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INTRODUCTION



Particular cases : Fuchsian differential equations (FDE)

q9(2) = [Mouo(z) + Mrun(2)] a(2),  y(2) = Aa(2), q(z0) =,

where Mo, My € M, o(C), A € M1,(C),n € M,1(C) and
up(z), u1(z) € C.

Example (hypergeometric equation)
z(1—2z)y(z) + [to — (to + t1 + 1)z]y(2) — tot1y(z) = 0.

Let g1(z) = y(z) and g2(z) = z(1 — z)y(z). One has

@) 1Cae %) 6 o wo) =) (3)
a2 —toty —t) z tb—to—t1)1—z|\q/)"
Here,

0 O 0 1
_(1 0)7M0__(t0t1 t2>’M1__<0 tg—to—h)'




Examples of Nonlinear Dynamical Systems

Example (harmonic oscillator)
¥(2) + kay(2) + kay? ( ) = u(t).

4(z) = Ao(q)uo(z) + A(q)ui(z) with up(z) =1,
A = —(kig+ kg’ )(%,
Al = (‘%,

y(z) = q(2).

Example (Duffing's equation)
¥(2) + ay(2) + by(2) + cy*(2) = w1 (2).

g(z) = Ao(q)uo(z) + A1(q)u (z) with up(z) =1,
0
Av = —(ag2 +b2q1+CQ1)7 +q28q
0
Al - ati’

y(z) = al2)



Previous work

For (FDE), one can base on the R. Jungen thesis! “Sur les séries
de Taylor n'ayant que des singularités algébrico-logarithmiques sur
leur cercle de convergence” (1931).

But for nonlinear differential equations ?
One can appoximate the nonlinear differential systems by linear
ones, and then one can base one self on the Jungen's thesis.

1This thesis influence quitely the works of
» M.P. Schiitzenberger, “On a theorem of R. Jungen” (1962),
» M. Fliess, “Sur divers produits de séries formelles” (1974),

» Ph. Flajolet & A. Odlyzko, “The Average Height of Binary Trees and
Other Simple Trees” (1982).



NONLINEAR DYNAMICAL SYSTEMS



Nonlinear Dynamical Systems
Let (D, d) be a k-commutative associative differential algebra with
unit (ch(k) = 0) and C be a differential subfield of D.

= Zy,,z” is the output of :

(v = fe2)
(NLS) 9(z) = Ao(q)uo(z) + Ar(q)ui(2),
q(z0) = qo,
where :
> up(z),u1(z) €C,
» the state g = (g1, ..., qn) belongs the complex analytic

manifold @ of dimension N and ¢ is the initial state,
» the observation f € O, with O is the ring of holomorphic
functions over Q,

» For i =0..1, A; = ZAJ 88q is an analytic vector field?
j

over @, with A{,-(q) € O,fOI’_/ =1,...,N.
2A vector field A; is said to be linear if the 4i(q),j = 1..N, are constants.




Structural C-automaton associated to (/NLS)

Any (NLS) can be associated to a structural C-automaton characterizing
the structure of the differential algebra defined by {A;}i=0,1.
For any i =1,.., N, let D; denotes 9/0q;. Let r be a multi-index

(r1,...,rn) and let D" denotes the differential operator Di* ... Dy
The infinite structural C-automaton is the 5-uple (X, F,/,7, ), where
> X = {Xo,Xl},

» F is the C-vector space generated by the operators D",
» [ is the initial state,

» 7(x;),i =0,..1, is the linear endomorphism of F describing the
right action® of A; on differential operator D,

> )\ is the row vector whose i** component is D;f.

The truncated structural C-automaton is obtained by choosing the states

that are met along the successful path and of length less or equal to m.

This gives a C-automaton recognizes a rational power series over X.
*This action is given by D'A; =Y | > (1) D" *Ai(q)D°D;,

with r = (r,...,m),s = (s1,...,sv) and s <r <= s1<r,...,sc <

and (}) = Hszl (9.




Examples of structural C-automaton

Example (harmonic oscillator)
Putting F := —(kig + k2q2)', one has Ay = FD,A; = D.
X = {xo0,x1},F =spanc{D'}i>0,/ ={ld},A\=(¢q 1 0 ... 0).
The C-automaton cell is given by

DiAl _ Di+1,

DA, = FD'*! 1 <1)[DF]D"1 + (é) [D2F]DI2.
Example (Duffing's equation)
Putting F := —(aqa + b?q1 + (,"qf), one has Ay = FD; + Dy, Ay = D>.
X = {x0,x}, F = spanc{DiDL}3 1 = {ld}, A= (q» 1 O ... 0).
The C-automaton cell is given by
D{DéAl = D{Dé-H’
DiDiA, = FDiD}™

+ (¢ )mAi g (3 )opAor2oi + () ioeFIo) o)

— jaDiDj + q,Di** D} + jDit DIt



Our works
Let X = {x0, x1} with xp < x1. For any w = x;, --- x;, € X*, let

AlLe) =1d, A(w) = Ay 0.. 0 A,

z 4l Zk—1
Oéo(lx*) = 1, aio(w) = / / .. / u,-l(zl)dzl cee u,'k(Zk)de.
zo Jzo )

Theorem (Deneufchatel,Duchamp,HNM, 2010)
Let S = Z az(w) w € D(X)). The following conditions are

weX*
equivalent :

i) The family (o (w))wex= of coefficients of S is free over C.

i) The family of coefficients (aZ,(x))xexu{iy.} IS free over C.

Therefore, by successive Picard iterations, one get

= 3 A(w) o f(qo) aZ,(w) = [(A® a2, )D](F(q0)),

weX*

where, D = Z w® w.

weX*



Chen-Fliess generating series

» Chen series
Spez = Z az (w) w.
wEX*
Any Chen generating series S,,.., is group-like, for A ,, , and it
depends only on the homotopy class of zy ~» z (Ree).
The product of two Chen generating series S;,..,, and Sz, is the
Chen generating series S;wvz, = Szo02, 522 (Chen).

> The generating series of the polysystem {A;}i=0.1 and of the
observation f € O is given by

of = Z.A(W)OfW € C[q1, - -, an]((X))-
weX*

of, = > AWw)ofgw €C(X).
weX*

The last is called Fliess generating series of {A;}i=o.1 and of f at q.
For any f,g € O anf for any A\, € C, one has (Fliess)

o(vf +pg) =o(wf)+o(ug) and o(fg) =of wog.



DIAGONAL SERIES



Lyndon words

» A word is a Lyndon word if it is less than each of its right
factors (for the lexicographical ordering).

Example
{x0,x1}, % < x1. The Lyndon words of length <5 are xo, x§x1,
Bt x3x2 52 2 2.2 2.3 2 2 3 4
0 X1, Xg X1 » Xg X1, Xg X1 X0X1, Xg X1, Xg X1 5 X0X1, X0X1X0X] ;, X0X7 , X0X7 , X0X1 , X1-
» Forany w e X*,w=1I... 15 |k >...> I (Sirsov).
Example
X1 X0X2X0X2 X3 X1 = X1.X0X2 XX x@x1 = x1(x0x?)2x@xq.
» Lyn(X) : the set of Lyndon words over X and forms a
transcendence basis for the shuffle algebra (Radford).
Example
xoxlxgxl = XgX1 w ngl -3 nglxoxl -6 xg’xlz,

xgxlxgxl = xgxl w xgxl — 5X§xlxgx1 — 15xgx1xgx1 — 35xg’x1xoxl —70ng12.

> Let Y = {y,-},'zl with yi>y2> ... Then
I € LynX \ {x0} <= Myl € Lyn(Y) (Perrin).



Standard factorization and PBW basis

» The standard factorization of / € LynX \ X, noted by st(/), is
(u,v), where u,v € LynX s.t. | = uv and v is the proper

longest right factor of / verifying u < uv < v.
Example

st(xgxlxoxl) = (xgxl, X0X1)-
> Liec(X) (resp. Liec((X))) : set of Lie polynomials (resp.
power series) over X and of coefficients in C.
» {S;; 1 € Lyn(X)} is a basis of Liec(X), where the bracket
form S; of Lyndon word / is defined by Sy = x if x € X and
Si = [Su, Sv] if (u,v) = st(/).
» The PBW basis B = {S,,; w € X*} is obtained by putting

Sw=SISE... Sk for w=Il k> >,
» The dual basis B = {5,,; w € X*} is obtained by putting
§1X* = 1x*,§/ = xS§, for | = xu € LynX and

i & ik
« 5/1 LJ.Ll...Ll.USIk i i
5, = E— for w=1I kb > >

..kt




Diagonal series and Lie elements

N\ . N\ 5
» D= H el® = H @51 (Schiitzenberger).
leLynX leLynX

> Let S € C(X)). S is called group-like if A ,, S=S5S®S.
> S is said to be primitive if A |, S=1® S+ S5S®1.

» S satisfies Friedrichs’ (multiplicative) criterion

(Sl w v) = (S|u)(Sv).

» The following assertions are equivalent (Ree)
i) S e Liec((X)).
ii) e verifies Friedrichs' (multiplicative) criterion.
i) S is primitive.
iv) e is group-like.

One has similar results over Y = {y;}i>1 with y; > y» > .. ..



Computat

tional examples

/ Ny (/) S 5 Ny (3)
X0 X0 X0
x1 v x1 x1 v
Xox1 y2 [x0, x1] Xox1 y2
xgx1 ¥3 [x0, [x0, x1]] xgx1 v3
xox¢ y2y1 [[x0, xa], xa] xox¢ vay1
e va [0 [0, [0, 1] o va
g y3y1 [x0, [[x0, x1], x1]] g y3y1
X3 y2y2 [[[x0, x1], xa], x] X0} yoy?
XXt ¥s b0, b0, [0, b0, ]l Xox1 ¥5
x@xd yay1 [x0, [x0, [[x0, xa], xa]ll 33 yay1
x@xixox1 y3y2 [[x0, [x0, x1l]; [x0, x1] 2¢x¢ + xgxixox 2y4y} + yay2
§x i b, [llxo, >l xal, xall 3¢ vayi
xox0xd | vdn [[x0, xa], [ixo, 1], xal] 3xq + xoxx0xf 3yf + i
xox¢ oy} [[llxo0, x1], x1], x1], x1] xox¢ voyi
XX ¥6 [x0, [0, [x0, [x0, [x0, x1]111] xgx1 ¥6
X33 ysy1 | [x0, [x0, [x0, [[x0, >al, xa]lll X33 ¥5y1
xgx1x0x1 yay2 [x0, [[x0, [x0, x1]]; [x0, x1]1] 23 X2 + xgx1x0x1 2y5y1 + yay2
53¢ | vt | b bos xo, xals xal xall] B vay?
g0t | yayvayr | o, [0, xal, [0, xal, alll 3¢5 + x3xxoxd 3yay? + ysyan
@xdxox | yavave | [lxos [0, xal, xall, [xo xall | 65356 + 3xdxaxoxd + xgxFxox1 | 6yay? + 3ysyays + yayiye
x@xt vavi | [x0, [lllxos xal, xal, xal, xall x@xt 33
xoxixoxg | V3R | oy xal, [llxos xal, xal, xall axgxt + xoxx0x ayayd + 5
x0x¢ voyi | llllxo, xal, xal, xal, xal, ) x0x§ yoyy




POLYLOGARITHM-HARMONIC SUM-POLYZETA



Chen series and genera{ting series of polylogarithms
Let up(z) = = n(z) = T and wy(z) = up(z)dz,w1(z) = w1 (2)dz.

Yw e X*xy, af(w) = Liy(2),
Pu(z) = (1—2)"'Li,(z ZH
n>1
Liy(z) = logz,
L(z) := Z Liy(z) w,
weX*
P(z) = (1-2)"'L(2).
Let
(DE) dG(z) = [xo wo(z) + x1 w1(2)]G(2).
Proposition

» S,z satisfies (DE) with Szyez =1,
> L(z) satisfies (DE) with L(z)_~;exp(xo log z).

Hence, S,,., = L(z)L(z0) ™!, or equivalently, L(z) = Sy .. L(20).



Noncommutative generating series of convergent polyzétas
Let X = {xo,x1} (resp. Y = {y;}i>1) with xo < x1 (resp. y1 > y» > ...).
Let LynX (resp. LynX) be the transcendence basis of (C(X), w ) (resp.
(C(Y), w)) and let {/}/ccynx (resp. {/}iccyny) be its dual basis. Then
Theorem (HNM, 2009)
We have A , L=L®L and AuwH=H®H.

N\ . \ i
Moreover, let Lyeg(2) := H AT and H,ep(N) = H SHIN) T

le LynX le LynY
17#x0,x1 I#y1

Then L(z) = * I°giLng(z)eX" gz and H(N) = enHNH, ,(N).
We put Z ,, := Lyeg(1) and Z = Hyeg(00).

Theorem (a la Abel theorem, HNM, 2005)

Let MyL and My Z ,, be the projections of L and Z,,, over Y. Then

k
; i log 15 — _ (_)/1) _
lim 7781 MyL(z) = Nli‘rloexp[ kél H, (N) p }H(N) =MNyZ, .

Corollary
Z ., and Z., are group-likes and Ziyy = e " NT(1+ )Ny Z,, .



Successive derivations of L
For any w = x;, ... xj, € X* and for any derivation multi-index
r=(ry,...,rc) of degree degr = |w| = k and of weight
wgtr=k+r + ...+ rg let us define the monomial 7,(w) by

(W) =7 (xi,) .. T (X)) = [uflrl)(z) . ufkrk)(z)] Xiy - X

In particular, for any integer r

r —rlxg
Tr(x0) = U(() )(Z) X0 = (—z)r+1

r!x1
(1 _ Z)r+1 :

and  7,(x) = u;(lr)(z) X1 =

Theorem (HNM, 2003)
For any n € N, we have, L{")(z) = P,(z)L(z), where

=3 ZdH( 115wy e D)

wgt r=nweX" i=1



Operations on P, (z) = (1 — z) ! Li,(2)
For f(z) = Z a,z", since multiplying or dividing by z acts simply on
n>0
[z2"]f(2), then let us study the effect of multiplying or dividing by 1 — z.

[2")(1 — 2)Py(z) = H,(n)—Hy(n—1).

W(Z -

1-=z ZHW(k)

k=0
(n + 1)Hw(n) - Hys_1w’(n) if w= )/swla S 7£ L
(n+ 1)H,(n) — ZHW/(j —1)ifw=yw,

g

[2"]

and, more generally,
k B _
[2")(1 - 2)Pulz) = ) (—1 (- ),
>(5) f
[Zn] PW(Z) — Z Hw(jk)-

(1 2)F

nzjpz--2jk20



NONLINEAR DIFFERENTIAL EQUATIONS



Nonlinear differential equations with three singularities
y(z) = Zy,,z” is the output of :

n>0

(NS)

f(q(2)),

Ao(q) | Ai(9)
z 1-2z2’

qo,

(p, P, C¢) and (p, p, C;), for i =0, .., m, are convergence modules
of f and {Al}j=1,n respectively at g € CV(f) ﬁﬂflzé; CV(A).
ol = Z A(w)(f(qo)) w satisfies the x—growth condition.

weX*

The duality between af|q0 and 54, consists on the convergence
(precisely speaking, the convergence of a duality pairing) of the
Fliess’ fundamental formula which is extended as follows

Theorem (HNM, 2007)

y(2) = (01 |Szz) = Y (AW)(F(q0)) W) (Samoz|W).

weX*



Corollary

The output y of nonlinear differential equation with three
singularities admits then the following expansions

y(@) = ) &wl(z) Aw)(f(a)),

weX*

=y ¥ N € adl Ay ...ady A1e'870(f(qp)),
k>0 ny,...,n>0

— oo X 8@ Am)(r() ).

weX*

= I ew(a@) A0 @) ).

leLynX

where, for any w € X*, g, € LIz and

(-1
Wl(W):ZT Z (Wlvgw -+ w ovg) vpoee v

k>1 viyer Vg EX*\ {1y }



Asymptotics of the output

The output y of nonlinear differential equation with three
singularities is then combination of the elements belonging the Llc.

For zg = ¢ — 0, the asymptotic behaviour of the output y at
z =1 is given by
(1) =57 (oM [Semmi—c) = D (A(w) o fi, |W)(Semmi—c|w),

weX*

with Sov1_c exilogez  g—xologe

e—07T

If y(z) = Zy,,z” then, the coefficients of its ordinary Taylor

n>0
expansion belong the harmonic algebra and there exist
algorithmically computable coefficients a; € Z, b; € N and ¢;
belong a completion of the C-algrebra generated by Z and by the
Euler's v constant, such that

Yn i E cin log? n.
i>0



Finite parts of the output

Definition
For any f € O such that

<O-’r|q0 ||520wz> = Z Ynzn

n>0

and for zg = ¢ — 0T, let

¢(f|q0) 7551 f.p. y(z) in thescale {(1—z)%log(1— Z)b}aez,beN

¥(fi,) 7osc f-P.- ¥n in the scale  {n? log?(n)}aez.pen-

Proposition
For any f,g € O anf for any A\, u € C, one has

o((vf + ng),,) = o(vf, )+ é(ng,) and o(fg, )= (1, ) (8,,)
W((vf + 1g),,) = v, ) +¥(ug,) and ¥(fg, ) =111, )¥(g,,)-



Successive derivations of the output
Let n € N,

dn
floo | pn S202)

(o

{ofi, HL(”)( )L(20)7")
= (0f] |Pn(2)L(2)L(20) )

{

{

Pn(z) <of], IL(2)L(z0) ")
Pn(z )<'Uf H520w2>v

y(2) =

where the polynomial P,(z) € D(X) is defined as follows

Pa(z)= > Zdﬂ( | e >T(W)'

wgt r=nweX" =1

Therefore, Pp(z) <of|, € D((X)) is the non commutative
generating series of y(".



Asymptotics of the successive derivation of the output
Let k € N, the successive derivation y(k) of the output of nonlinear
differential equation with three singularities is then combination of
the elements g belonging the polylogarithm algebra.

For zg = ¢ — 0T, the asymptotic behaviour of the output y at
z =1 is given by

O R N L X O L
= D (AW) o fiy [WH{Pr(e)Semt—elw).
weX*
If y(k Zy " then, the coefficients of its ordinary Taylor

n>0
expansion belong the harmonic algebra and there exist

algorithmically computable coefficients a; € Z, b; € N and ¢;
belong a completion of the C-algrebra generated by Z and by the
Euler's v constant, such that

k . b;
y,(, ) P Zc,-na' log” n.
i>0
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