnect, at least two vertices must be removed)

Block = maximal (for inclusion) 2-connected submap

2-connectivity

Cut vertex: vertex that when removed disconnects the map

2-connected: no cut vertex (=to be able to disconnect, at least two vertices must be removed)

Block = maximal (for inclusion) 2-connected submap

Motivation

Condensation phenomenon: a large block concentrates a macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

Only small blocks.

Interpolating model?

Outline of the talk

A phase transition in block-weighted random maps

- I. Approach
- II. Largest blocks
- III. Similar model: quadrangulations
- IV. Scaling limits
- V. Perspectives

I. Approach

Model

Goal: parameter that affects the typical number of blocks.

We choose:
$$\mathbb{P}_{n,u}(\mathbf{m}) = \frac{u^{\#blocks(\mathbf{m})}}{Z_{n,u}}$$
 where $u > 0$, $\mathcal{M}_n = \{\text{maps of size } n\}$, $\mathbf{m} \in \mathcal{M}_n$, $Z_{n,u} = \text{normalisation.}$

Inspired by [Bonzom 2016].

- u = 1: uniform distribution on maps of size n;
- $u \to 0$: minimising the number of blocks (=2-connected maps);
- $u \to \infty$: maximising the number of blocks (= trees!).

Given u, asymptotic behaviour when $n \to \infty$?

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5
Enumeration			
Size of - the largest block - the second one			
Scaling limit of M_n			

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-Berry

2019].

With a weight u on blocks: $M(z, u) = uB(zM^2(z, u)) + 1 - u$

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-Berry

2019].

With a weight u on blocks: $M(z, u) = uB(zM^2(z, u)) + 1 - u$

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-Berry

2019].

With a weight u on blocks: $M(z, u) = uB(zM^2(z, u)) + 1 - u$

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-Berry

2019].

With a weight u on blocks: $M(z, u) = uB(zM^2(z, u)) + 1 - u$

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-Berry

2019].

GS of 2-connected maps -

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-Berry

2019].

With a weight u on blocks: $M(z, u) = uB(zM^2(z, u)) + 1 - u$

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-Berry

2019].

GS of 2-connected maps -

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-Berry

2019].

GS of 2-connected maps -

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-Berry

2019].

GS of 2-connected maps -

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-Berry

2019].

GS of 2-connected maps -

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-Berry

2019].

GS of 2-connected maps -

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

With a weight u on blocks: $M(z, u) = uB(zM^2(z, u)) + 1 - u$

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

With a weight u on blocks: $M(z, u) = uB(zM^2(z, u)) + 1 - u$

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

With a weight u on blocks: $M(z, u) = uB(zM^2(z, u)) + 1 - u$

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

With a weight u on blocks: $M(z, u) = uB(zM^2(z, u)) + 1 - u$

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

With a weight u on blocks: $M(z, u) = uB(zM^2(z, u)) + 1 - u$

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{|\mathfrak{m}|} u^{\#blocks(\mathfrak{m})}$$

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5
Enumeration [Bonzom 2016]	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one			
Scaling limit of M_n			

Decomposition of a map into blocks: properties

- Internal node (with k children) of $T_{\mathfrak{m}} \leftrightarrow$ block of \mathfrak{m} of size k/2;
- \mathfrak{m} is entirely determined by $T_{\mathfrak{m}}$ and $(\mathfrak{b}_{v}, v \in T_{\mathfrak{m}})$ where \mathfrak{b}_{v} is the block of \mathfrak{m} represented by v in $T_{\mathfrak{m}}$.

 T_{M_n} gives the block sizes of a random map M_n .

Galton-Watson trees for map blocks

 μ -Galton-Watson tree : random tree where the number of children of each node is given by μ independently, with μ = probability law on \mathbb{N} .

Galton-Watson trees for map blocks

 μ -Galton-Watson tree : random tree where the number of children of each node is given by μ independently, with μ = probability law on \mathbb{N} .

<u>Theorem</u>

If $M_n \hookrightarrow \mathbb{P}_{n,u'}$ then T_{M_n} has the law of a Galton-Watson tree

of reproduction law $\mu^{y,u}$ conditioned to be of size 2n, with

$$\mu^{y,u}(\{2k\}) = \frac{B_k y^k u^{\mathbf{1}_{k\neq 0}}}{uB(y) + 1 - u}. \qquad u > 0$$

$$y \in (0,4/27]$$

Galton-Watson trees for map blocks

 μ -Galton-Watson tree : random tree where the number of children of each node is given by μ independently, with μ = probability law on \mathbb{N} .

<u>Theorem</u>

If $M_n \hookrightarrow \mathbb{P}_{n,u'}$ then T_{M_n} has the law of a Galton-Watson tree

of reproduction law $\mu^{y,u}$ conditioned to be of size 2n, with

$$\mu^{y,u}(\{2k\}) = \frac{B_k y^k u^{1_{k\neq 0}}}{uB(y) + 1 - u}. \qquad u > 0$$

$$y \in (0,4/27]$$

=> Choice of y?

Phase transition

When is $\mu^{y,u}$ critical? (= $\mathbb{E}(\mu) = 1$?)

$$\mathbb{E}(\mu^{y,u}) = 1 \Leftrightarrow u = \frac{1}{2yB'(y) - B(y) + 1}$$

covers $[9/5, +\infty)$ when y covers $(0, \rho_B = 4/27]$.

<u>Theorem</u>

- If u < 9/5, then $\mathbb{E}(\mu^{y,u}) < 1$. The mean is maximal for y = 4/27 and then $\mu^{y,u}(2k) \sim c_u k^{-5/2}$;
- If u = 9/5 and y = 4/27, then $\mathbb{E}(\mu^{y,u}) = 1$ and $\mu^{y,u}(2k) \sim c_u k^{-5/2}$;
- If u > 9/5 and y is well chosen, then $\mathbb{E}(\mu^{y,u}) = 1$ and $\mu^{y,u}(2k) \sim c_u \pi_u^k k^{-5/2}$.

Phase transition

II. Largest blocks

Properties of T_{M_n}

	<i>u</i> < 9/5	u = 9/5	<i>u</i> > 9/5
$\mu^{y(u),u}(\{2k\})$	$\sim c_u k^{-5/2}$		$\sim c_u \pi_u^k k^{-5/2}$
Variance	∞		< ∞
Galton- Watson tree	subcritical	crit	ical

Tool: [Janson 2012] = extensive study of the degrees in Galton-Watson trees

Properties on trees give properties of maps.

Size $L_{n,k}$ of the k-th largest block

Rough intuition

	<i>u</i> < 9/5	u = 9/5	<i>u</i> > 9/5
$\mu^{y(u),u}(\{2k\})$	$\sim c_u k^{-5/2}$		$\sim c_u \pi_u^k k^{-5/2}$
Galton- Watson tree	subcritical	critical	

Dichotomy between situations:

- Subcritical: condensation, cf [Jonsson Stefánsson 2011];
- Supercritical: behaves as maximum of independent variables.

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5
Enumeration [Bonzom 2016]	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^{4/27,u}))n$ $\Theta(n^{2/3})$ [Stufler 2020]	$\Theta(n^{2/3})$	$\frac{\ln(n)}{2\ln\left(\frac{4}{27y}\right)} - \frac{5\ln(\ln(n))}{4\ln\left(\frac{4}{27y}\right)} + O(1)$
Scaling limit of M_n			

III. Similar model: quadrangulations

Quadrangulations

Def: map with all faces of degree 4.

Simple quadrangulation = no multiple edges.

Size |q| = number of faces.

$$|V(\mathfrak{q})| = |\mathfrak{q}| + 2$$
, $|E(\mathfrak{q})| = 2|\mathfrak{q}|$.

Construction of a quadrangulation from a simple core

Construction of a quadrangulation from a simple core

Construction of a quadrangulation from a simple core

Block tree for a quadrangulation

With a weight u on blocks: $Q(z, u) = uS(zQ^2(z, u)) + 1 - u$

Remember: $M(z, u) = uB(zM^{2}(z, u)) + 1 - u$

Tutte's bijection for 2-connected maps

Cut vertex => multiple edge

2-connected maps <=> simple quadrangulations

Block trees under Tutte's bijection

Implications on results

We choose:
$$\mathbb{P}_{n,u}(\mathfrak{q}) = \frac{u^{\#blocks(\mathfrak{q})}}{Z_{n,u}}$$
 where

u>0, $\mathcal{Q}_n=\{\text{quadrangulations of size }n\},$ $\mathfrak{q}\in\mathcal{Q}_{n'}$ $Z_{n,u}=\text{normalisation}.$

Results on the size of (2-connected) blocks can be transferred immediately for quadrangulations and their simple blocks.

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5
Enumeration [Bonzom 2016] for 2-c case	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^{4/27,u}))n$ $\Theta(n^{2/3})$ [Stufler 2020]	$\Theta(n^{2/3})$	$\frac{\ln(n)}{2\ln\left(\frac{4}{27y}\right)} - \frac{5\ln(\ln(n))}{4\ln\left(\frac{4}{27y}\right)} + O(1)$
Scaling limit of M_n			

IV. Scaling limits

Scaling limits

Convergence of the whole object considered as a metric space (with the graph distance), after renormalisation.

$$M_n \hookrightarrow \mathbb{P}_{n,u}$$

What is the limit of the sequence of metric spaces $((M_n, d/n^?))_{n \in \mathbb{N}}$?

(Convergence for Gromov-Hausdorff metric)

Scaling limits of Galton-Watson trees

I. Kortchemski

I. Kortchemski

Scaling limits of Galton-Watson trees

Theorem For
$$M_n\hookrightarrow \mathbb{P}_{n,u'}$$

• If $u>9/5$, $\frac{c_3(u)}{n^{1/2}}T_{M_n}\to \mathcal{T}_e$.
• If $u=9/5$, $\frac{c_2}{n^{1/3}}T_{M_n}\to \mathcal{T}_{3/2}$.

Proof

- Scaling limit of critical Galton-Watson trees with finite variance [Aldous 1993, Le Gall 2006];
- Scaling limit of critical Galton-Watson with infinite variance and nice tails [Duquesne 2003].

Scaling limit of supercritical and critical maps

Theorem For $M_n \hookrightarrow \mathbb{P}_{n,u'}$

• If u > 9/5,

$$\frac{C_3(u)}{n^{1/2}}M_n\to \mathcal{T}_e.$$

• If u = 9/5,

$$\frac{C_2}{n^{1/3}}M_n \to \mathcal{T}_{3/2}.$$

[Stufler 2020]

Supercritical and critical cases (1)

Difficult part = show that distances in ${\mathfrak m}$ behave like distances in $T_{\mathfrak m}$. We show

$$\forall e_1, e_2 \in \overrightarrow{E}(M_n), d_{M_n}(e_1, e_2) \simeq \kappa d_{T_{M_n}}(e_1, e_2).$$

Supercritical and critical cases (2)

Let $\kappa = \mathbb{E}(\text{"diameter" bipointed block})$. By a "law of large numbers"-type argument

 $d_{M_n}(e_1, e_2) \simeq \kappa d_{T_{M_n}}(e_1, e_2)$.

Difficult for the critical case => use diameter estimates

Scaling limits of subcritical maps

Theorem If u < 9/5, for $M_n \hookrightarrow \mathbb{P}_{n,u}$ a quadrangulation,

$$\frac{C_1(u)}{n^{1/4}}M_n \to \mathcal{S}_e.$$

Moreover, M_n and its simple core converge jointly to the same Brownian sphere.

We expect the same scaling limits for maps but the scaling limit of 2-connected maps is not yet proved.

See [Addario-Berry, Wen 2019] for a similar result and method

Subcritical case (1)

Diameter of a decoration ≤ number of blocks × max diameter of blocks

$$\leq \operatorname{diam}(T_{M_n}) \times (O(n^{2/3}))^{1/4+\delta} = \operatorname{diam}(T_{M_n}) \times O(n^{1/6+\delta})$$

$$= O(n^{1/6+2\delta}) = o(n^{1/4}).$$
 [Chapuy Fusy Giménez Noy 2015]

40/47

Subcritical case (1)

Diameter of a decoration ≤ number of blocks × max diameter of blocks

Subcritical case (2)

Scaling limit of uniform ~ (rescaled by $n^{1/4}$)

- 2-connected maps = brownian sphere (assumed);
- Simple quadrangulations = Brownian sphere [Addario-Berry Albenque 2017].

Results

	1015	0.15	0.15			
For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5			
Enumeration Bonzom 2016 for 2-c case	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$			
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^{4/27,u}))n$ $\Theta(n^{2/3})$ [Stufler 2020]	$\Theta(n^{2/3})$	$\frac{\ln(n)}{2\ln\left(\frac{4}{27y}\right)} - \frac{5\ln(\ln(n))}{4\ln\left(\frac{4}{27y}\right)} + O(1)$			
Scaling limit of M_n	$\frac{C_1(u)}{n^{1/4}}M_n\to \mathcal{S}_e$ J. Bettinelli Assuming the convergence of 2-connected maps towards the	$rac{C_2}{n^{1/3}}M_n o \mathscr{T}_{3/2}$	$\frac{C_3(u)}{n^{1/2}}M_n \to \mathcal{F}_e$ [Stufler 2020]			
brownian sphere 42/47						

V. Perspectives

Extension to other models

[Banderier, Flajolet, Schaeffer, Soria 2001]:

Table 3. Composition schemas, of the form $\mathcal{M} = \mathcal{C} \circ \mathcal{H} + \mathcal{D}$, except the last one where $\mathcal{M} = (1 + \mathcal{M}) \times (\mathcal{C} \circ \mathcal{H})$.

maps, $M(z)$	cores, $C(z)$	submaps, $H(z)$	coreless, $D(z)$
all, $M_1(z)$	$\begin{array}{cc} { m bridgeless}, \\ { m or loopless} \end{array} M_2(z)$	$z/(1-z(1+M))^2$	$z(1+M)^2$
loopless $M_2(z)$	simple $M_3(z)$	z(1+M)	_
all, $M_1(z)$	nonsep., $M_4(z)$	$z(1+M)^2$	_
nonsep. $M_4(z)-z$	nonsep. simple $M_5(z)$	z(1+M)	_
nonsep. $M_4(z)/z-2$	3-connected $M_6(z)$	M	$z + 2M^2/(1+M)$
bipartite, $B_1(z)$	bip. simple, $B_2(z)$	z(1+M)	_
bipartite, $B_1(z)$	bip. bridgeless, $B_3(z)$	$z/(1-z(1+M))^2$	$z(1+M)^{2}$
bipartite, $B_1(z)$	bip. nonsep., $B_4(z)$	$z(1+M)^{2}$	_
bip. nonsep., $B_4(z)$	bip. ns. smpl, $B_5(z)$	z(1+M)	
$\sqrt{\text{singular tri., } T_1(z)}$	triang., $z + zT_2(z)$	$z(1+M)^{3}$	_
triangulations, $T_2(z)$ irreducible tri., $T_3(z)$		$z(1+M)^2$	_
		\	

16/7

64/37

Critical window?

Phase transition very sharp => what if $u = 9/5 \pm \varepsilon(n)$?

- Block size results still hold if $u_n = 9/5 \varepsilon(n)$, $\varepsilon^3 n \to \infty$;
- For $u_n=9/5+\varepsilon(n)$, conjecture $L_{n,1}\sim 2.7648\,\varepsilon^{-2}\ln(\varepsilon^3n)$ when $\varepsilon^3n\to\infty$ (analogous to [Bollobás 1984]'s result for Erdős-Rényi graphs!);
- Results exist for scaling limits in ER graphs [Addario-Berry, Broutin, Goldschmidt 2010], open question in our case.

Is there a critical window? If so, what is its width?

Perspectives

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	$u_n = 9/5 - \varepsilon(n)$ $\varepsilon^3 n \to \infty$	u = 9/5	$u_n = 9/5 + \varepsilon(n)$ $\varepsilon^3 n \to \infty$	<i>u</i> > 9/5
$L_{n,1}$	$\sim (1 - \mathbb{E}(\mu^{4/27,u}))n$		$\Theta(n^{2/3})$	$\sim 2.7648 e^{-2} \ln(e^3 n)$	$\frac{\ln(n)}{2\ln\left(\frac{4}{27y}\right)} - \frac{5\ln(\ln(n))}{4\ln\left(\frac{4}{27y}\right)} + O(1)$
$L_{n,2}$	$\Theta(n^{2/3})$				
Scaling limit		$\varepsilon(n) = n^{-\alpha}$			
of M_n		$rac{C_4}{n^{(1-lpha)/4}} M_n o {\mathcal S}_e$		stable tree ?	$\frac{C_3(u)}{n^{1/2}}M_n\to \mathcal{T}_e$
		he brownian map			

Thank you!