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Motivation

Motivation : Computational biology
Aim : measure of the similarity between two genomic (long) sequences.
Let Sn be the set of permutations of [n]. If σ, τ ∈ Sn, set

Op(σ, τ) = #{i 6 p : σ ◦ τ−1(i) 6 p} ,p = 1, · · · ,n .

and compare them with the results of a random permutation.
G. Chapuy introduced the discrepancy process

T
(n)
bnsc,bntc(σ) = #{i 6 bnsc : σ(i) 6 bntc} , s, t ∈ [0, 1] ,

Theorem (G. Chapuy 2007)
The sequence

n−1/2
(
T
(n)
bnsc,bntc(σ) − stn

)
, s, t ∈ [0, 1]

converges in distribution to the bivariate tied down Brownian bridge, of
covariance (s∧ s ′ − ss ′)(t∧ t ′ − tt ′) .
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Motivation

Matrix representation

If σ is represented by the matrix U(σ), the integer Tnp,q(σ) is the sum of all
elements of the upper-left p× q submatrix of U(σ), i.e.

Tnp,q(σ) = Tr [DpU(σ)DqU(σ)
∗]

where Dk = diag(1, · · · , 1, 0, · · · , 0) (k times 1) .

Instead of picking randomly σ in the group Sn, we propose to pick a
random element U in the group U(n) (resp. O(n)) and to study

The main statistic

Tnp,q = Tr(D1UD2U
∗) =

∑
i6p,j6q

|Uij|
2 .
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Main result

Main result

Theorem (CDM+AR, RMTA 2011)

The process

W(n) =
{
T
(n)
bnsc,bntc − ET (n)bnsc,bntc , s, t ∈ [0, 1]

}
converges in distribution in the Skorokhod space D([0, 1]2) to the bivariate

tied-down Brownian bridge
√

2
βW

(∞) where W(∞) is a centered

continuous Gaussian process on [0, 1]2 of covariance

E[W(∞)(s, t)W(∞)(s ′, t ′)] = (s∧ s ′ − ss ′)(t∧ t ′ − tt ′),

β = 2 in the unitary case and β = 1 in the orthogonal case.
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Main result

Normalizations
I No normalization here !
I If σ is Haar distributed in Sn, then Uij is Bernoulli of parameter 1/n

and
Var(|Uij|

2) ∼ n−1

I If U is Haar distributed in U(n), then the column vector (Ui,j)ni=1 is
uniform on the (complex) sphere of dim n, and |Uij|

2 is Beta
distributed with parameters (1,n− 1) and

Var(|Uij|
2) ∼ n−2 .

I If O is Haar distributed in O(n), then |Oij|
2 is Beta distributed with

parameters (1/2, (n− 1)/2) and

Var(|Oij|
2) ∼ 2n−2 .
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Main result

Previous related results

I If q is fixed, Silverstein (1981) proved that the process

n1/2

bnsc∑
i=1

|Uiq|
2 − s

 , s ∈ [0, 1]

converges in distribution to the (univariate) Brownian bridge,
continuous gaussian process of covariance s(1 − s).

I In multivariate (real) analysis of variance, Tp,q is known as the
Bartlett-Nanda-Pillai statistics, used to test equalities of covariances
matrices from Gaussian populations.
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Main result

Asymptotic studies :

1) p,q fixed, n→∞ (large sample framework),

2) q fixed, n,p→∞ and p/n→ s < 1 fixed (high-dimensional
framework, see Fujikoshi et al. 2008).

3) p/n→ s,q/n→ t with s, t fixed. This case is considered in the Bai
and Silverstein’s book, and a CLT for Tp,q was proved by Bai et al.
(2009).
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The 1-marginals

Asymptotics of the 1-marginals (i.e. s, t fixed)
Set p = bnsc , q = bntc and

Ap,q = DpUDqU
∗ = Vp,qV

∗
p,q

where Vp,q = DpUDq is the upper-left submatrix of U. As proved by
Collins (2005) Ap,q belongs to the Jacobi unitary ensemble (JUE) and

T
(n)
p,q = TrAp,q = p

∫
xdµ(p,q)(x) ,

where µ(p,q) is the empirical spectral distribution

µ(p,q) =
1

p

p∑
k=1

δ
λ
(p)
k

,

and the λ(p)k ’s are the eigenvalues of Ap,q.
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The 1-marginals

For the JUE, the equilibrium measure is the Kesten-McKay distribution. If
s 6 min(t, 1 − t) it has the density

πu−,u+(x) := Cu−,u+

√
(x− u−)(u+ − x)

2πx(1 − x)
1(u−,u+)(x) (1)

where 0 6 u− < u+ 6 1 (u± depending on s, t).

LLN
lim
n

1

n
T
(n)
bnsc,bntc = s

∫
xπu−,u+

(x)dx = st ,

CLT
T
(n)
bnsc,bntc − ET (n)bnsc,bntc ⇒ N(0, s(1− s)t(1− t))

A. Rouault (LMV) Paris 13 Seminar 22 may 2018 12 / 35



Towards the fidi convergence and tightness

Plan

1 Motivation

2 Main result

3 The 1-marginals

4 Towards the fidi convergence and tightness

5 Combinatorics of the unitary and orthogonal groups

6 Random truncation

7 Main result

8 Subordination

9 Open problem

A. Rouault (LMV) Paris 13 Seminar 22 may 2018 13 / 35



Towards the fidi convergence and tightness

Fidi convergence and tightness
To prove the fidi convergence, it is enough to prove that for any
(ai)i6k ∈ R and (si, ti)i6k ∈ [0, 1]2, pi = bnsic, qi = bntic the random
variable

X(n) =

k∑
i=1

ai[Tr(DpiUDqiU
?) − E(Tr(DpiUDqiU

?))]

where Dpi = Ipi , Dqi = Iqi , converges in distribution to the normal
distribution with the good variance.
We use the method of cumulants.
To prove tightness, we will take benefit of the structure of T (n)bnsc,bntc as a
sum with stationary increments. A sufficient condition (via the
Bickel-Wichura criterion) is

E (Tr(DpUDqU
?) − ETr(DpUDqU

?))4 = O(p2q2n−4) . (2)
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Towards the fidi convergence and tightness

The first calculations give

E|Uij|2k =
(n− 1)!k!

(n− 1 + k)!

E
(
|Ui,j|

2|Ui,k|
2
)
=

1

n(n+ 1)
, E
(
|Ui,j|

2|Uk,`|
2
)
=

1

n2 − 1
.

but for the fidi and tightness, we need mixed moments of higher order.
In fact, we gave a complete proof (fidi convergence + tightness) using a
formula for the cumulants of variables of the form

X = Tr(AUBU∗)

for deterministic matrices A,B of size n.
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Towards the fidi convergence and tightness

Recall : the multivariate cumulants are defined by

κr(a1, · · · ,ar) := (−i)r
∂r

∂ξ1 · · ·∂ξr
logE exp i

∑
ξkak .

They are related with moments by

κr(a1, · · · ,ar) =
∑

C∈P(r)

Möb(C, 1r)EC(a1, · · · ,ar)

where
I P(r) is the set of partitions of [r]
I If C = {C1, · · · ,Ck} is the decomposition of C in blocks, then

Möb(C, 1r) = (−1)k−1(k− 1)! , EC(a1, . . . ,ar) =
k∏
i=1

E(
∏
j∈Ci

aj).
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Towards the fidi convergence and tightness

Proposition (Particular case of Mingo, Sniady, Speicher)

Let U be Haar distributed on U(n). Let D = (D1, . . .Dk) and
D̄ = (D1̄, . . .Dk̄) be two families of deterministic matrices of size n. We
set, for 1 6 i 6 r, Xi = Tr(DiUDīU

?) . Then,

κr(X1, . . . ,Xr) =
∑

α,β∈Sr

∑
A

Cβα−1,A Trα(D̄)Trβ−1(D) (3)

where in the second sum A ∈ P(r) is such that βα−1 6 A and
A∨ β∨ α = 1r, and Cσ,A are the "relative cumulants" of the unitary
Weingarten function . Moreover, if the sequence {D, D̄}n has a limit
distribution, then for r > 3,

lim
n→∞ κr(X1, . . . ,Xr) = 0.
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Towards the fidi convergence and tightness

The needed formula relies on the notion of second order freeness
introduced by Mingo, Sniady and Speicher (06-07).
Roughly speaking, whereas the freeness, introduced by Voiculescu,
provides the asymptotic behavior of expectation of traces of random
matrices, the second order freeness describes the leading order of the
fluctuations of these traces.
To reach these cumulants, we use the Möbius formula and estimate the
moments.
Finally, moments, which are expectations of products of entries of U can
be described by the Weingarten function defined as follows (Collins
Sniady).
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Combinatorics of the unitary and orthogonal groups

Combinatorics of the unitary and orthogonal groups

I Let M2k be the set of pairings of [2k], i.e. of partitions where each
block consists of exactly two elements. It is then convenient to encode
the set [2k] by

[2k] ∼= {1, . . . ,k, 1̄, . . . , k̄} .

Given two pairings p1,p2, we define the graph Γ(p1,p2) as follows.
The vertex set is [2k] and the edge set consists of the pairs of p1 and
p2. Let loop(p1,p2) the number of connected components of
Γ(p1,p2).

I Let MU
2k denote the set of pairings of [2k], pairing each element of [k]

with an element of [k̄].
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Combinatorics of the unitary and orthogonal groups

Let GU(n) be the Gram matrix

GU(n) = (GU(n)(p1,p2))p1,p2∈MU
2k

:= (nloop(p1,p2))p1,p2∈MU
2k

.

The unitary Weingarten matrix WgU(n) is defined as the pseudo-inverse of
GU(n), i.e. such that GWG =W and WGW = G.
Let GO(n) be the Gram matrix

GO(n) = (GO(n)(p1,p2))p1,p2∈M2k
:= (nloop(p1,p2))p1,p2∈M2k

.

The unitary Weingarten matrix WgO(n) is defined as the-pseudo inverse
of GO(n).
Owing to some isomorphisms, these functions of two arguments may be
reduced to functions of one argument only. In particular in the unitary
case, each pi is associated with a permutation αi and

GU(n)(p1,p2) =: G(α−1
2 α1) = n

#cycles of α−1
2 α1 .
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Combinatorics of the unitary and orthogonal groups

Proposition

For every choice of indices i = (i1, . . . , ik, i1̄, . . . , ik̄) and
j = (j1, . . . , jk, j1̄, . . . , jk̄),

E
(
Ui1j1 . . .UikjkŪi1̄j1̄

. . . Ūik̄,jk̄

)
=

∑
p1,p2∈MU

2k

δ
p1

i δ
p2

j WgU(n)(p1,p2)

E
(
Oi1j1 . . .OikjkŌi1̄j1̄

. . . Ōik̄,jk̄

)
=

∑
p1,p2∈M2k

δ
p1

i δ
p2

j WgO(n)(p1,p2)

where δp1

i (resp. δp2

j ) is equal to 1 or 0 if i (resp. j) is constant on each pair
of p1 (resp. p2) or not.
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Random truncation

Random truncation

B. Farrell (2011) studied truncated unitary matrices, either deterministic
(Discrete Fourier Transform)

DFT
(n)
jk =

1√
n
e−2iπ(j−1)(k−1)/n

or Haar distributed, when each row is chosen independently with
probability s and each column is chosen independently with probability t.
He proved that the ESD converges to the Kesten-McKay distribution.
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Main result

Main result

We can embed this model in a two parameter framework,

T(n)(s, t) =
∑

16i,j6n

|Uij|
21Ri6s1Cj6t

Theorem (CDM+AR+VB 2013)

If U is Haar in U(n) or O(n), or if U is the DFT matrix, then

n−1/2
(
T(n) − ET(n)

)
law−→W∞

W∞(s, t) = sB(2)
0 (t) + tB

(1)
0 (s) , s, t ∈ [0, 1] ,

with B(1)
0 and B(2)

0 two independent Brownian bridges.
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Subordination

Subordination

Let S(1)
n (s) =

∑n
i=1 1Ri6s and S(2)

n (t) =
∑n
j=1 1Cj6t and Ũij = |Uij|

2.

Proposition

If Ũ is a random doubly stochastic matrix n×n with a distribution invariant
by permutation of rows and columns, then

T(n) law
=
(
T (n)

S
(1)
n (s),S

(2)
n (t)

, s, t ∈ [0, 1]
)

. (4)

We can then treat ω = (R1,R2, · · · ;C1,C2, · · · ) as an environment.
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Subordination

Proposition (Quenched)

T(n) − n−1S
(1)
n ⊗ S(2)

n
law−→

√
2

β
W(∞) for a.e. ω .
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Subordination

Proposition (Skorokhod embedding)

Let A(n) be D([0, 1]2)-valued such that A(n) law−→ A. Let S(1)
n and S(2)

n be
two independent processes as above, independent upon A(n). Set

S̃
(1)
n =

(
n−1/2(S

(1)
n (s) − ns) , s ∈ [0, 1]

)
and idem for S̃(2)

n and

A(n) =

(
A

(n)(
n−1S

(1)
n (s),n−1S

(2)
n (t)

) , s, t ∈ [0, 1]

)
. Then

(
A(n), S̃

(1)
n , S̃

(2)
n

)
law−→ (A,B

1)
0 ,B

(2)
0 )

where A,B
(1)
0 ,B

(2)
0 ) are independent and B(1)

0 and B(2)
0 are two BB.
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Subordination

Lemma(
n−1/2

(
n−1S

(1)
n (s)S

(2)
n (t) − nst

)
s, t ∈ [0, 1]

)
law−→W(∞)

Now,

T(n) − ET(n) =
(
T(n) − EωT(n)

)
+
(
EωT(n) − ET(n)

)
.

Proposition (annealed)

n−1/2
(
T(n) − ET(n)

)
law−→W∞ .
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Open problem

Open problem

Quantum groups, in particular quantum permutation group.
Haar, Weingarten∫

ui1j1 · · ·uikjk =
∑
p1,p2

δp1,iδp2,jWk,n(p1,p2)

where p1,p2 are non-crossing partitions of [k] and

Wk,n = G−1
k,n , Gk,n(p1,p2) = n

|p1∨p2| .
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Open problem
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Open problem

THANK YOU FOR YOUR ATTENTION!
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