Algebraic Combinatorial Aspects of Nonlinear Differential Systems

Hoang Ngoc Minh Equipe CALIN, LIPN - UMR 7030.

Combinatoire, Informatique et Physique, Villetaneuse, 22 Janvier 2011.

Summary

- 1. Introduction,
- 2. Nonlinear dynamical Systems,
- 3. Diagonal series,
- 4. Polylogarithms, multiple harmonic sums and polyzêtas,
- 5. Nonlinear differential equations.

INTRODUCTION

Particular cases: Fuchsian differential equations (FDE)

$$\dot{q}(z) = [M_0u_0(z) + M_1u_1(z)] \ q(z), \ \ y(z) = \lambda q(z), \ \ q(z_0) = \eta,$$

where $M_0, M_1 \in \mathcal{M}_{n,n}(\mathbb{C}), \lambda \in \mathcal{M}_{1,n}(\mathbb{C}), \eta \in \mathcal{M}_{n,1}(\mathbb{C})$ and $u_0(z), u_1(z) \in \mathcal{C}$.

Example (hypergeometric equation)

$$z(1-z)\ddot{y}(z) + [t_2 - (t_0 + t_1 + 1)z]\dot{y}(z) - t_0t_1y(z) = 0.$$

Let $q_1(z) = y(z)$ and $q_2(z) = z(1-z)\dot{y}(z)$. One has

$$\begin{pmatrix} \dot{q}_1 \\ \dot{q}_2 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ -t_0t_1 & -t_2 \end{pmatrix} \frac{1}{z} - \begin{pmatrix} 0 & 1 \\ 0 & t_2 - t_0 - t_1 \end{pmatrix} \frac{1}{1-z} \end{bmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}.$$

Here,

$$\lambda = \begin{pmatrix} 1 & 0 \end{pmatrix}, M_0 = -\begin{pmatrix} 0 & 0 \\ t_0 t_1 & t_2 \end{pmatrix}, M_1 = -\begin{pmatrix} 0 & 1 \\ 0 & t_2 - t_0 - t_1 \end{pmatrix},$$
 $\eta = \begin{pmatrix} q_1(z_0) \\ q_2(z_0) \end{pmatrix}.$

Examples of Nonlinear Dynamical Systems

Example (harmonic oscillator)
$$\dot{y}(z) + k_1 y(z) + k_2 y^2(z) = u_1(t).$$

$$\dot{q}(z) = A_0(q) u_0(z) + A_1(q) u_1(z) \quad \text{with } u_0(z) \equiv 1,$$

$$A_0 = -(k_1 q + k_2 q^2) \frac{\partial}{\partial q},$$

$$A_1 = \frac{\partial}{\partial q},$$

$$y(z) = q(z).$$

Example (Duffing's equation)
$$\ddot{y}(z) + a\dot{y}(z) + by(z) + cy^3(z) = u_1(z).$$

$$\dot{q}(z) = A_0(q)u_0(z) + A_1(q)u_1(z) \quad \text{with } u_0(z) \equiv 1,$$

$$A_0 = -(aq_2 + b^2q_1 + cq_1^3)\frac{\partial}{\partial q_2} + q_2\frac{\partial}{\partial q_1},$$

$$A_1 = \frac{\partial}{\partial q_2},$$

$$y(z) = q_1(z).$$

Previous work

For (FDE), one can base on the R. Jungen thesis¹ "Sur les séries de Taylor n'ayant que des singularités algébrico-logarithmiques sur leur cercle de convergence" (1931).

But for nonlinear differential equations?

One can appoximate the nonlinear differential systems by linear ones, and then one can base one self on the Jungen's thesis.

Ph. Flajolet & A. Odlyzko, "The Average Height of Binary Trees and Other Simple Trees" (1982).

¹This thesis influence quitely the works of

[▶] M.P. Schützenberger, "On a theorem of R. Jungen" (1962),

M. Fliess, "Sur divers produits de séries formelles" (1974),

NONLINEAR DYNAMICAL SYSTEMS

Nonlinear Dynamical Systems

Let (\mathcal{D}, d) be a k-commutative associative differential algebra with unit (ch(k) = 0) and C be a differential subfield of D.

$$y(z) = \sum_{n \ge 0} y_n z^n \text{ is the output of :}$$

$$(NLS) \begin{cases} y(z) &= f(q(z)), \\ \dot{q}(z) &= A_0(q) u_0(z) + A_1(q) u_1(z), \\ q(z_0) &= q_0, \end{cases}$$

where:

- $\blacktriangleright u_0(z), u_1(z) \in \mathcal{C},$
- the state $q=(q_1,\ldots,q_N)$ belongs the complex analytic manifold Q of dimension N and q_0 is the initial state,
- ▶ the observation $f \in \mathcal{O}$, with \mathcal{O} is the ring of holomorphic functions over Q,
- ▶ For i = 0..1, $A_i = \sum_{i=1}^{N} A_i^j(q) \frac{\partial}{\partial a_i}$ is an analytic vector field²

over
$$Q$$
, with $A_i^j(q) \in \mathcal{O}$, for $j = 1, \ldots, N$.

²A vector field A_i is said to be linear if the $A_i^j(q), j = 1..N$, are constants.

Structural \mathbb{C} -automaton associated to (NLS)

Any (*NLS*) can be associated to a *structural* \mathbb{C} -automaton characterizing the structure of the differential algebra defined by $\{A_i\}_{i=0,1}$. For any i=1,..,N, let D_j denotes $\partial/\partial q_i$. Let \mathbf{r} be a multi-index (r_1,\ldots,r_N) and let $D^{\mathbf{r}}$ denotes the differential operator $D_1^{r_1}\ldots D_N^{r_N}$. The *infinite* structural \mathbb{C} -automaton is the 5-uple $(X,\mathcal{F},I,\tau,\lambda)$, where

- $X = \{x_0, x_1\},$
- \triangleright \mathcal{F} is the \mathbb{C} -vector space generated by the operators $D^{\mathbf{r}}$,
- I is the initial state,
- ▶ $\tau(x_i)$, i = 0,...1, is the linear endomorphism of \mathcal{F} describing the right action³ of A_i on differential operator D^r ,
- \triangleright λ is the row vector whose i^{th} component is $D_i f$.

The truncated structural \mathbb{C} -automaton is obtained by choosing the states that are met along the successful path and of length less or equal to m.

This gives a \mathbb{C} -automaton recognizes a rational power series over X.

³This action is given by $D^{\mathbf{r}}A_i = \sum_{j=1}^N \sum_{\mathbf{s} \leq \mathbf{r}} \binom{\mathbf{r}}{\mathbf{s}} D^{\mathbf{r}-\mathbf{s}} A_i^j(q) D^{\mathbf{s}}D_j$, with $\mathbf{r} = (r_1, \dots, r_N), \mathbf{s} = (s_1, \dots, s_N)$ and $\mathbf{s} \leq \mathbf{r} \iff s_1 \leq r_1, \dots, s_k \leq r_N$ and $\binom{\mathbf{r}}{\mathbf{s}} = \prod_{i=1}^N \binom{r_i}{s_i}$.

Examples of structural C-automaton

Example (harmonic oscillator)

Putting $F := -(k_1q + k_2q^2)$, one has $A_0 = FD$, $A_1 = D$.

 $X = \{x_0, x_1\}, \mathcal{F} = \operatorname{span}_{\mathbb{C}}\{D^i\}_{i \ge 0}, I = \{\operatorname{Id}\}, \lambda = (q \ 1 \ 0 \ \dots \ 0).$

The C-automaton cell is given by

$$\begin{split} D^{i}A_{1} &= D^{i+1}, \\ D^{i}A_{0} &= FD^{i+1} + \binom{i}{1}[DF]D^{i-1} + \binom{i}{2}[D^{2}F]D^{i-2}. \end{split}$$

Example (Duffing's equation)

The C-automaton cell is given by

Putting $F := -(aq_2 + b^2q_1 + cq_1^3)$, one has $A_0 = FD_1 + D_2$, $A_1 = D_2$.

 $X = \{x_0, x_1\}, \mathcal{F} = \operatorname{span}_{\mathbb{C}}\{D_i^i D_j^i\}_{j \geq 0}^{j \geq 0}, I = \{\operatorname{Id}\}, \lambda = (q_1 \quad 1 \quad 0 \quad \dots \quad 0).$

 $D_1^i D_2^j A_1 = D_1^i D_2^{j+1},$

$$\begin{split} D_1^i D_2^j A_0 &= F D_1^i D_2^{j+1} \\ &+ \binom{i}{1} [D_1 F] D_1^{i-1} D_2^{j+1} + \binom{i}{2} [D_1^2 F] D_1^{i-2} D_2^{j+1} + \binom{i}{3} [D_1^3 F] D_1^{i-3} D_2^{j+1} \\ &- j a D_1^i D_2^j + q_2 D_1^{i+1} D_2^j + j D_1^{i+1} D_2^{i-1}. \end{split}$$

Our works

Let
$$X = \{x_0, x_1\}$$
 with $x_0 < x_1$. For any $w = x_{i_1} \cdots x_{i_k} \in X^*$, let $\mathcal{A}(1_{X*}) = \operatorname{Id}, \qquad \mathcal{A}(w) = A_{i_1} \circ \ldots \circ A_{i_k},$ $\alpha_{z_0}^z(1_{X*}) = 1, \qquad \alpha_{z_0}^z(w) = \int_{z_0}^z \int_{z_0}^{z_1} \ldots \int_{z_0}^{z_{k-1}} u_{i_1}(z_1) dz_1 \cdots u_{i_k}(z_k) dz_k.$

Theorem (Deneufchâtel, Duchamp, HNM, 2010)

Let $S = \sum_{w \in X^*} \alpha_{z_0}^z(w) \ w \in \mathcal{D}\langle\!\langle X \rangle\!\rangle$. The following conditions are equivalent :

- i) The family $(\alpha_{z_0}^z(w))_{w \in X^*}$ of coefficients of S is free over C.
- ii) The family of coefficients $(\alpha_{z_0}^z(x))_{x \in X \cup \{1_{X^*}\}}$ is free over C.

Therefore, by successive Picard iterations, one get

$$y(z) = \sum_{w \in X^*} \mathcal{A}(w) \circ f(q_0) \ \alpha_{z_0}^z(w) = [(\mathcal{A} \otimes \alpha_{z_0}^z) \mathcal{D}](f(q_0)),$$

where,
$$\mathcal{D} = \sum_{w \in X^*} w \otimes w$$
.

Chen-Fliess generating series

Chen series

$$S_{z_0 \leadsto z} = \sum_{w \in X^*} \alpha_{z_0}^z(w) \ w.$$

Any Chen generating series $S_{z_0 \leadsto z}$ is group-like, for Δ $_{\square}$, and it depends only on the homotopy class of $z_0 \leadsto z$ (**Ree**).

The product of two Chen generating series $S_{z_1 \rightsquigarrow z_2}$ and $S_{z_0 \rightsquigarrow z_1}$ is the Chen generating series $S_{z_0 \rightsquigarrow z_2} = S_{z_1 \rightsquigarrow z_2} S_{z_0 \rightsquigarrow z_1}$ (**Chen**).

▶ The generating series of the polysystem $\{A_i\}_{i=0,1}$ and of the observation $f \in \mathcal{O}$ is given by

$$\sigma f := \sum_{w \in X^*} \mathcal{A}(w) \circ f w \in \mathbb{C}^{cv} \llbracket q_1, \dots, q_N \rrbracket \langle \langle X \rangle \rangle.$$

$$\sigma f_{|_q} := \sum_{w \in X^*} \mathcal{A}(w) \circ f_{|_q} w \in \mathbb{C} \langle \langle X \rangle \rangle.$$

The last is called Fliess generating series of $\{A_i\}_{i=0,1}$ and of f at q. For any $f,g\in\mathcal{O}$ and for any $\lambda,\mu\in\mathbb{C}$, one has (**Fliess**)

$$\sigma(\nu f + \mu g) = \sigma(\nu f) + \sigma(\mu g) \quad \text{and} \quad \sigma(fg) = \sigma f \text{ in } \sigma g.$$

DIAGONAL SERIES

Lyndon words

▶ A word is a Lyndon word if it is less than each of its right factors (for the lexicographical ordering).

Example

$$\{x_0, x_1\}, x_0 < x_1. \text{ The Lyndon words of length} \leq 5 \text{ are } x_0, x_0^4 x_1, \\ x_0^3 x_1, x_0^3 x_1^2, x_0^2 x_1, x_0^2 x_1 x_0 x_1, x_0^2 x_1^2, x_0^2 x_1^3, x_0 x_1, x_0 x_1 x_0 x_1^2, x_0 x_1^2, x_0 x_1^3, x_0 x_1^4, x_1.$$

▶ For any $w \in X^*$, $w = l_1^{i_1} \dots l_k^{i_k}$, $l_1 > \dots > l_k$ (**Širšov**).

Example

$$x_1x_0x_1^2x_0x_1^2x_0^2x_1 = x_1.x_0x_1^2.x_0x_1^2.x_0^2x_1 = x_1(x_0x_1^2)^2x_0^2x_1.$$

 \triangleright $\mathcal{L}yn(X)$: the set of Lyndon words over X and forms a transcendence basis for the shuffle algebra (**Radford**).

Example

$$\begin{array}{l} x_0x_1x_0^2x_1=x_0x_1 \text{ if } x_0^2x_1-3 \ x_0^2x_1x_0x_1-6 \ x_0^3x_1^2, \\ x_0^3x_1x_0^4x_1=x_0^3x_1 \text{ if } x_0^4x_1-5x_0^4x_1x_0^3x_1-15x_0^5x_1x_0^2x_1-35x_0^6x_1x_0x_1-70x_0^7x_1^2. \end{array}$$

▶ Let $Y = \{y_i\}_{i \ge 1}$ with $y_1 > y_2 > \dots$ Then $I \in \mathcal{L}ynX \setminus \{x_0\} \iff \prod_Y I \in \mathcal{L}yn(Y)$ (Perrin).

Standard factorization and PBW basis

▶ The standard factorization of $I \in \mathcal{L}ynX \setminus X$, noted by st(I), is (u, v), where $u, v \in \mathcal{L}ynX$ s.t. I = uv and v is the proper longest right factor of I verifying u < uv < v.

Example

$$st(x_0^2x_1x_0x_1) = (x_0^2x_1, x_0x_1).$$

- ▶ $\mathcal{L}ie_{\mathbb{C}}\langle X\rangle$ (resp. $\mathcal{L}ie_{\mathbb{C}}\langle\langle X\rangle\rangle$) : set of Lie polynomials (resp. power series) over X and of coefficients in \mathbb{C} .
- ▶ $\{S_I; I \in \mathcal{L}yn(X)\}$ is a basis of $\mathcal{L}ie_{\mathbb{C}}\langle X \rangle$, where the *bracket* form S_I of Lyndon word I is defined by $S_X = x$ if $X \in X$ and $S_I = [S_U, S_V]$ if $(U, V) = \operatorname{st}(I)$.
- ▶ The PBW basis $\mathcal{B} = \{S_w; w \in X^*\}$ is obtained by putting

$$S_w = S_{l_1}^{i_1} S_{l_2}^{i_2} \dots S_{l_k}^{i_k}$$
 for $w = l_1^{i_1} \dots l_k^{i_k}, l_1 > \dots > l_k$

▶ The dual basis $\check{\mathcal{B}} = \{\check{S}_w; w \in X^*\}$ is obtained by putting $\check{S}_{1_{X^*}} = 1_{X^*}, \check{S}_I = x\check{S}_u$ for $I = xu \in \mathcal{L}ynX$ and

$$\check{S}_w = \frac{\check{S}_{l_1}^{\; \sqcup \hspace{-.07cm}\sqcup\; i_1} \; \sqcup \; \ldots \; \sqcup \; \check{S}_{l_k}^{\; \sqcup \hspace{-.07cm}\sqcup\; i_k}}{i_1! \ldots i_k!} \quad \text{for} \quad w = l_1^{i_1} \ldots l_k^{i_k}, l_1 > \ldots > l_k.$$

Diagonal series and Lie elements

$$\triangleright \mathcal{D} = \prod_{l \in \mathcal{L}ynX} e^{l \otimes \hat{l}} = \prod_{l \in \mathcal{L}ynX} e^{\check{S}_l \otimes S_l} \text{ (Schützenberger)}.$$

- ▶ Let $S \in \mathbb{C}\langle\!\langle X \rangle\!\rangle$. S is called group-like if Δ $_{\tiny Ш}$ $S = S \otimes S$.
- ▶ *S* is said to be primitive if $\Delta_{\parallel \parallel} S = 1 \otimes S + S \otimes 1$.
- ► S satisfies Friedrichs' (multiplicative) criterion $\langle S|u \bowtie v \rangle = \langle S|u \rangle \langle S|v \rangle$.
- ► The following assertions are equivalent (Ree)
 - i) $S \in \mathcal{L}ie_{\mathbb{C}}\langle\langle X \rangle\rangle$.
 - ii) e^{S} verifies Friedrichs' (multiplicative) criterion.
 - iii) *S* is primitive.
 - iv) e^S is group-like.

One has similar results over $Y = \{y_i\}_{i>1}$ with $y_1 > y_2 > \dots$

Computational examples

1	$\Pi_{Y}(I)$	S_l	Š _I	$\Pi_Y(\check{S}_l)$
<i>x</i> ₀		<i>x</i> ₀	x ₀	
x_1	<i>y</i> 1	<i>x</i> ₁	x_1	<i>y</i> ₁
x ₀ x ₁	<i>y</i> 2	$[x_0, x_1]$	x ₀ x ₁	<i>y</i> ₂
$x_0^2 x_1$	<i>y</i> 3	$[x_0, [x_0, x_1]]$	$x_0^2 x_1$	У3
$x_0 x_1^2$	<i>y</i> ₂ <i>y</i> ₁	$[[x_0, x_1], x_1]$	$x_0x_1^2$	<i>y</i> ₂ <i>y</i> ₁
$x_0^3 x_1$	<i>y</i> 4	$[x_0, [x_0, [x_0, x_1]]]$	$x_0^3 x_1$	У4
$x_0^2 x_1^2$	<i>y</i> 3 <i>y</i> 1	$[x_0, [[x_0, x_1], x_1]]$	$x_0^2 x_1^2$	<i>y</i> 3 <i>y</i> 1
$x_0 x_1^3$	$y_2y_1^2$	$[[[x_0, x_1], x_1], x_1]$	$x_0x_1^3$	$y_2y_1^2$
$x_0^4 x_1$	<i>y</i> 5	$[x_0, [x_0, [x_0, [x_0, x_1]]]]$	$x_0^4 x_1$	<i>y</i> 5
$x_0^3 x_1^2$	<i>y</i> 4 <i>y</i> 1	$[x_0, [x_0, [[x_0, x_1], x_1]]]$	$x_0^3 x_1^2$	<i>y</i> 4 <i>y</i> 1
$x_0^2 x_1 x_0 x_1$	<i>y</i> 3 <i>y</i> 2	$[[x_0, [x_0, x_1]], [x_0, x_1]]$	$2x_0^3x_1^2 + x_0^2x_1x_0x_1$	$2y_4y_1^2 + y_3y_2$
$x_0^2 x_1^3$	$y_3y_1^2$	$[x_0, [[[x_0, x_1], x_1], x_1]]$	$x_0^2 x_1^3$	y ₃ y ₁ ²
$x_0x_1x_0x_1^2$	$y_2^2 y_1$	$[[x_0, x_1], [[x_0, x_1], x_1]]$	$3x_0^2x_1^3 + x_0x_1x_0x_1^2$	$3y_3y_1^2 + y_2^2y_1$
$x_0x_1^4$	$y_2y_1^3$	$[[[[x_0, x_1], x_1], x_1], x_1]$	$x_0x_1^4$	$y_2y_1^3$
$x_0^5 x_1$	<i>y</i> ₆	$[x_0, [x_0, [x_0, [x_0, [x_0, x_1]]]]]$	$x_0^5 x_1$	У6
$x_0^4 x_1^2$	<i>y</i> 5 <i>y</i> 1	$[x_0, [x_0, [x_0, [[x_0, x_1], x_1]]]]$	$x_0^4 x_1^2$	<i>y</i> 5 <i>y</i> 1
$x_0^3 x_1 x_0 x_1$	<i>y</i> 4 <i>y</i> 2	$[x_0, [[x_0, [x_0, x_1]], [x_0, x_1]]]$	$2x_0^4x_1^2 + x_0^3x_1x_0x_1$	$2y_5y_1 + y_4y_2$
$x_0^3 x_1^3$	$y_4y_1^2$	$[x_0, [x_0, [[[x_0, x_1], x_1], x_1]]]$	x ₀ ³ x ₁ ³	$y_4y_1^2$
$x_0^2 x_1 x_0 x_1^2$	<i>y</i> 3 <i>y</i> 2 <i>y</i> 1	$[x_0, [[x_0, x_1], [[x_0, x_1], x_1]]]$	$3x_0^3x_1^3 + x_0^2x_1x_0x_1^2$	$3y_4y_1^2 + y_3y_2y_1$
$x_0^2 x_1^2 x_0 x_1$	<i>y</i> 3 <i>y</i> 1 <i>y</i> 2	$[[x_0, [[x_0, x_1], x_1]], [x_0, x_1]]$	$6x_0^3x_1^3 + 3x_0^2x_1x_0x_1^2 + x_0^2x_1^2x_0x_1$	$6y_4y_1^2 + 3y_3y_2y_1 + y_3y_1y_2$
$x_0^2 x_1^4$	$y_3y_1^3$	$[x_0, [[[[x_0, x_1], x_1], x_1], x_1]]$	$x_0^2 x_1^4$	$y_3y_1^3$
$x_0x_1x_0x_1^3$	$y_2^2 y_1^2$	$[[x_0, x_1], [[[x_0, x_1], x_1], x_1]]$	$4x_0^2x_1^4 + x_0x_1x_0x_1^3$	$4y_3y_1^3 + y_2^2y_1^2$
$x_0x_1^5$	y ₂ y ₁ ⁴	$[[[[[x_0, x_1], x_1], x_1], x_1], x_1]$	x ₀ x ₁ ⁵	$y_2y_1^4$

POLYLOGARITHM-HARMONIC SUM-POLYZETA

Chen series and generating series of polylogarithms

Let
$$u_0(z) = \frac{1}{z}$$
, $u_1(z) = \frac{1}{1-z}$ and $\omega_0(z) = u_0(z)dz$, $\omega_1(z) = u_1(z)dz$.
 $\forall w \in X^*x_1, \quad \alpha_0^z(w) = \operatorname{Li}_w(z),$

$$P_w(z) := (1-z)^{-1}\operatorname{Li}_w(z) = \sum_{n \geq 1} \operatorname{H}_w(n) z^n,$$

$$\operatorname{Li}_{x_0}(z) := \log z,$$

$$\operatorname{L}(z) := \sum_{w \in X^*} \operatorname{Li}_w(z) w,$$

$$P(z) := (1-z)^{-1}\operatorname{L}(z).$$

Let

(DE)
$$dG(z) = [x_0 \ \omega_0(z) + x_1 \ \omega_1(z)]G(z).$$

Proposition

- ▶ $S_{z_0 \leadsto z}$ satisfies (DE) with $S_{z_0 \leadsto z_0} = 1$,
- ▶ L(z) satisfies (DE) with L(z) exp $(x_0 \log z)$.

Hence, $S_{z_0 \leadsto z} = L(z)L(z_0)^{-1}$, or equivalently, $L(z) = S_{z_0 \leadsto z}L(z_0)$.

Noncommutative generating series of convergent polyzêtas

Let $X = \{x_0, x_1\}$ (resp. $Y = \{y_i\}_{i \geq 1}$) with $x_0 < x_1$ (resp. $y_1 > y_2 > \ldots$). Let $\mathcal{L}ynX$ (resp. $\mathcal{L}ynX$) be the transcendence basis of $(\mathbb{C}\langle X \rangle, \ \ \)$ (resp. $(\mathbb{C}\langle Y \rangle, \ \)$) and let $\{\hat{I}\}_{I \in \mathcal{L}ynX}$ (resp. $\{\hat{I}\}_{I \in \mathcal{L}ynY}$) be its dual basis. Then

Theorem (HNM, 2009)

We have Δ $_{\text{\tiny LL}}$ $L=L\otimes L$ and Δ $_{\text{\tiny LL}}$ $H=H\otimes H.$

$$\textit{Moreover, let $L_{\rm reg}(z)$} := \prod_{\stackrel{\substack{I \in \mathcal{L}_{yn}X\\I \neq x_0, x_1}}{}} e^{\operatorname{Li}_I(z) \, \hat{I}} \ \textit{ and } \ \operatorname{H}_{\rm reg}(\textit{N}) := \prod_{\stackrel{\substack{I \in \mathcal{L}_{yn}Y\\I \neq y_1}}}{} e^{\operatorname{H}_I(\textit{N}) \, \hat{I}}.$$

Then $L(z)=e^{x_1\log\frac{1}{1-z}}L_{\mathrm{reg}}(z)e^{x_0\log z}$ and $H(N)=e^{y_1H_1(N)}H_{\mathrm{reg}}(N)$. We put $Z_{\sqcup \sqcup}:=L_{\mathrm{reg}}(1)$ and $Z_{\sqcup \sqcup}:=H_{\mathrm{reg}}(\infty)$.

Theorem (à la Abel theorem, HNM, 2005)

Let $\Pi_Y L$ and $\Pi_Y Z_{\perp\!\!\!\perp}$ be the projections of L and $Z_{\perp\!\!\!\perp}$ over Y. Then

$$\lim_{z \to 1} e^{y_1 \log \frac{1}{1-z}} \Pi_Y L(z) = \lim_{N \to \infty} \exp \left[-\sum_{k > 1} H_{y_k}(N) \frac{\left(-y_1\right)^k}{k} \right] H(N) = \Pi_Y Z_{\coprod}.$$

Corollary

$$Z_{\,\,{\scriptscriptstyle \coprod}\,\,}$$
 and $Z_{\,{\scriptscriptstyle \perp}\,\!\!\!\perp}$ are group-likes and $Z_{\,{\scriptscriptstyle \perp}\,\!\!\!\perp}=e^{-\gamma\,y_1}\Gamma(1+y_1)\Pi_YZ_{\,\,{\scriptscriptstyle \perp}\,\!\!\!\perp}$.

Successive derivations of L

For any $w=x_{i_1}\dots x_{i_k}\in X^*$ and for any derivation multi-index $\mathbf{r}=(r_1,\dots,r_k)$ of degree $\deg \mathbf{r}=|w|=k$ and of weight wgt $\mathbf{r}=k+r_1+\dots+r_k$, let us define the monomial $\tau_{\mathbf{r}}(w)$ by

$$\tau_{\mathbf{r}}(w) = \tau_{r_1}(x_{i_1}) \dots \tau_{r_k}(x_{i_k}) = [u_{i_1}^{(r_1)}(z) \dots u_{i_k}^{(r_k)}(z)] x_{i_1} \dots x_{i_k}.$$

In particular, for any integer r

$$\tau_r(x_0) = u_0^{(r)}(z) \ x_0 = \frac{-r! x_0}{(-z)^{r+1}},$$
 and
$$\tau_r(x_1) = u_1^{(r)}(z) \ x_1 = \frac{r! x_1}{(1-z)^{r+1}}.$$

Theorem (HNM, 2003)

For any $n \in \mathbb{N}$, we have, $L^{(n)}(z) = P_n(z)L(z)$, where

$$P_n(z) = \sum_{w \in X_n} \sum_{i=1}^{\operatorname{deg } \mathbf{r}} \left(\sum_{j=1}^i r_j + j - 1 \atop r_i \right) \tau(w) \in \mathcal{D}\langle X \rangle.$$

Operations on $P_w(z) = (1-z)^{-1} \operatorname{Li}_w(z)$

For $f(z) = \sum_{n \ge 0} a_n z^n$, since multiplying or dividing by z acts simply on

 $[z^n]f(z)$, then let us study the effect of multiplying or dividing by 1-z.

$$\begin{split} [z^n](1-z)\mathrm{P}_w(z) &= \mathrm{H}_w(n) - \mathrm{H}_w(n-1). \\ [z^n]\frac{\mathrm{P}_w(z)}{1-z} &= \sum_{k=0}^n \mathrm{H}_w(k) \\ &= \begin{cases} (n+1)\mathrm{H}_w(n) - \mathrm{H}_{y_{s-1}w'}(n) \text{ if } w = y_sw', s \neq 1. \\ (n+1)\mathrm{H}_w(n) - \sum_{j=1}^n \mathrm{H}_{w'}(j-1) \text{ if } w = y_1w', \end{cases} \end{split}$$

and, more generally,

$$[z^{n}](1-z)^{k}P_{w}(z) = \sum_{j=0}^{k} {k \choose j} (-1)^{j}H_{w}(n-j),$$
$$[z^{n}]\frac{P_{w}(z)}{(1-z)^{k}} = \sum_{n>j_{1}>\cdots>j_{k}>0} H_{w}(j_{k}).$$

NONLINEAR DIFFERENTIAL EQUATIONS

Nonlinear differential equations with three singularities

$$y(z) = \sum_{n \ge 0} y_n z^n \text{ is the output of :}$$

$$(NS) \begin{cases} y(z) &= f(q(z)), \\ \dot{q}(z) &= \frac{A_0(q)}{z} + \frac{A_1(q)}{1-z}, \\ q(z_0) &= q_0, \end{cases}$$

 $(
ho, \check{
ho}, C_f)$ and $(
ho, \check{
ho}, C_i)$, for i=0,...,m, are convergence modules of f and $\{A_i^j\}_{j=1,...,n}$ respectively at $q\in \mathsf{CV}(f)$ $\bigcap_{i=0,...,m}^{j=1,...,n} \mathsf{CV}(A_i^j)$. $\sigma f_{|q_0|} = \sum_{w\in X^*} \mathcal{A}(w)(f(q_0))$ w satisfies the χ -growth condition.

The duality between $\sigma f_{|_{q_0}}$ and $S_{z_0 \leadsto z}$ consists on the convergence (precisely speaking, the convergence of a duality pairing) of the Fliess' fundamental formula which is extended as follows

Theorem (HNM, 2007)
$$y(z) = \langle \sigma f_{|q_0|} || S_{z_0 \leadsto z} \rangle = \sum_{w \in X^*} \langle \mathcal{A}(w)(f(q_0)) || w \rangle \langle S_{z_0 \leadsto z} || w \rangle.$$

Corollary

The output y of nonlinear differential equation with three singularities admits then the following expansions

$$\begin{split} y(z) &= \sum_{w \in X^*} g_w(z) \, \mathcal{A}(w)(f(q_0)), \\ &= \sum_{k \geq 0} \sum_{n_1, \dots, n_k \geq 0} g_{x_0^{n_1} x_1 \dots x_0^{n_k} x_1}(z) \, \operatorname{ad}_{A_0}^{n_1} A_1 \dots \operatorname{ad}_{A_0}^{n_k} A_1 e^{\log z A_0}(f(q_0)), \\ &= \exp \left(\sum_{w \in X^*} g_w(z) \, \mathcal{A}(\pi_1(w))(f(q_0)) \right), \\ &= \prod_{k \geq 0} \exp \left(g_l(z) \, \mathcal{A}(\hat{l})(f(q_0)) \right), \end{split}$$

where, for any $w \in X^*$, $g_w \in \mathrm{LI}_\mathcal{C}$ and

$$\pi_1(w) = \sum_{k \geq 1} \frac{(-1)^{k-1}}{k} \sum_{v_1, \cdots, v_k \in X^* \setminus \{1_{X^*}\}} \langle w | v_1 \coprod \cdots \coprod v_k \rangle \ v_1 \cdots v_k.$$

Asymptotics of the output

The output y of nonlinear differential equation with three singularities is then combination of the elements belonging the $LI_{\mathcal{C}}$.

For $z_0 = \varepsilon \to 0^+$, the asymptotic behaviour of the output y at z = 1 is given by

$$y(1)\, _{\widetilde{\varepsilon \to 0^+}}\, \langle \sigma f_{|_{q_0}} \| S_{\varepsilon \leadsto 1-\varepsilon} \rangle = \sum_{w \in X^*} \langle \mathcal{A}(w) \circ f_{|_{q_0}} | w \rangle \langle S_{\varepsilon \leadsto 1-\varepsilon} | w \rangle,$$

If $y(z) = \sum y_n z^n$ then, the coefficients of its ordinary Taylor expansion belong the harmonic algebra and there exist algorithmically computable coefficients $a_i \in \mathbb{Z}$, $b_i \in \mathbb{N}$ and c_i belong a completion of the \mathbb{C} -algrebra generated by \mathcal{Z} and by the Euler's γ constant, such that

$$y_n \underset{n \to \infty}{\sim} \sum_{i \ge 0} c_i n^{a_i} \log^{b_i} n.$$

Finite parts of the output

Definition

For any $f \in \mathcal{O}$ such that

$$\langle \sigma f_{|q_0} || S_{z_0 \leadsto z} \rangle = \sum_{n \ge 0} y_n z^n$$

and for $z_0 = \varepsilon \to 0^+$, let

$$\begin{split} \phi(f_{|_{q_0}}) & \underset{z \to 1}{\widetilde{}} \text{ f.p. } y(z) \quad \text{in the scale} \quad \{(1-z)^a \log(1-z)^b\}_{a \in \mathbb{Z}, b \in \mathbb{N}} \\ \psi(f_{|_{q_0}}) & \underset{n \to \infty}{\widetilde{}} \text{ f.p. } y_n \quad \text{in the scale} \quad \{n^a \log^b(n)\}_{a \in \mathbb{Z}, b \in \mathbb{N}}. \end{split}$$

Proposition

For any $f,g\in\mathcal{O}$ and for any $\lambda,\mu\in\mathbb{C}$, one has

$$\phi((\nu f + \mu g)_{|q_0}) = \phi(\nu f_{|q_0}) + \phi(\mu g_{|q_0}) \quad \text{and} \quad \phi(f g_{|q_0}) = \phi(f_{|q_0}) \phi(g_{|q_0}),$$

$$\psi((\nu f + \mu g)_{|q_0}) = \psi(\nu f_{|q_0}) + \psi(\mu g_{|q_0}) \quad \text{and} \quad \psi(f g_{|q_0}) = \psi(f_{|q_0}) \psi(g_{|q_0}).$$

Successive derivations of the output

Let $n \in \mathbb{N}$,

$$y^{(n)}(z) = \langle \sigma f_{|q_0} || \frac{d^n}{dz^n} S_{z_0 \leadsto z} \rangle$$

$$= \langle \sigma f_{|q_0} || L^{(n)}(z) L(z_0)^{-1} \rangle$$

$$= \langle \sigma f_{|q_0} || P_n(z) L(z) L(z_0)^{-1} \rangle$$

$$= \langle P_n(z) \triangleleft \sigma f_{|q_0} || L(z) L(z_0)^{-1} \rangle$$

$$= \langle P_n(z) \triangleleft \sigma f_{|q_0} || S_{z_0 \leadsto z} \rangle,$$

where the polynomial $P_n(z) \in \mathcal{D}\langle X \rangle$ is defined as follows

$$P_n(z) = \sum_{\text{wgt } \mathbf{r} = n} \sum_{w \in X^n} \prod_{i=1}^{\deg \mathbf{r}} {\sum_{j=1}^i r_j + j - 1 \choose r_i} \tau(w).$$

Therefore, $P_n(z) \triangleleft \sigma f_{|_{q_0}} \in \mathcal{D}\langle\langle X \rangle\rangle$ is the non commutative generating series of $y^{(n)}$.

Asymptotics of the successive derivation of the output

Let $k \in \mathbb{N}$, the successive derivation $y^{(k)}$ of the output of nonlinear differential equation with three singularities is then combination of the elements g belonging the polylogarithm algebra.

For $z_0=\varepsilon \to 0^+$, the asymptotic behaviour of the output y at z=1 is given by

$$y^{(k)}(1) \underset{\varepsilon \to 0^{+}}{\widetilde{\sim}} \langle \sigma f_{|q_{0}} \| P_{k}(\varepsilon) S_{\varepsilon \to 1-\varepsilon} \rangle$$

$$= \sum_{w \in X^{*}} \langle A(w) \circ f_{|q_{0}} | w \rangle \langle P_{k}(\varepsilon) S_{\varepsilon \to 1-\varepsilon} | w \rangle.$$

If $y^{(k)}(z) = \sum_{n \ge 0} y_n^{(k)} z^n$ then, the coefficients of its ordinary Taylor

expansion belong the harmonic algebra and there exist algorithmically computable coefficients $a_i \in \mathbb{Z}$, $b_i \in \mathbb{N}$ and c_i belong a completion of the \mathbb{C} -algrebra generated by \mathcal{Z} and by the Euler's γ constant, such that

$$y_n^{(k)} \underset{n \to \infty}{\sim} \sum_{i > 0} c_i n^{a_i} \log^{b_i} n.$$

THANK YOU FOR YOUR ATTENTION