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INTRODUCTION'?

1. Abstract : In this work, basing on the algebraic combinatorics on non
commutative formal series with holomorphic coefficients and, on the other
hand, a Picard-Vessiot theory of noncommutative differential equations, we
give a recursive construction of solutions of Knizhnik-Zamolodchikov equations
satisfying asymptotic conditions.



Knizhnik-Zamolodchikov differential equations
Let (#(V), 15v)) be the ring of holomorphic functions over the manifold

= (1, the universal covering of the configuration space of n points, i.e.
Cl={z=(z1,...,2,) € C"|z; # zj for i # j}.
Let H(V){(T,)) be the ring of noncommutative series over the alphabet
Tn = {t;)j}1§;<j§,, and with coefficients in H(V)
The following noncommutative differential equation isi so called KZ,
- — i
dF(z) = Q,(2)F(z), where Q,(z):= Z 2i7rd log(zi — z))
1<i<j<n
for which solutions can be computed by convergent iterations, for the
discrete topology 2 of pointwise convergence over #(V)((7,)), for instance
Foz) = Loy and Fi(z) = / Qu(s)Fr1(s).

20

Remark (dévissage)
—2

Q (Z) = E tid ZJ 2 : tin d(zn — Zj + th—1,n d(Z,., — Zn—l)
n - N .
1<isien-1 2im zi— z; ‘= 217r Zn — zJ A7z, — Zp—1
Qn—1(2)¢—Th-1 for z, — z,_1, c.f. hyperlogarithms

2. VS, T e HWV)(Tn),d(S, T) =275-T) where w denotes the valuation, i.e.
If S # 0 then @(S) = inf{|w|,w € supp(S)} else +cc.



Quadratic relations among {t; j }1<i<j<n

According to Drinfel'd, KZ, is completely integrable if Q,(z) is flat, i.e.
dQ,(z) — Qn(z) AQp(z) = 0.

It turns out that this condition induces the following quadratic relations
in {tij}1<icj<n

[tix+tik, t;] =0 fordistincti,j,k andl<i<j<k<n,
R, ={ [tij+tieti]=0 fordistincti,j,k andl<i<j<k<n,

[t:j, tes] =0 for distincti,j, k,/ and {1 S e

generating the Lie ideal Jx,.

Solutions of KZ, belong now to H(V){(T,)/Tr,-



Examples of KZ,

Example (KZ; : trivial case)
One has T, = {t12} and dF(z) = Q,(z)F(z), where
Qg(Z) = (t1’2/2i7'()d |Og(21 — 22),
is F(z1,2) = elti2/Aim)log(21=2) — (7 _ z)h2/2i7 ¢ ’H(@)({’B))
Example (KZ; : simplest non-trivial case)
One has T3 = {t1 2, t1 3, 2,3} and dF(z) = Q3(z)F(z), where
Q3(z) = 2i tl,zm +t3 d(z = z) +tg3 e = 23))
im zZ1— 2 zZ1— 23 Z — 3
Drinfel'd proposed a following solution on ]0, 1]

Fp)—QIQWuﬂwﬂwﬂwc(@Zﬂ,
Z1 — 2o

where G satisfies the following noncommuative differential equation
. ds ds A= t172/2i7T,
(DEl) dG(S) = <AS — B]_ — S) G(5)7 { B — t2’3/2i7T.
He stated that there is a unique solution Gy (resp. G) satisfying
Go(s)~0eMo8(S) = A (resp. Gy(s)~re~ BB = (1 - 5)~B),
and a unique series @y, so-called Drinfel'd series3, s.t. Gy = G Pxz.

3. Cartier, Gonzalez-Lorca, Racinet defined associators as group like series
satisfying the relations duality, pentagonal and hexagonal : ®x is an associator.



log ®x7 determined by Drinfel'd

1. Assuming that [A, B] = 0, he proposed an approximation solution
for (DE1) over ]0,1[, zA(1 — z)B (a group like series) satisfying
standard asymptotic conditions. Hence, the logarithm of such
approximation solution of KZ3 belongs to

L/e <<t1 2, tl ,35 t2 3>>/[£I€ <<t1 2, t2 3>> [,Ie )<<t1 2, t2 3>>]
2. He also proposed, over 0, 1],
Go(z) = 22(1 — 2)BW(z) and Gi(z) = Z2A(1 — 2)BVy(2).
Vo and V; have continuous extensions to ]0, 1[ and are group like
solutions of the following noncommutative differential equation
(DE2) dS(Z) = Q(Z)S(z), Q(z) = @3d—log(1—2)B @3 - Iog(2)A

with the initial conditions V(0) = 1, V4(1) =1 and p is the
topological free Lie algebra generated by {ad ad[A, B}« />0

2_1613,

3. Since Gg = G; Pk then the group like series k7 equals to
V(0)V(1)~1, where V is a solution of (DE2) and then the
coefficients {c ;} k>0 of log @z are obtained, in p/[p,p], by

log Prz = cp BFFTAN = / Q(z)dz mod [p, p].
k,/>0



Polylogarithms
Denoting (X*, 1x+) the monoid generated by X = {xg, x; }, recall that

= ) Liy(s)w € H(B)(X)), where B:=C\{0,1}
weX*
where Li, is the character of (H(B)(X),w, 1x-) defined by
Lilx* = 17.[(@)7 Lixo(s) = Iog(s), Li)q(s) = |Og(1 - 5)
and, for any x;w € LynX \ X,
° wo(s) = ds/s,

Liw(s ):/ i(0)Li, (), where { wi(s) = ds/(1— s).

{Lis}iezynx (resp. {Liy }wex+) are C-algebraically (resp. linearly) free.
By the Friedrichs crirerion, L is group like. Thus*,

. L (9P { IimOL(s)e_X0 gz = 1,
I | e ') and then =0
xi1 log(1—2z) _
I€LynX z|[>n1 € L(s) bz,

and @iz admits {Li/(1)},czynx\x as convergent locale coordinates
) L ﬁ eLiS/(l)P/ c R«X» for Xo = t172/2i777
Kz = ’ X1 = —t273/2i71'.

1€ LynX\ X

4. {Pi}iccynT, is the basis of Liey, g (X) over which are constructed the
PBW basis { Py fwe7, of U(Liey, ) (X)) and its dual, {Sw }wex+, containing
the pure transcendence basis {S;}/ccynx



BACKGROUND ON
PV THEORY OF NONCOMMUTATIVE
DIFFERENTIAL EQUATIONS



Differential ring of holomorphic functions

> V : simply connected manifold of C" (n > 0).
> A= (H(V),01,...,0,) : the differential ring of holomorphic

functions on V,and equipped 14,(y) as the neutral element.
For any f € H(V), one has df = (01f)dz + ...+ (Onf)dz,.
> Let C be a sub differential ring of A (i.e. 9;C C C, for 1 < i < n)

and let ¢ ~» z denotes a path (with fixed endpoints, (s, z)) over V,
i.e. the parametrized curve v : [0,1] — V such that

v¥(0)=¢=(s1,.--,6n) and ~(1)=z=(z,...,2)-
> For any integers 7, j such that 1 </ < j < n, let w; ; denote the
1-differential forms®, in Q1(V), w;; = d&;;, with & ; € C.
Example (&j(z) = log(zi — z),1 <i<j<n)

Let Co := C[{(01&1j)™ .- (On&i ) hi<ici<nl-
Then Cy is a sub differential ring of A.

5. Over V), the holomorphic function §;; is called a primitive for w; ; which is
said to be a exact form and then is a closed form (i.e. dw;; = 0).



Notations

> (7,*,17.+) is the free monoid generated by 7,,.

> A(T,) (resp. A(T,)) is the set of series (resp. polynomials) over 7,
with coefficients in A. LynT, (resp. LynT) is the set of Lyndon
words over T, (resp. 7).

> Ty = {tj,k}lgjgk—laT = {T2, Ceey Tn} st. T =T UTk_ 1,k <n.
|Tnl=n(n—1)/2and | T,|=n—1.If n >4 then | To—1|>| Th|.
Example

» Ts = {t12,t13,t14, t1.5, 02,3, 024, to 5, t34, 135, ta 4}, ONE has
Ts = {t15,t25,t35, ta5} and Ty.

» Ta={ti2,t13,t14, 123, tra, t34}, One has
Ty = {t174, t2,4, t374} and 75

» T3 = {t12,t13, 23}, one has T3 = {t13,t23} and To = {t12}.

> In (AUT,),01,...,0,), for any S € A(T,)), one defines
9;S= > (9(SIw))w and dS = (9;5)dz.

weTrx i=1

Const(A) = C.1yq) and Const(A(T,)) = C{(Ta)-



Lazard elimination : Lies(7,) = Z, ® Liea(T,)
Let p the right normed bracketing which is the unique linear endomorphism
of A{T,)) defined, by p(17-) =0 and, for w = t;...tx € T, by
p(W) = [tl, [ Cy [tk—I; tk] .. ] = adtl . adtk71 k-
T, : Lie subalg. generated by {adan t,',j}ffgﬂil = {(=1)Mp(vt)/ |v\|} ver;

Th—1
By PBW, U(Z,) is freely generated by
{adlan t...ad" : p}kl,...,k,,zo,pzo

t17"-7tp€7—n—1k>0
= {p((_ Tn)*tl) e p((_ T”)*tk) t1ee th€Tno1 k>0
= {(*1)|v1'”vk| |vi |!71 N ‘lilp(Vltl) o p(vitk) Voo VA E Tty th €Tt

which are associated to the following family of polynomials of U/(Z,)"
= =k, ki kp>0,p>0
{ti(Tow(-w(tpTa?) . )} t,,enfl ,
Y ki kp>0,p>0
= {t1(V1 ( (t‘ Vp)k )i}>oeT§10’ ,vpeT:p,tl,...,tkeﬂ,1
_ = 1, p=
SRR SN
~ = {(tlTrlvq) (tan ) tll,...,tpeT,,fl ’
where® TK = {v e Tk | v|: k} and the composite operator o is defined,
for any H and R € A{(T,) and t € T,_1, by
If R # 17+ then (tH)oR = t(Hw R) else (tH)oR = tH.

6. v is the polynomial t; w ... w t, associated to v =t ... tk.




Lexicographic ordering

Lie(T,) is the set of Lie polynomials over 7, with coefficients in A and
is equipped with the basis {P;}/czyn7, over which are constructed the
PBW basis {P,, }we7+ of U(Liea(T,)) and its dual, {S, }ue7-,
containing the pure transcendence basis {S;}/czyn7, of 7 (A(T,),w,17+).

Example (|n KZ3, 7—3 = {t1,2, t1 3, t273} and t172 =< t1’3 =< t273)
Vk>0,i=1or2, tfzt,')g; S EynTo,, Pthtm = aC].:_fL2 ti3, Sthtm = t{()2t,',3.
In the sequel, let LynT, (resp. Ty) be the set of Lyndon words over T,
(resp. Tk) equipped the following total order over Ty (n > k > 2) :
tik = - 7 thk—1ks Ty = ... Ty, EynT2>...>£ynTn.

By the standard factorization ® of Lyndon words, one has
LynTp_1 = LynT, LynT,_1 = LynT,,
More generally, for any (t1, t2) € Tk, X Tk,,2 < ki < ko < n, one also has
toty € LynTy, C LynT, and t, < trty < t7.

7. in which one defines A, x = x® 17+ + 17, ® x, or equivalently,

vwlyps =1lp~wu=u and xvwyv=x(vw yv)+ y(xuwv).

8. i.e. st(l) = (h, k), where b is the longest nontrivial proper right factor of a
Lyndon word /, or equivalently, its smallest such for the lexicographic ordering.



Diagonal series (for KZ,,n > 4)

1. If 1€ LynTy_1and t € T,,2 < k < nthen t/ € LynT, and
t<tl <.

2. If h € LynTy, and b € LynTy, (for 2 < ky < ko < n) then
hh € Eyn’ﬁz C £yn’77, and b < bl < k.

3. Ifh e £ynTk and h € Eyn’ﬁ,l (for 2< ki <k < n) then
hb e Eyn77, and h < hbh < bh.

In A(T,)&A(T,), let VS =S — 17+ @ 17-. The diagonal series is defined by
Dy, =M, with M:=> tot,

teT,
and is the unique solution of VS = MS and VS = SM. Then
N
Dy =Dr._, ( 11 es@P/)DTN, for n>2.

I=hlp
heLynTy 1, €LynTh

where Dr,_, (resp. Dr,) denote the diagonal series, over T,_1 (resp. T,), and
N\ N\
Dr_, = H %P and Dy, = H e%®P,
l1eLynT,—1 1eLynT,



More about notations
Let us back to the relations
[tik + tjk, tij] =0 for distincti, j, k and1 <i<j<k<n,
R, ={ [tij+tieti] =0 fordistincti,j,k andl<i<j<k<n,
[t tes] =0 for distincti,j, k,/ and {1 =

generating the Lie ideal Jx,.

» The monoid (resp. the set of Lyndon words) generated by 7,
satisfying the relations R, is denoted by (7,°; Jx,) (resp.
(LynTn; Tr,))-

> The set of noncommutative polynomials (resp. series) with
coefficients in A, over T,, satisfying R, is denoted by A(T,)/Jx,
(resp. A(70)/ Tr.,)-

> The set of Lie polynomials (resp. Lie series) with coefficients in A,
over T, satisfying R, is denoted by Lie(T,)/Tr, (resp.
Liea(Tn))/ Tr.,)-

» H., (7n)/JIr, denotes (A(T,)/Jr,,conc, A, 17+).



Iterated integrals and Chen series
The iterated integral associated, of the 1-differential forms {w; j}i1<i<j<n
and along the path ¢ ~ z, is given by aZ(17-) = 14y and, for any
W =ty jiti g - - - Ligji € 771*'
z s1 Sk—1
af(w) = / wil,jl(sl)/ Wiy j(52) - - / wi j (sk) € H(V),
S S S

where (¢,s1 ..., 5¢_1, z) is a subdivision of ¢ ~~ z.

The Chen series, of the differential forms {w; j}i<i<j<n and along a path
¢ ~» z, is the following noncommutative generating series

Covz = Y aZ(w)w € HV)(T).

weTx

Proposition

L VYu,vin T, aZ(uvwv) = aoZ(u)aZ(v) (Chen's lemma).
2. Vt € To,k >0,07(t5) = (aZ(t))"/k! and then o?(t*) = e*<().

3. For any compact K C V, there is ¢ > 0 and a morphism of monoids
pi Ty — Ryo st [[(Cowzlw)llc < cp(w) (w172, forw € T,
and then C..., is said to be exponentially bounded from above.



Basic triangular theorem over a differential ring

Let C be a sub differential ring of A.
For any S € C{(Ty,)), let F(S) := spanc{(S|w) }weT>

Lemma
The following assertions are equivalent®

1. The following map is injective
(C<771>a““717-n*) — (H(V)v*vlﬂ(\/))a W Oéi(W)~

{aZ(w)}weT- is linearly free over C.
{aZ(N}iecynT, is algebraically free over C.
{aZ(t)}teT, is algebraically free over C.
{ag(

t)teT,uf1,-} Is linearly free over C.

A R

For any C € Liec{(Ty)), there is an automorphism 1) of F(Cq..;)
such that ¥(C...,) = C...,eC.

9. This is the abstract form, over ring, of (Deneufchatel, Duchamp, HNM &
Solomon, 2011).



Noncommutative differential equations
(NCDE) ds =M,S, where 10 M, = Z wj jtij-

1<i<j<n

Proposition

1. Cews;, satisfying (NCDE), is group-like and log C...., is primitive :

e
Coz = H eGP and log Cooy = Z aZ(w)m(w),
leLynT, weTx
1
where 1 (w Z( Z (Wlug w .. owoug)uy ... oug.
k>1 Uty Uk €THT

2. Let C € C(T,)),(C|17-) = 1. Then C....C satisfies (NCDE).
Moreover, C....,C is group-like if and only if C is group-like.

From this, it follows that the differential Galois group of (NCDE) +
group-like solutions is ! the group {eC}Ceﬁ,émH(V) (xy - Which leads to
the definition of the PV extension related to (NCDE) as C/oj({CZowz}.

10. M, € Q'(V)(Tn) and Ay, M, = 17+ @ My + M, ® 17
11. In fact, the Hausdorff group (group of characters) of (A(7,),w, 17>).




ALGORITHMIC AND COMPUTATIONAL
ASPECTS OF SOLUTIONS OF KZ, BY
DEVISSAGE



Solutions of (NCDE) by {Vi(s,2)}m=0 (1/2)

Vin(s.2) = Vo(s,2) Y [ eXemn ™ot i(s)t; Vinoa (s 5),
tij€Th-1
Vo(s, z) H e““NPr mod [Liea( T, Liea( To)]
1eLynT,

— eXeer, oL(D)E,
1. (o ® Id)Dr, satisfies the differential equation dF = N,_1F, where.

n—1

N,_1:= Zwk,ntk,n S Eiegl(v)<7',,>.
k=1
2. V), satisfies the partial differential equation 9,f = N,_1f.

3. For any m > 1, on obtains explicitly

m—1
Vm((,Z) = Z /w’17J1 51 / w,'me(Sm)K/W(Z,Sl,-” 75m)a

W=tiy jy - timjm € Ty 1
where (using the identity e ?be? = e*d-2p)
V0(<7Z)_1K/W(Z,S]_-, e ’sm)
m
adq"

ad B
— I | e, el Wty . — E | I .
le tlp,jp ZtET ” P (1)t t,,,.jp.
p:

g1, ,qk=>0 p=1




Solutions of (NCDE) by {Vin(s,2)}m>0 (2/2)

Proposition

1. (NCDE) admits Vih(s,z)G(s, z) as solution, with
1 ‘V,' j1 -+ Vi 1'|
6(c,2) = (ZoI)y Z (Z1) e

L eTr | Vit | | Vik ik |I

tiy gy ik
(til,jl \_/il,jl) ©---0 (tlk,Jk V’kajk) ® p(vf17j1 tl'1,j1) s p(vikyjk tl'k,jk)

2. There is a diffeomorphism g of V s.t. G(s, z) is group like series and

is the Chen series, along the path g(s ~ z) and of the differential

forms {wj j}1<i<j<n—1, and then satisfies

dS = /\/l*,,_15, where M*,_1 = Z g*w,-Jt,-J S Lite(v)<77,_]_>.

1<i<j<n—1

3. If the restricted w-morphism oZ, on C(T,), is injective then there is

a primitive series C € Liec{(To—1)) such that

6(c.2)= (3 azww)e”

weTr



Solutions of KZ, (n > 4)
Forany1<i<j<n-—1,let(Pij):z —z=1.
Theorem (w,'J(Z) =d |Og(Z,' — ZJ')7 t,'J — t,'7j/2i7T)
For z, — z,_1, solution of dF = M,F can be put in the form
f(z)G(z,...,2z,—1) such that

1. f(2) ~ (zp—1 — z,)t"—t satisfying O,f = N,_1f, where
n—1

-1
dz, s ds ) s=z
Nn—l(z) = § ti,n = § ti,n , with .
et T Zy — Zk et 7S — sk Sk = Zn — Zk.

2. G(z1,...,2n_1) is solution of dS = M'*\ S, where
Myi(2) ~ D0 el (t)d log(z — z),
1<i<j<n—-1
(pg:‘nz)(tld) — ea‘d_ zl§k<n|°g(zk_zn71)tk,n tl,_] mod jRn
Moreover, M:*" exactly coincides with M, ; in the intersection of
affine planes (N, ;.1 (Pin-1).

Conversely, if f satisfies O,f = N,_1f and G(zy,...,z,—1) satisfies
dS = M!S then f(2)G(zi, .. .,z,_1) satisfies dF = M,F.



Solutions of KZ, (n > 4) with asymptotic conditions
Let Fo : (C(Tn),w, 7)) — (H(V), %, L3 (v)) be the character defined by
Fipo = 1uw) Vtij € To, Fi (2) = log(zi — zj), Vtijw € LynTa \ T,

Fiow(z) = / wjj(s)Fu(s), where wj;(z)= dlog(z — z).
0
Corollary (w,-_J-(z) =d |Og(Z,' — ZJ), t,"J' — t,-J/2i7r)
L. {Fi}ier,uq1,.y are Co-linearly free.

2. The graph of F,, F, is unique solution of dF = M,F and
N

F(z) = H e P s (zim1 — 2)V G2, Zim1, 201, 2

1<i<n
IeLynT,
. te n
where Gi(z1,...,2i_1,Zi+1, ..., Z,) Satisfies dS = M,*S and, for
YI=21,...,Yic1 = Zi_1,Y; = Zi41,+-+,Yn—1 = Zn, One has
te, ad_ | _
Myi(y) = Y e Bkt b d log(y; — ;) mod Jr,
1<i<j<n—1

and M'*" exactly coincides with M, 1 in Mi<ken_1 (Pin-1).

3. In Liea{Tn)/[LiealTn), Lieal Tn)], one has
F(z) = i log(z0—2i)ti,n Z F(t1T1 Yoot Tk H ad’

k>0,l,..., >0 1<_/<k
s t€Th_1



KZ5 : Simplest non-trivial case (1/3)

One has T3 = {t12,t13, t>3} and

1 d(z; — d(zy — d(z, —
W(z) = 5= <t1,2 (2 = ) +t3 (2= 2) +ta3 (22 Z3)>.
a2 21— 273 2z — 73

C 2im

Solution of dF(z) = Q3(z)F(z) can be computed as limit of the

sequence {F}/>o, in H(C3)({(T3)), by convergent Picard’s iteration :

Fo(Z) = 1H(V) and F/(Z) = /Oz Q3(S)F/,1(S).

Let us compute, by another way, a solution of dF (z) = Q3(z)F(z) as the
limit of the sequence {V)}/>o, in H(C2)({(73)), iteratively obtained by

Vo(z) = elt12/2im) '°€(Zlfzz),
VI(Z) = / e(f1,2/2i7r)(|og(z1—zz)_|og(51_52))§.-22(s) \/I_I(S)
0

— Vo(Z) / ef(t1,2/2i‘n’) Iog(slfsz)fb(s) V/,l(S),
0

. 1 _ _
with Q(z) = 2-(t1,3d(21 Z3)+t23d(22 23))_

1T zZ1— Z3 Tz —2z3




KZ; : Simplest non-trivial case (2/3)

Explicit solution is F = VoG, where Vy(z) = (z; — 22)t1,z/2i7f and

6= % / wii (51)0% () / i (5m)e™ (£ ),

tiy oy tim jm € 111,3:22,31
m>0

where w1 3(z) = dlog(z1 — z3) and w2 3(z) = dlog(z; — z3) and ¢ is the
following automorphism of Lie algebra, EieH(@)U}),

log"(z )
7z o2d_ (4 5 2im) log(z ) — g \Z41 — k
s = T e e
k>0
Since t1 < t13 < ta3 and, for k >0 and i =1 or 2, tf,t;3 € LynT; then
: : 1,28,

k
P adg iz and Sy .. =tiotis

thotis — e,
and then . .
R log“(z1 — 22) . log“(z1 — 2z2)
w3 = 2 (Coim)ekl | tane $7(3) = > (2l ot

k>0 k>0
where ¢ (adjoint to ¢) is the following automorphism of (A(T3),w, 17)
%2 — g—(t12/2im)log(z1—22) — Z Iog (21 tk

9’ K fe| 1,2+
= (—2in) k



KZ; : Simplest non-trivial case (3/3)

Belonging to H(C3)(T3)), G satisfies dG(z) = Qu(2)G(z), where
%)= 5 ( “(05) 22 4 (s )d(_)>

T 4 zZ3
In the affine plan (P15) : z1 — z» = 1, one has
log(z;

—2)=0 andthen ¢=Id.

(

Setting xo = t1,3/2im,x1 = —tp3/2im and z; = 1,2z, = 0,23 = 5, one has
- 1 d(zy — z d(z — z ds ds
Q2(Z) = —| t13 ( ! 3) +t3 ( 2 3) = X1 + Xxp—.

2im 71— 73 Zy — 73 1-—s s

KZ3 admits then the noncommutative generating series of polylogarithms,
L, as the actual solution satisfying the Drinfel'd asymptotic conditions.

Via L and the homographic substitution g : z3 — (z3 — 2)/(z1 — ),
mapping {2, z1} to {0,1}, L((z3 — 2)/(z1 — z2)) is a particular solution
O]c KZ3, in (PLQ). SO iS L((Z3 — 22)/(21 — 22))(21 — 22)(t1‘2+t1‘3+t273)/217r_

To end with KZ3, by braid relations, [t1» + t23+ t13,t] =0, for t € T,
meaning that t commutes with (z; — zp)(f2t23%1.3)/2i™ and then A(T3))
commutes with (z; — z)(ft2ttustts)/2ir

Thus, KZ3 also admits (z; — z,)(t12+13+23)/27] (23 — 7)) /(21 — 25)) as
a particular solution in (Py 7).



Other example of non-trivial case : KZ, (t;j < t;;/2im)
For n =4, one has T2 = {t1 2, t13, t1.4, £.3, £ 4, t34} and then
Tz ={ti2,t13,t23} and Ty = {t14,t24,t34}. Then

(7542) 2= Tier, ot

and for any t;; € T3,
SDt.4 CHE Z)(ti,j) mod JR,.
If zz — z3 then
F(z) = Vo(2)G(z1, 22, 23), where Vo(z) = ei=iss tinlos(zi—z)

and G(z, z, z3) satisfies dS = /\/I3t"45 with

Z0 z

M4(2) = ¢ (t)d log(z — 22)
2z

cp( ) (t13)d log(z, — z3)

4
+ @gf A (t23)d log(22 — 23).
Considering (Pi4):z1—zz =1, (Pos):zo—zz =1, (P34):z3—2z2 =1,
in the intersection (P1,3) N (P»,3), one has log(z; — z3) = log(z —z3) =0
and ¢, , = Id and then M3t"4 exactly coincides with Mj.
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