Ângela Mestre

Institut de Minéralogie et de Physique des Milieux Condensés, Paris

Ângela Mestre

Institut de Minéralogie et de Physique des Milieux Condensés, Paris

March 9, 2010

Field operator algebra

Ângela Mestre

Institut de Minéralogie et de Physique des Milieux Condensés, Paris

- Field operator algebra
- Algebraic representation of graphs

Ângela Mestre

Institut de Minéralogie et de Physique des Milieux Condensés, Paris

- Field operator algebra
- Algebraic representation of graphs
- Coalgebra structures

Ângela Mestre

Institut de Minéralogie et de Physique des Milieux Condensés, Paris

- Field operator algebra
- Algebraic representation of graphs
- Coalgebra structures
- Linear maps

Ângela Mestre

Institut de Minéralogie et de Physique des Milieux Condensés, Paris

- Field operator algebra
- Algebraic representation of graphs
- Coalgebra structures
- Linear maps
- Graph generation and applications to QFT

 $V = \mathbb{C}$ -vector space of finite linear combinations of field operators $\phi(x)$.

 $V = \mathbb{C}$ -vector space of finite linear combinations of field operators $\phi(x)$.

 $\mathsf{S}(V)=\bigoplus_{k=0}^\infty V^k=$ associative algebra on monomials of time-ordered products of field operators, where $V^0=\mathbb{C}$.

 $V = \mathbb{C}$ -vector space of finite linear combinations of field operators $\phi(x)$.

 $S(V) = \bigoplus_{k=0}^{\infty} V^k$ = associative algebra on monomials of time-ordered products of field operators, where $V^0 = \mathbb{C}$.

Hopf algebra structure:

 $V = \mathbb{C}$ -vector space of finite linear combinations of field operators $\phi(x)$.

 $\mathsf{S}(V)=\bigoplus_{k=0}^\infty V^k=$ associative algebra on monomials of time-ordered products of field operators, where $V^0=\mathbb{C}$.

Hopf algebra structure:

coproduct:

$$\Delta(1) := 1 \otimes 1,$$

 $\Delta(\phi(x)) := \phi(x) \otimes 1 + 1 \otimes \phi(x);$

 $V=\mathbb{C}$ -vector space of finite linear combinations of field operators $\phi(x)$.

 $\mathsf{S}(V)=\bigoplus_{k=0}^\infty V^k=$ associative algebra on monomials of time-ordered products of field operators, where $V^0=\mathbb{C}$.

Hopf algebra structure:

coproduct:

$$\Delta(1) := 1 \otimes 1,$$

 $\Delta(\phi(x)) := \phi(x) \otimes 1 + 1 \otimes \phi(x);$

• counit: $\epsilon(t) := 0$ unless t = 1, $\epsilon(1) := 1$;

 $V=\mathbb{C}$ -vector space of finite linear combinations of field operators $\phi(x)$.

 $\mathsf{S}(V)=\bigoplus_{k=0}^\infty V^k=$ associative algebra on monomials of time-ordered products of field operators, where $V^0=\mathbb{C}$.

Hopf algebra structure:

coproduct:

$$egin{aligned} \Delta(1) := & 1 \otimes 1, \ \Delta(\phi(x)) := & \phi(x) \otimes 1 + 1 \otimes \phi(x); \end{aligned}$$

- counit: $\epsilon(t) := 0$ unless t = 1, $\epsilon(1) := 1$;
- antipode:

$$S(\phi(x_1)\ldots\phi(x_n)):=(-1)^n\phi(x_1)\ldots\phi(x_n).$$

Field operator algebra

$$\rho(\phi(x_1)\cdots\phi(x_n)):=G^{(n)}(x_1,\ldots,x_n),$$

$$\sigma(\phi(x_1)\cdots\phi(x_n)):=G_c^{(n)}(x_1,\ldots,x_n),$$

$$\sigma(\phi(x_1)\cdots\phi(x_n)):=G_c^{(n)}(x_1,\ldots,x_n),$$

$$\tau(\phi(x_1)\cdots\phi(x_n)):=G_{1\text{Pl}}^{(n)}(x_1,\ldots,x_n),$$

$$\rho(\phi(x_1)\cdots\phi(x_n)):=G^{(n)}(x_1,\ldots,x_n),$$

$$\sigma(\phi(x_1)\cdots\phi(x_n)):=G_c^{(n)}(x_1,\ldots,x_n),$$

$$\tau(\phi(x_1)\cdots\phi(x_n)):=G_{1\text{Pl}}^{(n)}(x_1,\ldots,x_n),$$

$$\nu(\phi(x_1)\cdots\phi(x_n)):=\mathscr{V}^{(n)}(x_1,\ldots,x_n).$$

$$\rho(\phi(x_1)\cdots\phi(x_n)):=G^{(n)}(x_1,\ldots,x_n),$$

$$\sigma(\phi(x_1)\cdots\phi(x_n)):=G_c^{(n)}(x_1,\ldots,x_n),$$

$$\tau(\phi(x_1)\cdots\phi(x_n)):=G_{1\text{Pl}}^{(n)}(x_1,\ldots,x_n),$$

$$\nu(\phi(x_1)\cdots\phi(x_n)):=\mathscr{V}^{(n)}(x_1,\ldots,x_n).$$

All 1-point functions vanish:

$$\rho(\phi(x)) = \sigma(\phi(x)) = \tau(\phi(x)) = \nu(\phi(x)) = 0.$$

$$\rho(\phi(x_1)\cdots\phi(x_n)):=G^{(n)}(x_1,\ldots,x_n),$$

$$\sigma(\phi(x_1)\cdots\phi(x_n)):=G_c^{(n)}(x_1,\ldots,x_n),$$

$$\tau(\phi(x_1)\cdots\phi(x_n)):=G_{1\text{Pl}}^{(n)}(x_1,\ldots,x_n),$$

$$\nu(\phi(x_1)\cdots\phi(x_n)):=\mathscr{V}^{(n)}(x_1,\ldots,x_n).$$

All 1-point functions vanish:

$$\rho(\phi(x)) = \sigma(\phi(x)) = \tau(\phi(x)) = \nu(\phi(x)) = 0.$$

0-point functions:

$$\rho(\phi(x_1)\cdots\phi(x_n)):=G^{(n)}(x_1,\ldots,x_n),$$

$$\sigma(\phi(x_1)\cdots\phi(x_n)):=G_c^{(n)}(x_1,\ldots,x_n),$$

$$\tau(\phi(x_1)\cdots\phi(x_n)):=G_{1\text{Pl}}^{(n)}(x_1,\ldots,x_n),$$

$$\nu(\phi(x_1)\cdots\phi(x_n)):=\mathscr{V}^{(n)}(x_1,\ldots,x_n).$$

All 1-point functions vanish:

$$\rho(\phi(x)) = \sigma(\phi(x)) = \tau(\phi(x)) = \nu(\phi(x)) = 0.$$

0-point functions:

$$\rho(1) = 1$$
,

$$\rho(\phi(x_1)\cdots\phi(x_n)):=G^{(n)}(x_1,\ldots,x_n),$$

$$\sigma(\phi(x_1)\cdots\phi(x_n)):=G_c^{(n)}(x_1,\ldots,x_n),$$

$$\tau(\phi(x_1)\cdots\phi(x_n)):=G_{1PI}^{(n)}(x_1,\ldots,x_n),$$

$$\nu(\phi(x_1)\cdots\phi(x_n)):=\mathscr{V}^{(n)}(x_1,\ldots,x_n).$$

All 1-point functions vanish:

$$\rho(\phi(x)) = \sigma(\phi(x)) = \tau(\phi(x)) = \nu(\phi(x)) = 0.$$

0-point functions:

$$\rho(1) = 1$$
,

$$\sigma(1) = \tau(1) = \nu(1) = 0.$$

A Hopf algebraic representation of graphs

A Hopf algebraic representation of graphs

A Hopf algebraic representation of graphs

$$\int dx dy dz dx' dy' dz'$$

$$G_F(x_1, x) \Sigma^{(3)}(x, y, z) G_F(y, y') G_F(z, z') \Sigma'^{(3)}(x', y', z') G_F(x', x_2)$$

$$= \int dy dz dy' dz' \mathscr{V}^{(3)}(x_1, y, z) G_F^{-1}(y, y') G_F^{-1}(z, z') \mathscr{V}^{(3)}(x_2, y', z').$$

The *R*-operators

Define the following elements of $S(V)^{\otimes v}$ [M. & Oeckl 2006]:

The *R*-operators

Define the following elements of $S(V)^{\otimes v}$ [M. & Oeckl 2006]:

■ For $i \neq j$:

$$R_{i,j} := \int \mathrm{d}x \, \mathrm{d}y \, G_F^{-1}(x,y) \, (1^{\otimes i-1} \otimes \phi(x) \otimes 1^{\otimes j-i-1} \otimes \phi(y) \otimes 1^{\otimes v-j});$$

The R-operators

Define the following elements of $S(V)^{\otimes v}$ [M. & Oeckl 2006]:

■ For $i \neq j$:

$$R_{i,j} := \int \mathrm{d}x \, \mathrm{d}y \, G_F^{-1}(x,y) \left(1^{\otimes i-1} \otimes \phi(x) \otimes 1^{\otimes j-i-1} \otimes \phi(y) \otimes 1^{\otimes v-j} \right);$$

For i = i:

$$R_{i,i} := \int \mathrm{d}x\,\mathrm{d}y\; G_F^{-1}(x,y) \left(1^{\otimes i-1}\otimes\phi(x)\phi(y)\otimes 1^{\otimes v-i}\right).$$

Associate a graph on ν vertices with an element of $S(V)^{\otimes \nu}$:

Associate a graph on ν vertices with an element of $S(V)^{\otimes \nu}$:

■ 1 =

Associate a graph on v vertices with an element of $S(V)^{\otimes v}$:

Associate a graph on v vertices with an element of $S(V)^{\otimes v}$:

Associate a graph on v vertices with an element of $S(V)^{\otimes v}$:

Associate a graph on ν vertices with an element of $S(V)^{\otimes \nu}$:

$$R_{1,2} =$$

Correspondence between graphs and elements of $\mathsf{S}(V)^{\otimes v}$

Associate a graph on v vertices with an element of $S(V)^{\otimes v}$:

$$R_{1,2} = 1 - 2$$

Correspondence between graphs and elements of $S(V)^{\otimes v}$

Associate a graph on v vertices with an element of $S(V)^{\otimes v}$:

$$R_{1,2} = 1$$

$$R_{1,1} =$$

Correspondence between graphs and elements of $S(V)^{\otimes V}$

Associate a graph on v vertices with an element of $S(V)^{\otimes v}$:

$$R_{1,2} = 0$$

$$R_{1,1} = \bigcap$$

On the Feynman graph expansion of 1-particle irreducible n-point functions in quantum field theory

Algebraic representation of graphs

Combine internal and external edges by multiplying the respective expressions in $S(V)^{\otimes v}$.

Combine internal and external edges by multiplying the respective expressions in $S(V)^{\otimes v}$.

$$R_{1,2} \cdot (\phi(x_1)\phi(x_2) \otimes \phi(x_3)\phi(x_4)) =$$

Combine internal and external edges by multiplying the respective expressions in $S(V)^{\otimes v}$.

$$\blacksquare R_{1,2} \cdot (\phi(x_1)\phi(x_2) \otimes \phi(x_3)\phi(x_4)) = x_2$$

 x_3

■ Internal edge tensor:

$$\mathsf{int}_{1,\ldots,\nu}^{\gamma} := \prod_{k=1}^e R_{i_k,j_k} \,.$$

■ Internal edge tensor:

$$\operatorname{int}_{1,\ldots,\nu}^{\gamma}:=\prod_{k=1}^{e}R_{i_{k},j_{k}}$$
 .

External edge tensor.

$$\mathsf{ext}_{1,\ldots,\mathsf{v}}^\gamma := \phi(\mathsf{x}_{1,1})\ldots\phi(\mathsf{x}_{\mathsf{n}_1,1})\otimes\ldots\otimes\phi(\mathsf{x}_{1,\mathsf{v}})\ldots\phi(\mathsf{x}_{\mathsf{n}_\mathsf{v},\mathsf{v}})$$
 ;

■ Internal edge tensor:

$$\operatorname{int}_{1,\ldots,\nu}^{\gamma}:=\prod_{k=1}^{e}R_{i_k,j_k}$$
 .

External edge tensor.

$$\mathsf{ext}_{1,\ldots,\mathsf{v}}^\gamma := \phi(\mathsf{x}_{1,1})\ldots\phi(\mathsf{x}_{\mathsf{n}_1,1})\otimes\ldots\otimes\phi(\mathsf{x}_{1,\mathsf{v}})\ldots\phi(\mathsf{x}_{\mathsf{n}_\mathsf{v},\mathsf{v}})$$
 ;

$$S_{1,\ldots,\nu}^{\gamma} := \operatorname{int}_{1,\ldots,\nu}^{\gamma} \cdot \operatorname{ext}_{1,\ldots,\nu}^{\gamma}.$$

Algebraic representation of graphs

$$\quad \blacksquare \ \operatorname{int}_{1,...,4}^{\gamma} =$$

$$\quad \blacksquare \ \mathsf{int}_{1,\dots,4}^{\gamma} = \qquad \quad \blacksquare \quad \blacksquare$$

$$lacksquare$$
 $\operatorname{int}_{1,...,4}^{\gamma}=$

$$\quad \blacksquare \; \operatorname{ext}_{1,...,4}^{\gamma} =$$

$$lacksquare$$
 $\operatorname{int}_{1,...,4}^{\gamma}=$

■ integer $v' \ge v$;

- integer $v' \ge v$;
- set $X \subseteq \{1, \dots, v'\}$ with $\operatorname{card}(X) = v$;

- integer $v' \ge v$;
- set $X \subseteq \{1, \dots, v'\}$ with card(X) = v;
- bijection $\sigma: \{1, \ldots, v\} \rightarrow X$.

- integer $v' \ge v$;
- set $X \subseteq \{1, \dots, v'\}$ with card(X) = v;
- bijection $\sigma: \{1, \ldots, v\} \rightarrow X$.

For all $v' \ge v$ define:

- integer v' > v;
- set $X \subseteq \{1, \dots, v'\}$ with card(X) = v;
- bijection $\sigma: \{1, \ldots, v\} \to X$.

For all v' > v define:

$$S_{\sigma(1),\ldots,\sigma(\nu)}^{\gamma} := \mathsf{int}_{\sigma(1),\ldots,\sigma(\nu)}^{\gamma} \cdot \mathsf{ext}_{\sigma(1),\ldots,\sigma(\nu)}^{\gamma}\,,$$

where

$$\operatorname{int}_{\sigma(1),\ldots,\sigma(v)}^{\gamma} := \prod_{k=1}^{e} R_{\sigma(i_k),\sigma(j_k)},$$

$$\mathsf{ext}_{\sigma(1),\ldots,\sigma(\nu)}^{\gamma} := \prod_{i=1}^{\nu'} 1^{\otimes \sigma(i)-1} \otimes \phi(x_{1,i}) \ldots \phi(x_{n_i,i}) \otimes 1^{\otimes \nu - \sigma(i)} \,.$$

Algebraic representation of graphs

$$S_{1,2}^{\gamma} \in S(V)^{\otimes 2} =$$

$$lacksquare S_{1,2}^{\gamma} \in \mathsf{S}(V)^{\otimes 2} = egin{pmatrix} \sum_{x_2}^{\gamma} & \sum_{x_3}^{\gamma} & \sum_{x_4}^{\gamma} &$$

$$S_{1,3}^{\gamma} \in S(V)^{\otimes 3} =$$

$$lacksquare S_{1,2}^{\gamma} \in \mathsf{S}(V)^{\otimes 2} = egin{pmatrix} \sum_{x_2}^{\gamma} & \sum_{x_3}^{\gamma} & \sum_{x_4}^{\gamma} &$$

$$lacksquare S_{1,3}^{\gamma}\in\mathsf{S}(V)^{\otimes 3}= egin{pmatrix} x_1 & x_3 & x_4 & x_4$$

$$S_{1,2}^{\gamma} \in \mathsf{S}(V)^{\otimes 2} = \sum_{x_2}^{x_1} \sum_{x_4}^{x_3}$$

$$S_{1,3}^{\gamma} \in \mathsf{S}(V)^{\otimes 3} = \sum_{x_2}^{\gamma} \mathcal{S}_{x_4}^{\gamma}$$

$$(\sigma: \{1,2\} \rightarrow \{1,3\}; 1 \mapsto 1, 2 \mapsto 3)$$

 $\mathsf{T}(\mathsf{S}(V)) := \bigoplus_{k=1}^\infty \mathsf{S}(V)^{\otimes k} = \mathsf{tensor}$ algebra generated by the vector space $\mathsf{S}(V)$.

 $\mathsf{T}(\mathsf{S}(V)) := \bigoplus_{k=1}^\infty \mathsf{S}(V)^{\otimes k} = \mathsf{tensor}$ algebra generated by the vector space $\mathsf{S}(V)$.

For all $1 \le i \le v$, $1 \le j \le v'$, define:

$$ullet_{i,j}: \mathsf{S}(V)^{\otimes v} \otimes \mathsf{S}(V)^{\otimes v'} o \mathsf{S}(V)^{\otimes v+v'};$$

 $\mathsf{T}(\mathsf{S}(V)) := \bigoplus_{k=1}^{\infty} \mathsf{S}(V)^{\otimes k} = \mathsf{tensor}$ algebra generated by the vector space $\mathsf{S}(V)$.

For all $1 \le i \le v$, $1 \le j \le v'$, define:

$$ullet_{i,j}:\mathsf{S}(V)^{\otimes v}\otimes\mathsf{S}(V)^{\otimes v'} o\mathsf{S}(V)^{\otimes v+v'};$$

$$(u_{1} \otimes \ldots \otimes u_{v}) \bullet_{i,j} (u'_{1} \otimes \ldots \otimes u'_{v'}) :=$$

$$(\tau_{v-1} \circ \ldots \circ \tau_{i})(u_{1} \otimes \ldots \otimes u_{v}) \otimes (\tau_{2} \circ \ldots \circ \tau_{j})(u'_{1} \otimes \ldots \otimes u'_{v'})$$

$$= u_{1} \otimes \ldots \otimes \hat{u_{i}} \otimes \ldots \otimes u_{v} \otimes u_{i} \otimes u'_{i} \otimes u'_{1} \otimes \ldots \otimes \hat{u'_{i}} \otimes \ldots \otimes u'_{v'}.$$

$$\begin{split} S_{1,\dots,v}^{\gamma} \bullet_{i,j} S_{1,\dots,v'}^{\gamma'} &:= S_{\sigma(1),\dots,\sigma(v)}^{\gamma} \cdot S_{\sigma'(1),\dots,\sigma'(v')}^{\gamma'} \,. \\ (S_{\sigma(1),\dots,\sigma(v)}^{\gamma} \cdot S_{\sigma'(1),\dots,\sigma'(v')}^{\gamma'} &= \text{disconnected graph}) \end{split}$$

Gluing two graphs at a vertex:

$$\Diamond_{i,j} := \tau_{v+v'-2} \circ \ldots \circ \tau_v \circ \cdot_v \circ \bullet_{i,j} : \mathsf{S}(V)^{\otimes v} \times \mathsf{S}(V)^{\otimes v'} \to \mathsf{S}(V)^{\otimes (v+v'-1)}.$$

$$(v + v' - 1 = \text{cut vertex})$$

☐ Tensor algebra

rensor algebra

$$\gamma =$$

$$\gamma' = 0$$

$$\gamma =$$

$$\gamma' = 0$$

$$\gamma \bullet_{3,2} \gamma' =$$

$$\gamma = 0$$

$$\gamma' = 0$$

$$\blacksquare \ \gamma \bullet_{3,2} \gamma' = \bigcirc \bigcirc \bigcirc$$

$$\gamma = 0$$

$$\gamma' = 0$$

$$\blacksquare \ \gamma \bullet_{3,2} \gamma' = \bigcirc$$

$$\gamma \Diamond_{3,2} \gamma' =$$

$$\gamma =$$

$$\gamma' = 0$$

 $\mathfrak{B}_{l,v} = \text{set of all 1VI Feynman graphs on } l \text{ loops, } v \text{ vertices and no external edges nor self-loops.}$

 $\mathfrak{B}_{I,v}=$ set of all 1VI Feynman graphs on I loops, v vertices and no external edges nor self-loops.

Coalgebra structure on $\mathbb{C}\mathfrak{B}:=igoplus_{\nu=1,l=0}^{\infty}\mathbb{C}\mathfrak{B}_{l,\nu}$:

 $\mathfrak{B}_{l,v}=$ set of all 1VI Feynman graphs on l loops, v vertices and no external edges nor self-loops.

Coalgebra structure on $\mathbb{C}\mathfrak{B}:=\bigoplus_{\nu=1,l=0}^{\infty}\mathbb{C}\mathfrak{B}_{l,\nu}$:

■ coproduct \triangle : $\mathbb{C}\mathfrak{B} \to \mathbb{C}\mathfrak{B} \otimes \mathbb{C}\mathfrak{B}$:

$$\triangle (\bar{s}) := \bar{s} \otimes \bar{s};$$

$$\triangle (\bar{\gamma}) := \bar{s} \otimes \bar{\gamma} + \bar{\gamma} \otimes \bar{s} \quad \text{if} \quad \bar{\gamma} \neq \bar{s};$$

 $\mathfrak{B}_{l,v} = \text{set of all 1VI Feynman graphs on } l \text{ loops, } v \text{ vertices and no external edges nor self-loops.}$

Coalgebra structure on $\mathbb{C}\mathfrak{B}:=\bigoplus_{\nu=1,l=0}^{\infty}\mathbb{C}\mathfrak{B}_{l,\nu}$:

■ coproduct \triangle : $\mathbb{C}\mathfrak{B} \to \mathbb{C}\mathfrak{B} \otimes \mathbb{C}\mathfrak{B}$:

$$\triangle (\bar{s}) := \bar{s} \otimes \bar{s};$$

$$\vartriangle \left(\bar{\gamma}\right) \ := \ \bar{\mathbf{s}} \otimes \bar{\gamma} + \bar{\gamma} \otimes \bar{\mathbf{s}} \quad \text{if} \quad \bar{\gamma} \neq \bar{\mathbf{s}} \, ;$$

• counit $\epsilon: \mathbb{CB} \to \mathbb{C}$:

$$\epsilon(\overline{s})$$
 := 1;

$$\epsilon(\bar{\gamma}) := 0 \text{ if } \bar{\gamma} \neq \bar{s}.$$

 $\mathscr{B}_{l,v} \subset \mathsf{S}(V)^{\otimes v} = \mathsf{vector}$ space of all tensors representing 1VI graphs on l loops, v vertices and no external edges nor self-loops.

 $\mathscr{B}_{l,v}\subset \mathsf{S}(V)^{\otimes v}=\mathsf{vector}$ space of all tensors representing 1VI graphs on l loops, v vertices and no external edges nor self-loops.

Coalgebra structure on $\mathscr{B}:=\bigoplus_{\nu=1,l=0}^{\infty}\mathscr{B}_{l,\nu}\subset\mathsf{T}(\mathsf{S}(V))$:

 $\mathscr{B}_{I,v}\subset\mathsf{S}(V)^{\otimes v}=\mathsf{vector}$ space of all tensors representing 1VI graphs on I loops, v vertices and no external edges nor self-loops.

Coalgebra structure on $\mathscr{B}:=\bigoplus_{\nu=1,l=0}^{\infty}\mathscr{B}_{l,\nu}\subset\mathsf{T}(\mathsf{S}(V))$:

■ coproduct $\triangle : \mathscr{B} \to \mathscr{B} \otimes \mathscr{B}$:

$$riangle (1) := 1 \otimes 1;$$

$$riangle (B_{1,...,v}^{\gamma}) := \frac{1}{v} \sum_{i=1}^{v} riangle_{i} (B_{1,...,v}^{\gamma}),$$

where

$$\begin{array}{lcl} \triangle_{i}(B_{1,...,v}^{\gamma}) & := & B_{\sigma_{i}(1),...,\sigma_{i}(v)}^{\gamma} + B_{\sigma_{i+1}(1),...,\sigma_{i+1}(v)}^{\gamma} \\ & = & B_{1,...,\widehat{i+1},i+2,...,v+1}^{\gamma} + B_{1,...,\widehat{i},i+1,...,v+1}^{\gamma} \,. \end{array}$$

• counit $\epsilon: \mathscr{B} \to \mathbb{C}$:

$$\epsilon(1) := 1;$$
 $\epsilon(\mathcal{B}_{l,\nu}) := 0 \text{ if } \nu > 1.$

 $\mathscr{B}^*:=\bigoplus_{k=0}^\infty \mathscr{B}^{\lozenge k}=$ vector space of monomials on 1VI graphs with the product $\lozenge.$

 $\mathscr{B}^*:=\bigoplus_{k=0}^\infty\mathscr{B}^{\Diamond k}=$ vector space of monomials on 1VI graphs with the product $\Diamond.$

The elements of \mathscr{B}^* may be seen as monomials on tensors $B_{\sigma(1),\ldots,\sigma(\nu)}^{\gamma}$ with the componentwise product:

$$\prod_{a=1}^k B_{\sigma_a(1),\ldots,\sigma_a(\nu_a)}^{\gamma_a}.$$

 $\mathscr{B}^*:=\bigoplus_{k=0}^\infty\mathscr{B}^{\lozenge k}=\text{vector space of monomials on 1VI graphs with the product }\lozenge.$

The elements of \mathscr{B}^* may be seen as monomials on tensors $B^{\gamma}_{\sigma(1),...,\sigma(\nu)}$ with the componentwise product:

$$\prod_{a=1}^k B_{\sigma_a(1),\ldots,\sigma_a(v_a)}^{\gamma_a}.$$

Extend $\triangle := \frac{1}{\nu} \sum_{i=1}^{\nu} \triangle_i$ to \mathscr{B}^* by requiring the maps \triangle_i to satisfy:

$$\triangle_i(\prod_{a=1}^k B_{\sigma_a(1),\ldots,\sigma_a(v_a)}^{\gamma_a}) := \prod_{a=1}^k \triangle_i(B_{\sigma_a(1),\ldots,\sigma_a(v_a)}^{\gamma_a}).$$

counit
$$\epsilon: \mathscr{B}^* \to \mathbb{C}$$
:

$$\begin{array}{rcl} \epsilon(1) &:= & 1\,; \\ \\ \epsilon(\prod_{\sigma_a(1),\ldots,\sigma_a(v_a)}^k) &:= & 0 \quad \text{if} \quad k>0\,. \end{array}$$

Maps
$$Q_{i\geq 1}^{(
ho)}$$
 and $\hat{Q}_{i\geq 1}^{(
ho)}$

Maps $Q_i^{(ho)}$ and $\hat{Q}_{i>1}^{(ho)}$

Truncated coproduct: $\Delta_{>1}: V^n \to \bigoplus_{i=1}^{n-1} V^i \otimes V^{n-i}$ [M. & Oeckl 2006]:

$$\Delta_{\geq 1}(1) = 0, \qquad \Delta_{\geq 1}(\phi(x)) = 0;$$

$$\Delta_{\geq 1}(\phi(x)\phi(y)) = \phi(x) \otimes \phi(y) + \phi(y) \otimes \phi(x).$$

Maps $Q_{i>1}^{(\rho)}$ and $\hat{Q}_{i>1}^{(\rho)}$

Truncated coproduct: $\Delta_{>1}: V^n \to \bigoplus_{i=1}^{n-1} V^i \otimes V^{n-i}$ [M. & Oeckl 2006]:

$$\Delta_{\geq 1}(1) = 0, \qquad \Delta_{\geq 1}(\phi(x)) = 0;$$

$$\Delta_{\geq 1}(\phi(x)\phi(y)) = \phi(x) \otimes \phi(y) + \phi(y) \otimes \phi(x).$$

For all 1 < i < v, define:

$$Q_{i\geq 1}^{(\rho)}:=\frac{1}{2(\rho-1)!}R_{i,i+1}{}^{\rho}\cdot\Delta_{i\geq 1}:\mathsf{S}(V)^{\otimes \nu}\to\mathsf{S}(V)^{\otimes \nu+1}\,.$$

Maps $Q_{i>1}^{\;(ho)}$ and $\hat{Q}_{i\geq 1}^{\;(ho)}$

Truncated coproduct: $\Delta_{\geq 1}: V^n \to \bigoplus_{i=1}^{n-1} V^i \otimes V^{n-i}$ [M. & Oeckl 2006]:

$$\Delta_{\geq 1}(1) = 0, \qquad \Delta_{\geq 1}(\phi(x)) = 0;$$

$$\Delta_{\geq 1}(\phi(x)\phi(y)) = \phi(x) \otimes \phi(y) + \phi(y) \otimes \phi(x).$$

For all $1 \le i \le v$, define:

$$Q_{i \geq 1}^{(\rho)} := \frac{1}{2(\rho - 1)!} R_{i, i + 1}^{\rho} \cdot \Delta_{i \geq 1} : \mathsf{S}(V)^{\otimes v} \to \mathsf{S}(V)^{\otimes v + 1} \,.$$

 $(Q_{i>1}^{(1)} [Glover et al 1979], [Livernet 2006])$

$$\begin{array}{c|c} \bullet & \overbrace{\sum_{i=1}^{2} Q_{i\geq 1}^{(1)}} & 2 & \bullet \\ \hline \end{array}$$

On \(\mathcal{B}^* :

$$\hat{Q}_{i\geq 1}^{(\rho)}(\prod_{a=1}^k B_{\sigma_a(1),...,\sigma_a(\nu_a)}^{\gamma_a}) := \frac{1}{2(\rho-1)!} R_{i,i+1}{}^{\rho} \prod_{a=1}^k \Delta_{i\geq 1}(B_{\sigma_a(1),...,\sigma_a(\nu_a)}^{\gamma_a}).$$

Maps
$$B^{\gamma}_{\pi_i(1),\dots,\pi_i(v)}\cdot \triangle_i^{v-1}$$

Maps
$$B^{\gamma}_{\pi_i(1),...,\pi_i(v)}\cdot \triangle^{v-1}_i$$

Given:

Maps
$$B_{\pi_i(1),...,\pi_i(v)}^{\gamma} \cdot \triangle_i^{v-1}$$

Given:

■ integers $v, v' \ge 1$ and $1 \le i \le v'$;

Maps
$$B_{\pi_i(1),...,\pi_i(v)}^{\gamma} \cdot \triangle_i^{v-1}$$

Given:

- integers v, v' > 1 and 1 < i < v':
- any bijection π_i : $\{1, ..., v\} \rightarrow \{i, i+1, ..., i+v-1\}$;

Maps
$$B_{\pi_i(1),...,\pi_i(v)}^{\gamma} \cdot \triangle_i^{v-1}$$

Given:

- integers $v, v' \ge 1$ and $1 \le i \le v'$;
- any bijection $\pi_i : \{1, ..., v\} \to \{i, i+1, ..., i+v-1\};$
- $\gamma \in \mathfrak{B} = 1$ VI graph on ν vertices represented by the tensor $B_{1,\dots,\nu}^{\gamma} \in \mathsf{S}(V)^{\otimes \nu}$.

Maps
$$B_{\pi_i(1),...,\pi_i(v)}^{\gamma} \cdot \triangle_i^{v-1}$$

Given:

- integers v, v' > 1 and 1 < i < v':
- any bijection π_i : $\{1, ..., v\} \rightarrow \{i, i+1, ..., i+v-1\}$;
- $\gamma \in \mathfrak{B} = 1$ VI graph on ν vertices represented by the tensor $B_1^{\gamma} \quad _{V} \in \mathsf{S}(V)^{\otimes V}.$

Define:

$$B_{\pi_i(1),\ldots,\pi_i(v)}^{\gamma}\cdot \triangle_i^{v-1}: \mathsf{S}(V)^{\otimes v'} \to \mathsf{S}(V)^{\otimes v+v'-1}$$
.

$$\begin{array}{lcl} R_{3,4} \cdot \triangle_{3} (B_{1,2,3}^{C_{3}} \cdot B_{3,4,5}^{C_{3}}) & = & R_{3,4} \cdot \triangle_{3} (B_{1,2,3}^{C_{3}}) \cdot \triangle_{3} (B_{3,4,5}^{C_{3}}) \\ & = & R_{3,4} \cdot (B_{1,2,3}^{C_{3}} + B_{1,2,4}^{C_{3}}) \cdot (B_{3,5,6}^{C_{3}} + B_{4,5,6}^{C_{3}}) \\ & = & R_{3,4} \cdot B_{1,2,3}^{C_{3}} \cdot B_{3,5,6}^{C_{3}} + R_{3,4} \cdot B_{1,2,3}^{C_{3}} \cdot B_{4,5,6}^{C_{3}} + \\ & & R_{3,4} \cdot B_{1,2,4}^{C_{3}} \cdot B_{3,5,6}^{C_{3}} + R_{3,4} \cdot B_{1,2,4}^{C_{3}} \cdot B_{4,5,6}^{C_{3}}; \end{array}$$

$$\begin{array}{lcl} R_{3,4} \cdot \triangle_{3} (B_{1,2,3}^{C_{3}} \cdot B_{3,4,5}^{C_{3}}) & = & R_{3,4} \cdot \triangle_{3} (B_{1,2,3}^{C_{3}}) \cdot \triangle_{3} (B_{3,4,5}^{C_{3}}) \\ & = & R_{3,4} \cdot (B_{1,2,3}^{C_{3}} + B_{1,2,4}^{C_{3}}) \cdot (B_{3,5,6}^{C_{3}} + B_{4,5,6}^{C_{3}}) \\ & = & R_{3,4} \cdot B_{1,2,3}^{C_{3}} \cdot B_{3,5,6}^{C_{3}} + R_{3,4} \cdot B_{1,2,3}^{C_{3}} \cdot B_{4,5,6}^{C_{3}} + \\ & & R_{3,4} \cdot B_{1,2,4}^{C_{3}} \cdot B_{3,5,6}^{C_{3}} + R_{3,4} \cdot B_{1,2,4}^{C_{3}} \cdot B_{4,5,6}^{C_{3}}; \end{array}$$

$$\begin{array}{lcl} R_{3,4} \cdot \triangle_{3}(B_{1,2,3}^{C_{3}} \cdot B_{3,4,5}^{C_{3}}) & = & R_{3,4} \cdot \triangle_{3}(B_{1,2,3}^{C_{3}}) \cdot \triangle_{3}(B_{3,4,5}^{C_{3}}) \\ & = & R_{3,4} \cdot (B_{1,2,3}^{C_{3}} + B_{1,2,4}^{C_{3}}) \cdot (B_{3,5,6}^{C_{3}} + B_{4,5,6}^{C_{3}}) \\ & = & R_{3,4} \cdot B_{1,2,3}^{C_{3}} \cdot B_{3,5,6}^{C_{3}} + R_{3,4} \cdot B_{1,2,3}^{C_{3}} \cdot B_{4,5,6}^{C_{3}} + \\ & & R_{3,4} \cdot B_{1,2,4}^{C_{3}} \cdot B_{3,5,6}^{C_{3}} + R_{3,4} \cdot B_{1,2,4}^{C_{3}} \cdot B_{4,5,6}^{C_{3}}; \end{array}$$

$$R_{3,4} \cdot \triangle_3 \qquad \qquad + 2 \qquad + 2 \qquad \qquad + 2 \qquad \qquad$$

Generating 1VI Feynman graphs

Generating 1VI Feynman graphs

Pick out the terms that generate 1VI graphs according to a formula given in [M. 2009]:

Generating 1VI Feynman graphs

Pick out the terms that generate 1VI graphs according to a formula given in [M. 2009]:

Theorem (see M. 2010)

For all integers $l \ge 0$ and v > 1, define $\mathfrak{V}_{1,...,v}^{l,v} \in S(V)^{\otimes v}$ by the following recursion relation:

$$\mathfrak{V}_{1,2}^{l,2} := \frac{1}{2(l+1)!} R_{1,2}^{l+1};$$

$$\mathfrak{V}_{1,\ldots,v}^{0,v} := 0, \ v > 2;$$

$$\mathfrak{V}_{1,\dots,v}^{l,v} := rac{1}{l+v-1} igg(\sum_{
ho=1}^{l+1} \sum_{i=1}^{v-1} Q_{i \geq 1}^{(
ho)} (\mathfrak{V}_{1,\dots,v-1}^{l+1-
ho,v-1}) + \ \sum_{j=2}^{v-2} \sum_{
ho=1}^{l-j+1} \hat{Q}_{v-1 \geq 1}^{(
ho)} (\mathfrak{B}_{1,\dots,v-1}^{l+1-
ho,v-1,j}) igg) \,,$$

Theorem (cont.)

where for all integers j > 1, $v \ge j + 1$ and $l \ge j$, $\mathfrak{B}^{l,v,j}_{1,\dots,v}$ is given by the following recursion relation:

$$\mathfrak{B}_{1,\dots,v}^{l,v,2} := \frac{1}{l+v-1} \sum_{l'=1}^{l-1} \sum_{v'=2}^{v-1} \sum_{i=1}^{v'} \sum_{j=1}^{v-v'+1} \left((l'+v'-1) \mathfrak{B}_{1,\dots,v'}^{l',v'} \lozenge_{i,j} \mathfrak{B}_{1,\dots,v-v'+1}^{,l-l',v-v'+1} \right);$$

$$\mathfrak{B}_{1,\ldots,v}^{l,v,j} := \frac{1}{l+v-1} \sum_{l'=1}^{l-1} \sum_{v'=2}^{v-1} \sum_{i=1}^{v'-1} \left((l'+v'-1) \mathfrak{V}_{1,\ldots,v'}^{l',v'} \Diamond_{i,v-v'+1} \mathfrak{B}_{1,\ldots,v-v'+1}^{l-l',v-v'+1,j-1} \right).$$

Then, for fixed values of v and I, $\mathfrak{V}_{1,\dots,v}^{l,v}$ is the weighted sum over all 1VI Feynman graphs with I loops, v vertices and no external edges nor self-loops, each with weight given by the inverse of its symmetry factor.

Generating 1PI Feynman graphs

Generating 1PI Feynman graphs

Theorem (see M. 2010)

For all integers l>0 and v>1, define $\mathfrak{I}^{v,l,}_{1,\ldots,v}\in\mathsf{S}(V)^{\otimes v}$ by the following recursion relation:

$$\mathfrak{I}_{1,2}^{l,2} := \mathfrak{V}_{1,2}^{l,2};$$

$$\begin{split} \mathfrak{I}^{l,v}_{1,\dots,v} &:= \mathfrak{V}^{l,v}_{1,\dots,v} + \frac{1}{l+v-1} \cdot \sum_{l'=1}^{l-1} \sum_{v'=2}^{v-1} \sum_{i=1}^{v-v'+1} \\ & \left((l'+v'-1) \mathfrak{V}^{l',v'}_{\pi_i(1),\dots,\pi_i(v)} \cdot \triangle_i^{v-1} (\mathfrak{I}^{v-v'+1,l-l'}_{1,\dots,v-v'+1}) \right), v > 2 \,. \end{split}$$

Then, for fixed values of v and l, $\mathfrak{I}^{l,v}_{1,\ldots,v}$ is the weighted sum over all 1Pl Feynman graphs with l loops, v vertices and no external edges nor self-loops, each with weight given by the inverse of its symmetry factor.

Example of calculation

Example of calculation

$$\frac{1}{2 \cdot 10} \left(\mathbf{H} \cdot \triangle_{\text{\tiny ansens}} \left(\frac{1}{8} \right) + \triangle \cdot \Sigma_{i \neq *} \Delta_{i} \left(\frac{1}{4} \right)^{*} + \left(\frac{1}{2} + \frac{3}{4} \right) \right) =$$

$$= \frac{1}{2 \cdot 10} \left(\left(\frac{1}{2} + \frac{3}{4} \right) \right) + \left(\frac{1}{2} + \frac{3}{4} \right) + \cdots$$

$$= \frac{1}{2^{4}} \left(\frac{1}{2} + \frac{3}{4} \right) + \cdots$$

■ $T_i := \frac{1}{2}R_{i,i} : S(V)^{\otimes v} \to S(V)^{\otimes v}$ with $1 \le i \le v$ [M. & Oeckl 2006];

- $T_i := \frac{1}{2} R_{i,i} : \mathsf{S}(V)^{\otimes v} \to \mathsf{S}(V)^{\otimes v}$ with $1 \le i \le v$ [M. & Oeckl 2006];
- $\delta: S(V) \to S(V) \otimes S(V); 1 \mapsto 1 \otimes 1, T_1 \mapsto T_1 + T_2 = \text{algebra homomorphism}.$

- $T_i := \frac{1}{2} R_{i,i} : \mathsf{S}(V)^{\otimes v} \to \mathsf{S}(V)^{\otimes v}$ with $1 \le i \le v$ [M. & Oeckl 2006];
- $\delta: \mathsf{S}(V) \to \mathsf{S}(V) \otimes \mathsf{S}(V); 1 \mapsto 1 \otimes 1, T_1 \mapsto T_1 + T_2 = \mathsf{algebra}$ homomorphism.

Proposition

Fix an integer $n \ge 0$ as well as operator labels x_1, \ldots, x_n . For all integers $l \ge 1$, $l' \ge 0$ and $v \ge 1$, define $\Gamma^{l+l',v} : S(V) \to S(V)^{\otimes v}$ as follows:

$$\begin{split} \Gamma^{I',1} &:= \quad \frac{1}{I'!} T_1^{I'} ; \\ \Gamma^{I+I',v} &:= \quad \frac{1}{I'!} \mathfrak{I}_{1,\dots,v}^{I,v} \cdot \delta^{v-1} (T_1^{I'}) \cdot \Delta^{v-1} , v \geq 2 \, , \end{split}$$

Then, $\Gamma^{l+l',v}(\phi(x_1)\cdots\phi(x_n))$ is the weighted sum over all 1PI Feynman graphs with I loops, I' self-loops, v vertices and n external edges whose end points are labeled x_1,\ldots,x_n , each with weight given by the inverse of its symmetry factor.

 $\mathbf{v}_{1PI} = 1PI$ vertex functions;

- $\mathbf{v}_{\scriptscriptstyle \mathsf{1PI}} = \mathsf{1PI}$ vertex functions;
- $au au = 1 ext{PI } extit{n-point functions}.$

- $\mathbf{v}_{1PI} = 1PI$ vertex functions;
- au au = 1 PI n-point functions.

Contributions to the ensemble τ of 1PI *n*-point functions:

$$\tau^{l+l'} = \sum_{\nu=1}^{\infty} \tau^{l+l',\nu}, \qquad \tau = \sum_{l+l'=0}^{\infty} \tau^{l+l'}.$$

- $\nu_{1Pl} = 1Pl$ vertex functions;
- au au = 1 PI n-point functions.

Contributions to the ensemble τ of 1PI *n*-point functions:

$$\tau^{l+l'} = \sum_{v=1}^\infty \tau^{l+l',v}, \qquad \tau = \sum_{l+l'=0}^\infty \tau^{l+l'}.$$

Vertex order contributions:

Corollary

For
$$v > 1$$
:

$$\tau^{l+l',v} = \nu_{1Pl}^{\otimes v} \circ \Gamma^{l+l',v}$$
.

References

- C. Brouder. Quantum field theory meets Hopf algebra. Math. Nachr. 282, No. 12:1664–1690, 2009.
- C. Brouder, A. Frabetti, B. Fauser, and R. Oeckl. Quantum field theory and Hopf algebra cohomology. J. Phys., A 37:5895–5927, 2004.
- C. Brouder and R. Oeckl. Quantum groups and quantum field theory: I. The free scalar field. Mathematical physics research on the leading edge, Nova Science, Hauppauge NY, arXiv:hep-th/0208118, 2003.
- H. Glover, J. Huneke, and C. Wang. 103 graphs that are irreducible for the projective plane. J. Combin. Theory Ser. B, 27:332–370, 1979.
- M. Livernet. A rigidity theorem for prelie algebras. Journal of Pure and Applied Algebra 207, 207:118, 2006.
- M. Generating connected and 2-edge connected graphs. *Journal of Graph Algorithms and Applications*, 13, no. 2:251–281, 2009.

- M. On the decomposition of connected graphs into their biconnected components. submitted to Journal of Graph Algorithms and Applications, 2010.
- M. and R. Oeckl. Combinatorics of n-point functions via Hopf algebra in quantum field theory. J. Math. Phys., 47:052301, 2006.
- M. and R. Oeckl. Generating loop graphs via Hopf algebra in quantum field theory. J. Math. Phys., 47:122302, 2006.