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Fleld operator algebra [Brouder & Oeckl 2003, Brouder 2009]

V = C-vector space of finite linear combinations of field operators ¢(x).

S(V) =@, V¥ = associative algebra on monomials of time-ordered
products of field operators, where V0 = C.

Hopf algebra structure:

m coproduct:
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L Field operator algebra

The ensemble of time-ordered n-point functions of a given type
determine maps S(V) — C [Brouder et al 2004]:

All 1-point functions vanish:
p(d(x)) = o(p(x)) = 7(d(x)) = v(¢(x)) = 0.
0-point functions:

mp(l)=1,

mo(l)=7(1)=v(1)=0.
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T T2

/ dxdydzdx'dy’ dz’
GF(XlaX)Z(3)(X7y,Z)GF(}/a)//)GF(ZaZI)ZIG)(X/»)/,ZI)GF(X/;X2)
= / dydzdy'dz' ¥V ® (x1,y,2) G v,y ) GF (2, 2)V D (xa, v, 2') .
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The R-operators

Define the following elements of S(V)®Y [M. & Oeckl 2006]:

m For i #j:

Rij = / dxdy G (x,y) (1% @ ¢(x) @19 @ ¢(y) @ 19V ) ;

m For i =:

Riji= /dx dy G (x,y) (1% @ (x)(y) ® 1977).
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L Algebraic representation of graphs

Build arbitrary graphs on v vertices:

Combine internal and external edges by multiplying the respective
expressions in S(V)®.

T xs3

| ] Rl,g . (¢(X1)¢(X2) & ¢(X3)¢(X4)) =

X9 Ty
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L Algebraic representation of graphs

Internal and external edge tensors

m Internal edge tensor:

m External edge tensor.

ext] ,i=o(xa1) . O(xm1) @@ b(xy) - Xn,0)

Yy v
S/ =it eext] .
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EES

Zy L2
\\ // 3 Iy
my= o
mint] 4= N
Ty Iy I.‘g\ Ty
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L Algebraic representation of graphs

Graphs with different vertex sets

m integer v/ > v;
mset X C{1,...,v'} with card(X) = v;
m bijection o : {1,...,v} — X.
For all v/ > v define:
¥ ot
So(1),0(v) = M), o) ) o)

where

|nt7 H RG(,k ),0(ik)

ext7 H 19701 @ d(x17) . .. P(xn. 1) @ 18V
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Ty €3
vy ®2 _
S, eS(V)E? =
T Ty
Ty T3

575 eS(V)® = @
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EES

Eat 3
57, eS(V)¥? =

Xo Ty
575 eS(V)® = @

(o:{1,2} = {1,3};1+— 1,2 3)
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L Tensor algebra

A non-associative non-commutative graph multiplication

T(S(V)) := @;2, S(V)®k = tensor algebra generated by the vector
space S(V).

Forall1<i<v,1<j <V, define:

0ij: S(V)E @S(V)® — S(V)®&+,

1sJ

(n®...0u)e(u®...0u,) =
(ve1occom) (1 ®...0u,)@(no...om) (U] ®...Q u,)
—0®.. .Q0®.. . RUALIURU®.. OUR... ®u,.
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5]’1...,v ®ij Siy,...,v’ = 5;(1)"“’0_(‘/) ’ Sc’r\{'(l),..‘,a’(v’) '

(5;’(1)_"_ o) 5;,(1)7_”70,@,): disconnected graph)

)

Gluing two graphs at a vertex:

Oij = Typv—20...07,0-, 08 S(V)® x S(V)® — §(V)&viv'=1)

(v+ v —1 = cut vertex)
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L Coalgebra structures

A coalgebra structure on 1VI graphs

B, , = set of all 1Vl Feynman graphs on [ loops, v vertices and no
external edges nor self-loops.

Coalgebra structure on CB := P2, |, CB ,:
m coproduct A: CB — CB @ CB:

—
w0l
~

= 5S®S5;

A
AF) = 3®@F7+705 if §#5;

2
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A coalgebra structure on 1VI graphs

B, , = set of all 1Vl Feynman graphs on [ loops, v vertices and no
external edges nor self-loops.

Coalgebra structure on CB := P2, |, CB ,:
m coproduct A: CB — CB @ CB:

A(5) = 5®5;
A(F) = S5@7+7Q5 if ¥#5;

m counit e : CB — C:

e(5) = 1;
e(y) = 0 if F#5.
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L Coalgebra structures

Extension to the algebraic representation

B, C S(V)® = vector space of all tensors representing 1VI graphs on /
loops, v vertices and no external edges nor self-loops.

Coalgebra structure on % := @2, |_o B, C T(S(V)):
m coproduct A : B — B R XF:

A1) = 1@1;
AELL) = LY AL,
i=1
where
Ai(BYW) = Blay o) T Bon1) oia(v)
= B + B)

1, i+1,i42,...,v+1 1, i+l v+1 "
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m counit e : &4 — C:

e(l) = 1;
(%) = 0 if v>1.

s
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B =P, B = vector space of monomials on 1VI graphs with the
product .

The elements of Z* may be seen as monomials on tensors B;’(l)
with the componentwise product:

yeenyo (V)

k
H BY ). oavs) -

a=1
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L Coalgebra structures

Generalizing to connected graphs

B =P, B = vector space of monomials on 1VI graphs with the
product .

The elements of Z* may be seen as monomials on tensors B;’(l)

yeenyo (V)
with the componentwise product:

k
Va
Boa(l),...,aa(va) .

a=1

Extend A = %Z}’Zl A; to $* by requiring the maps A\; to satisfy:

k k

Ai(l_[ B;z(l),“.,aa(va)) = H Ai(B;Zu),...,a‘.,(v‘.,))-

a=1 a=1
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- Coalgebra structures

counit € : #* — C:

e(l) = 1,
K

«(IIB2w..onwy) = O if k>0.

a=1
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Truncated coproduct: Ay : V" — @) Lvig yn-i [M. & Oeckl 2006]:

Ax1(1) =0, Ax(6(x)) =0
B1(6(x)0(y)) = o(x) @ d(y) + o(y) © ¢(x) .
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\WETS Q,-(Zpl) and (:?,(sz

Truncated coproduct: Ay : V" — @) Lvig yn-i [M. & Oeckl 2006]:

Ax1(1) =0, Ax(6(x)) =0
B1(6(x)0(y)) = o(x) @ d(y) + o(y) © ¢(x) .

1
Qi(zpi = s Riit” - Az 1 S(V)® — S(V)= .
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\WETS Q,-(Zpl) and (:?,(sz

Truncated coproduct: Ay : V" — @) Lvig yn-i [M. & Oeckl 2006]:

Ax1(1) =0, Ax(6(x)) =0
B1(6(x)0(y)) = o(x) @ d(y) + o(y) © ¢(x) .

1
O} = gy R’ iz S(V)™ = S(V)P+

(Q,-(Zli [Glover et al 1979], [Livernet 2006])
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l7Linear maps

Examples:
2 (1) 2y .
B QiSi(Ri2®) =2Ri2 Riz- Ras;

LI — 2

2,04

5 (0) . _ 1 8
;21(1_[ Bz;ya(l),.“,a'a(va)) = 2(p_ 1 . 11+1 HA1>1 B’Y( 1),. ,,aa(Va))-
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Maps B!

(1),...

Given:
m integers v,v/ >1and 1 </ < V/;
m any bijection m; : {1,...,v} = {i,i+1,....i+v—1}
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Maps B!

v—1
,'(V) ’ Al

(1),...,m

Given:
m integers v,v/ >1and 1 </ < V/;
m any bijection 7; : {1,... v} = {i,i+1,....i+v—1}
m v € B = 1VI graph on v vertices represented by the tensor
Bf’_“,v e s(v)ev.
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L Linear maps

Maps B!

v—1
,'(V) ’ Al

(1),...,m

Given:
m integers v,v/ >1and 1 </ < V/;
m any bijection 7; : {1,... v} = {i,i+1,....i+v—1}
m v € B = 1VI graph on v vertices represented by the tensor
Bf’_“,v e s(v)ev.

Define:
B’Y

mi(1),...,m

) BTHS(V)EY = s(v)EhL
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EES

R34~ N3(By 5 Bsys)

Rsa - N3(Bfy3) - Ds(BsYs)

R34 - (5123+B124)'(B3C%6+Bf356)
Rs.a - 3123 B 56T Raa- 5123 B456
Rsa - 8124 BS6+R34 B124 B456'



On the Feynman graph expansion of 1-particle irreducible n-point functions in quantum field theory

L Linear maps

EES

R34~ N3(By 5 Bsys)

Rsa - N3(Bfy3) - Ds(BsYs)

R34 - (5123+B124)'(B3C%6+Bf356)
Rs.a - 3123 B 56T Raa- 5123 B456
Rsa - 8124 BS6+R34 B124 B456'
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EES

Roa8a(Bhs-Bils) = Rea-Da(Brhs)- Aa(Bihs)
= Rsa-(Blhs+Bira) (Bihe+ Bik)
= R34 Bl Biig+Raa-Blhs Bihet

R34 - 8124 B356+R34 B124 B456'

-R3,4'A3( )—2'*%+2I>-—.<I
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Generating 1VI Feynman graphs

Pick out the terms that generate 1VI graphs according to a formula given

in [M. 2009]:
Theorem (see M. 2010)
For all integers | > 0 and v > 1, define ‘1]’1"‘,

following recursion re/ation'
Rt

€ S(V)" by the

2 .
LRUTE 2(/+1)|
n ’B(l)’v =0, v>2;

.....

n
1 +1 v—1
l,v . / ,v
Uy = ZZQN “UH S+
I+v—1 =

- ~ [+1—p,v—1,j
3 QY (Bl f)),
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Theorem (co

)

where for all integers j > 1, v > j+1 and | > j, %”V’J
following recursion relation:

is given by the

LV

/=1 v—1 v/ v—v/41

wmqwdzzz

I'=1v/=2 i=1 j=1

J—=1" v—v'41\ .
((// 4L V/ — 1) V/O/,JQI socoq—= _:i > 0

/=1 v—1+v/—1

9B = ,+ v— Z >3 (¢ ( R VD LMV IIND e 1) .

=1v/=2 i=1

Then, for fixed values of v and |, ‘IJ’IVV is the weighted sum over all 1VI
Feynman graphs with | loops, v vertices and no external edges nor self-loops,
each with weight given by the inverse of its symmetry factor.
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Generating 1Pl Feynman graphs

Theorem (see M. 2010)

For all integers | > 0 and v > 1, define T’”’ , € S(V)®V by the following
recursion relation:

: 1,2,
. 31 2 =015

I—1 v—1 v—v/+1

W =T e S

I'=1v/=2 i=1

’ 1" v v— 1~v v+, -1
((II+V S ) D USSR A Vi 1 fv+1)>,v>2.

Then, for fixed values of v and |, 3 is the weighted sum over all 1PI

..... v
Feynman graphs with | loops, v vertices and no external edges nor self-loops,

each with weight given by the inverse of its symmetry factor.



On the Feynman graph expansion of 1-particle irreducible n-point functions in quantum field theory

L Graph generation and applications to QFT

Example of calculation




On the Feynman graph expansion of 1-particle irreducible n-point functions in quantum field theory

L Graph generation and applications to QFT

Example of calculation




On the Feynman graph expansion of 1-particle irreducible n-point functions in quantum field theory

L Graph generation and applications to QFT

External edges and self-loops




On the Feynman graph expansion of 1-particle irreducible n-point functions in quantum field theory

L Graph generation and applications to QFT

External edges and self-loops

m T :=1R;;:S(V)® — S(V)® with 1 < i < v [M. & Oeckl 2006];

)
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External edges and self-loops

m T :=1R;;:S(V)® — S(V)® with 1 < i < v [M. & Oeckl 2006];
mi:S(V)—-S(V)®S(V);1—1®1, Ty — T1+ Ty = algebra
homomorphism.
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External edges and self-loops

)

mi:S(V)—-S(V)®S(V);1—1®1, Ty — T1+ Ty = algebra
homomorphism.

m T :=1R;;:S(V)® — S(V)® with 1 < i < v [M. & Oeckl 2006];

Proposition

Fix an integer n > 0 as well as operator labels xi1, ..., xa. For all integers | > 1,
I' >0 and v > 1, define I'"V . S(V) — S(V)® as follows:

rao_ 1oy
T
1+1" v 1 I,v v—1 4 v—
r = ﬂjl,“.,v'(s (Tl )A 17‘/227

Then, r’“/"’((;&(xl) -+~ @(xn)) is the weighted sum over all 1Pl Feynman graphs
with | loops, I" self-loops, v vertices and n external edges whose end points are
labeled xi, . .., xn, each with weight given by the inverse of its symmetry factor.
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Feynman graph expansion of 1Pl n-point functions

m v, = 1Pl vertex functions;

m 7 = 1Pl n-point functions.
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Feynman graph expansion of 1Pl n-point functions

m v, = 1Pl vertex functions;

m 7 = 1Pl n-point functions.

Contributions to the ensemble 7 of 1Pl n-point functions:

[e%S) [e%S)

’ ’ ’

7_l+l _ § :TI-H 7v7 = § : 7_I-',-I )
v=1

1+1'=0
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Feynman graph expansion of 1Pl n-point functions

m v, = 1Pl vertex functions;

m 7 = 1Pl n-point functions.

Contributions to the ensemble 7 of 1Pl n-point functions:

[e%S) [e%S)

’ ’ ’

7_l+/ _ § :TI-H 7v7 = § : 7_I-',-I )
v=1

1+1'=0

Vertex order contributions:

Corollary

Forv > 1:
! ’
7_I+l Vo V?;/V © rl+l ,v.
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