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graphs, sets, k-tuples, random, ...

samples, coresets, kernels, sketches, ...

optimisation, graph algorithms, learning, ...
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n elements m sets = O (n?)
~ 7
set system (X, R)
ACX SeER
|A| E[|ANS|]
discrepancy
n S S
t = < 5] u +|error
2 2 2
1 steps
e-approximations
n y S|t
t= — - u + et
2° P n
log (en) steps, € > 0 a given parameter
e-nets
1 S :
t= — — >1 if |S|>en
€ eEn



RANDOM SAMPLING FOR APPROXIMATIONS
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RANDOM SAMPLING FOR APPROXIMATIONS
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RANDOM SAMPLING FOR APPROXIMATIONS

n m
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RANDOM SAMPLING FOR APPROXIMATIONS

nom A: a uniform random sample of X of size t.
set system (X, R)

t
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Random Sampling
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APPLICATION

e-nets



OPTIMISATION

Minimum hitting set problem on input (P,R) [Vazirani 2003)]

Algorithm: GREEDY
N =10

While N not a hitting set for R
Add ¢ € P that hits maximum new sets, to N

Return N

Algorithm: LINEAR PROGRAM

Solve LP
N : random sample of P w.r.t weights x,, - logm

Return N

Claim : If (P,R) has e-nets of size 1 - f (1)

€

then f(OPT)-approximation

O (OPT - logm)

Minimize g Ty

peP

subject to

(C) ) x,>1 VRER,

pPER

(C2) 0<z,<1 VYpeP

e=5o7 — O(OPT-logm)

[Long 2001]



OPTIMISATION

Minimum hitting set problem on input (P, R)

Algorithm: RANDOMIZED GREEDY + LP

Claim:

Solve LP
smaller

N : random sample of P w.r.t weights M U5 © 15)

While N not a hitting set for R
R : any set of R not hit by N

S=1,2,...,logm

q : an element randomly sampled from R according to weights {x,: p € R}

N =N U{q}
Return N

[M. 2019]

optimal approximation bounds (within constant factors)
for most well-studied geometric systems

runs for expected OPT iterations

Minimize E Zp

peP

subject to

(C) ) z,>1 VRER,

peR

(C2) 0<z,<1 VpeP




LOCALLY NICE SYSTEMS

Theorem : A uniform random sample of X of size © (E%ln m) is an e-
approximation with constant probability.

Surprising Theorem: A uniform random sample of X of size © (6% In —) is

an e-approximation with constant probability, for a locally nice system
[Vapnik, Chervonenkis 71]

‘locally nice’ set system

total number of sets |R|: O (n?)

number of subsetson Y C X: O (|Y|4) 2
o o . ° |- .
combinatorially o 2
°
- °
° ¢ §
Rly ={YNR : RER} o
° ® e, o®
the projection of R onto Y i
X R

a constant d such that

Rly| =O(|Y|%) for any Y C X



SAMPLING IN NICE SYSTEMS

c-approximations: A uniform random sample of X of size|© (%

e-approximation of ‘R, with constant probability, for nice systems.

1S an
[Vapnik, Chervonenkis 71]

typically computational learning theory uses
more complicated technique called symmetrization

Previous bound : a uniform random sample of size t = © (e% In m) is an e-approximation of R.

X X|=n
§-approximation l A =0 (& nnd) Random Sampling
of R

Af
S-approximation A= 0 (Fm|4]") = 0(& I (FInn?) )= O(E 5 + & nlnn)
of R|Af l

A

T =0(~mr(5)" O (<4 1n
e-approximation of R (€) = €2 n (5) (6_2 Il E)

[Csikos, M., 2020]

e-nets: A uniform random sample of X of size O (g log %) is an e-net with constant probability

[Haussler, Welzl 87]



VC DIMENSION

VC Dimension: A classical measure of complexity of set systems (X, R)

size of the largest set for which all subsets are possible; that is,

Rly =27 where Rly ={YNR: ReR}

Sauer-Shelah lemma

related to the dimension of the Euclidean space

d + 1 for half-spaces in R¢ d + 1 for balls in R¢ [Rly|=O(Y]%)

an important case: VC dimension of union of k balls, half-spaces in R¢

key parameter behind certain high-dimensional clustering algorithms

O (d-klogk) [Blumer, Ehrenfeucht, Haussler, Warmuth ’89]

probabilistic construction: take a random set system

Q(d-klogk) [Eisenstat, Angluin, 2007]
a different construction for half-spaces, balls

[Csikos, Kupavskii, M., 2019]



alterations:

n elements
m subsets
d dimension

Discrepancy

|

Approximations

|

Nets

pay too much if we sample large-enough to eliminate all ‘bad events’

the biggest risk is

probability, statistics, learning t0 not take any riskl

Ideal Random
Arbitrary
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L Inm
€
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random set system

[Komlos, Pach, Woeginger 1992]

VC dimension
Sampling

Sampling +
Combinatorics

Vdnlnn

d 1| d

€2 In €| €2

dip 1

€ €
chaining

[Talagrand, 1994]
[Li, Long, Srinivasan, 2001]



EPSILON-NETS FOR ABSTRACT SET SYSTEMS

e-nets: A uniform random sample of X of size O (% log %) is an e-net with constant probability

shortest paths in planar graphs
NON-OPTIMAL o (1

€

)-sized nets

Throughout the 1990s and the 2000s

several new techniques developed for o(% log %) sized nets

[Clarkson, Varadarajan 2006]  [Pyrga, Ray 2008]  [Varadarajan 2008] O (¢)-sized nets
[Varadarajan 2009] [Aronov, Ezra, Sharir 2010] [Chan et al. 2012]
[ ]
[Har-Peled, Kaplan, Sharir, Smorodinsky 2014] [Dutta, Ghosh, M. 2018] * e . .o s .
®
o: .. . |

V(C-dimension not fine enough 5

O (% log log %)-sized nets



'THE STRENGTHENED e-NET THEOREM

INSIGHT
v

=il |

(X,R) has shallow-cell complexity (-,-) if for any Y C X, and integer k
number of sets in R|y of size at most £ is O(|Y] : g0(|Y|,k))

Strengthened Epsilon-Net theorem: Let (X, R) be a set system with @ \ ::o
shallow-cell complexity ¢(-,-). Then there exists an e-net of size -

d 1 8 [Varadarajan 2009]
X (E * € log o7 (_; 24d)) [Chan et al. 2012]

€
[Dutta, Ghosh, M. 2018]

optimal: probabilistic construction

algorithm requires computing additional structures [Kupavskii, M., Pach 2017



AN ALGORITHM

General Net-Finder ((X.F},E > D).

N: pick a uniform random subset of X
while there exists a set S € F not hit by N do
| Add © (1) uniformly chosen random elements of S to V.

return N.

chaining + alterations

gives all known bounds




AN ALGORITHM

Py
General Net-Finder ((X.}-},E > D).
N: pick a uniform random subset of X
while there exists a set S € F not hit by N do
| Add O (1) uniformly chosen random elements of S to N.
e N [M. 2019] .
: clustering. there are a few key sets of # O (l (i d)) . "
. g- Y cPF oo
. reduction. the initial random sample reduces it even further
. potential function. each iteration makes progress on one of them
S, [Haussler 1995]

probabilistic charging argument S3

S
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APPLICATION

e-approximations



CLUSTERING

P: set of points in R?

C': k-medians

° ./.
l/. .o * .

Goal: compute a small-sized set A such that

for any C, |C| =k: Z distance (p,C) - w(p) = (1 Le)- Z distance (p, C)

pEA peEP

[Feldman, Langberg 2011]

—> computing optimal clustering on A gives approximate clustering on P



P:
C':

CLUSTERING

set of points in R?

k-medians .
l/.
° o o o ©
°
® ]
/ -
O °
° € o °
° ‘.o
® 9 ®
o0

Theorem : there exists assignment of weights, w: P — R, such that

any e-approximation A for union of k£ balls w.r.t. these weights satisfies

for any C, |C| =k:

peEA

Z distance (p,C) - w(p) = (1 L ¢) - Z distance (p, C)

peP

[Feldman, Langberg 2011]

—> computing optimal clustering on A gives approximate clustering on P



CONCLUSION

random sampling on combinatorial structures
probability, statistics, learning

structures improve sampling bounds and analysis

‘altering’ samples gives better bounds _ .
combinatorics, geometry

newer algorithms not much more complicated

applications of these compact structures S :
optimisation, graphs, algorithms

step 1. show the existence of a probability distribution on a set system

LP, FL
step 2. computing approximation under this distribution ’
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