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Recherche en combinatoire

1 Étude d’objets combinatoires en cryptographie et codes
correcteurs

2 Étude de problèmes issus de la théorie de l’information en utilisant
des outils combinatoires et des idées venant de la combinatoire

3 Étude de problèmes combinatoires en codes et cryptographie
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Outline

+ Study of combinatorial objects in cryptography and coding theory

1 Background on Boolean functions
Some background on Boolean functions
Boolean functions for error correcting codes and symmetric
cryptography

2 Bent functions over finite fields
Presentation of some contributions concerning combinatorial
objects in symmetric cryptography
Presentation of some contributions concerning combinatorial
objects in coding theory
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Background on Boolean functions

f : Fn
2 → F2 an n-variable Boolean function.

The truth-table :

x1 x2 x3 f (x)

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1
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Background on Boolean functions : representation

f : Fn
2 → F2 an n-variable Boolean function

DEFINITION (ALGEBRAIC NORMAL FORM (A.N.F), UNIQUE)

Let f : Fn
2 → F2 a Boolean function. Then f can be expressed as :

f (x1, . . . , xn) =
⊕

I⊂{1,...,n}

aI

(∏
i∈I

xi

)
=
⊕
u∈Fn

2

auxu, aI ∈ F2

where I = supp(u) = {i = 1, . . . , n | ui = 1} and xu =

n∏
i=1

xui
i .

The A.N.F exists and is unique.

DEFINITION (THE ALGEBRAIC DEGREE)

The algebraic degree deg(f ) of f is the maximum weight of u such that au 6= 0.

Affine functions f (deg(f ) ≤ 1) : f (x) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn, ai ∈ F2
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Background on Boolean functions : Existence of the polynomial form

+ We identify the vectorspace Fn
2 with the Galois field F2n

Any function f : F2n → F2n admits a unique representation :
f (x) =

∑2n−1
j=0 ajxj ; aj, x ∈ F2n

• f is Boolean iff
a0, a2n−1 ∈ F2 and a2j mod 2n−1 = (aj mod 2n−1)2; 0 < j < 2n − 1
• [1, 2n − 2] = ∪c

r=1Γr ; where
Γr = {jr mod 2n − 1, 2jr mod 2n − 1, · · · , 2o(jr)−1jr mod 2n − 1}

f (x) = a0 + a2n−1x2n−1 +

c∑
r=1

o(jr)−1∑
s=0

a2sjr mod 2n−1x2sjr

= a0 + a2n−1x2n−1 +

c∑
r=1

o(jr)−1∑
s=0

(ajr mod 2n−1xjr )2s

= a0 + a2n−1x2n−1 +

c∑
r=1

Tro(jr)
1 (ajr mod 2n−1xjr )

where a0, a2n−1 ∈ F2, ajr mod 2n−1 ∈ F2o(jr)
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Background on Boolean functions : representation

+ We identify the vectorspace Fn
2 with the Galois field F2n

DEFINITION (THE POLYNOMIAL FORM (UNIQUE))

Let n be a positive integer. Every Boolean function f defined on F2n has a
(unique) trace expansion called its polynomial form :

∀x ∈ F2n , f (x) =
∑
j∈Γn

Tro(j)
1 (ajxj) + ε(1 + x2n−1), aj ∈ F2o(j)

Γn is the set of representatives of each cyclotomic class of 2 modulo
2n − 1,

o(j) is the size of the cyclotomic coset containing j,

ε = wt(f ) modulo 2 (recall wt(f ) := #supp(f ) := #{x ∈ F2n | f (x) = 1}).

Recall :

DEFINITION (ABSOLUTE TRACE OF x ∈ F2k OVER F2 )

Trk
1(x) :=

∑k−1
i=0 x2i

= x + x2 + x22
+ · · ·+ x2k−1 ∈ F2
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Background on Boolean functions : representation

Example : Let n = 4. f : F24 → F2 ,
f (x) =

∑
j∈Γ4

Tro(j)
1 (ajxj) + ε(1 + x15), aj ∈ F2o(j) .

Γ4 is the set obtained by choosing one element in each cyclotomic class of 2
modulo 2n − 1 = 24 − 1 = 15. C(j) the cyclotomic coset of 2 modulo 15
containing j.
C(j) = {j, j2, j22, j23, · · · , j2o(j)−1} where o(j) is the smallest positive integer
such that j2o(j) ≡ j (mod 2n − 1).
The cyclotomic cosets modulo 15 are :
C(0) = {0}
C(1) = {1, 2, 4, 8}
C(3) = {3, 6, 12, 9}
C(5) = {5, 10}
C(7) = {7, 14, 11, 13}
We find Γ4 = {0, 1, 3, 5, 7}
f (x) = Tro(1)

1 (a1x1) + Tro(3)
1 (a3x3) + Tro(5)

1 (a5x5) + Tro(7)
1 (a7x7) + a0 + ε(1 + x15);

f (x) = Tr4
1(a1x) + Tr4

1(a3x3) + Tr2
1(a5x5) + Tr4

1(a7x7) + a0 + ε(1 + x15)
where a1, a3, a7 ∈ F24 , a5 ∈ F22 and a0, ε ∈ F2 ;
Tr4

1 : F24 → F2 ; x 7→ x + x2 + x22
+ x23

;
Tr2

1 : F22 → F2 ; x 7→ x + x2.
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Algebraic degree of the polynomial form

DEFINITION

Let n be a positive integer. Every Boolean function f defined on F2n has a
(unique) trace expansion called its polynomial form :

∀x ∈ F2n , f (x) =
∑
j∈Γn

Tro(j)
1 (ajxj) + ε(1 + x2n−1), aj ∈ F2o(j)

+ The algebraic degree of f denoted by deg(f ), is the maximum Hamming
weight of the binary expansion of an exponent j for which aj 6= 0 if ε = 0
and to n if ε = 1.

Affine functions : Trn
1(ax) + λ, a ∈ F2n , λ ∈ F2.

9 / 72



Boolean functions

+ In both Error correcting coding and Symmetric cryptography,
Boolean functions are important objects !

Boolean functions

Symmetric Cryptosystems
(secret key)

Reed-Muller codes

Coding Theory Cryptography
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Error Correcting Coding

Source −→ (u1, . . . , uk) → Encoding → (x1, . . . , xn)

→ noisy channel →

(y1, . . . , yn) → Decoding → (v1, . . . , vk)
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Boolean functions in Error Correcting Coding

Bn = {f : Fn
2 → F2}

The Reed-Muller code RM(r, n) can be defined in terms of Boolean
functions : RM(r, n) is the set of all n-variable Boolean functions Bn of
algebraic degrees at most r. More precisely, it is the linear code of all
binary words of length 2n corresponding to the truth-tables of these
functions.

For every 0 ≤ r ≤ n, the Reed-Muller code RM(r, n) of order r, is a
linear code :  2n︸︷︷︸

length

,

r∑
i=0

(
n
i

)
︸ ︷︷ ︸

dimension

, 2n−r︸︷︷︸
minimum distance


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Cryptography

Encryption - Decryption

6

secret key kE

6

secret key kD

plaintext - - plaintext

ADVERSARY

cyphertext

SENDER RECEIVER
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Cryptographic framework for Boolean functions

Pseudo-random
generator with

a Boolean function

⊕
Ciphertext

Plaintext

Stream ciphers

Expansion

operation
Key

x1 xn

· · ·

f1 fn
· · ·

Plaintext

Ciphertext
fi : functions of substitution (S-box)
fi : Boolean function

Bloc ciphers (AES,DES, etc)
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Cryptographic framework for Boolean functions

The two models of pseudo-random generators with a Boolean function :
COMBINER MODEL :

mt : plain text
ct : cipher text
kt : key stream ⊕6

6

-

mt

ct

ktf

LFSR 1 -x(t)
1

LFSR 2 -x(t)
2

LFSR n -x(t)
n

...

LFSR : Linear Feedback Shift Register

• A Boolean function combines the outputs of several LFSR to produce
the key stream : a combining (Boolean) function f .
•The initial state of the LFSR’s depends on a secret key.
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Cryptographic framework for Boolean functions

FILTER MODEL :

si+L−1 · · · si+1 si

666

⊕⊕⊕
��

-

? ? ?

x1 xi xn

f (x1, x2, · · · , xn)

?
output : key stream

• A Boolean function takes as inputs several bits of a single LFSR to
produce the key stream : a filtering (Boolean) function f

+ To make the cryptanalysis very difficult to implement, we have to
pay attention when choosing the Boolean function, that has to
follow several recommendations : cryptographic criteria !
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Some main cryptographic criteria for Boolean functions

• CRITERION 1 : To protect the system against distinguishing attacks, the
cryptographic function must be balanced, that is, its Hamming weight is 2n−1.

• CRITERION 2 : The cryptographic function must have an high algebraic
degree to protect against the Berlekamp-Massey attack.

• The Hamming distance dH(f , g) := #{x ∈ F2n | f (x) 6= g(x)}.
CRITERION 3 : To protect the system against linear attacks and correlation
attacks, the Hamming distance from the cryptographic function to all affine
functions must be large.
• CRITERION 4 : To be resistant to correlation attacks on combining registers,
a combining function f must be m-resilient where m is as large as possible.
• Algebraic immunity of f : AI(f ) is the lowest degree of any nonzero function
g such that f · g = 0 or (1 + f ) · g = 0.
CRITERION 5 : To be resistant to algebraic attacks, f must be of high
algebraic immunity that is, close to the maximum d n

2e. But this condition is not
sufficient because of Fast Algebraic Attacks (FFA) : cryptographic functions
should be resistant to FFA !
Some of these criteria are antagonistic ! Tradeoffs between all these
criteria must be found.
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Combinatoric Conjectures : towards constructions of good candidates

satisfying most of the cryptographic tradeoffs

Boolean functions meet the main cryptographic criteria provided that
some combinatorial conjectures are correct.

CONJECTURE (TU–DENG CONJECTURE)

For all k ≥ 2 and all t ∈
(
Z/(2k − 1)Z

)∗,
#{(a, b) ∈

(
Z/(2k − 1)Z

)2 |a + b = t and w2(a) + w2(b) ≤ k − 1} ≤ 2k−1.

where w2(a) denotes 2-weight of a.

Many works : [Flori-Randriambololona-Cohen-SM 2010],
[Flori-Randriambololona 2011-2012], [Flori-Cohen 2012], ect.
Serval conjectures have been derived...
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The discrete Fourier (Walsh) Transform of Boolean functions

DEFINITION (THE DISCRETE FOURIER (WALSH) TRANSFORM)

χ̂f (a) =
∑
x∈Fn

2

(−1)f (x)+a·x, a ∈ Fn
2

where "·" is the canonical scalar product in Fn
2 defined by

x · y =
∑n

i=1 xiyi,∀x = (x1, . . . , xn) ∈ Fn
2, ∀y = (y1, . . . , yn) ∈ Fn

2.

or

DEFINITION (THE DISCRETE FOURIER (WALSH) TRANSFORM)

χ̂f (a) =
∑

x∈F2n

(−1)f (x)+Trn
1(ax), a ∈ F2n

where "Trn
1" is the absolute trace function on F2n .
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A cryptographic parameter for Boolean functions : nonlinearity

DEFINITION (THE HAMMING DISTANCE BETWEEN TWO BOOLEAN
FUNCTIONS)

dH(f , g) = wt (f ⊕ g) = #{x ∈ Fn
2 | f (x) 6= g(x)}

A CRYPTOGRAPHIC CRITERION : The distance of a cryptographic function to
all affine functions must be high to protect the system against linear attacks
and correlation attacks.

+ The nonlinearity of f is the minimum Hamming distance to affine
functions :

DEFINITION (NONLINEARITY)

f : F2n → F2 a Boolean function. The nonlinearity denoted by nl(f ) of f is

nl(f ) := min
l∈An

dH(f , l)

where An : is the set of affine functions over F2n .
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General upper bound on the nonlinearity of Boolean functions

The Nonlinearity of f is equals :

nl(f ) = 2n−1 − 1
2

max
a∈Fn

2

|χ̂f (a)|

ÔThanks to Parseval’s relation :
∑

a∈Fn
2
χ̂f

2(a) = 22n

we have : maxa∈Fn
2
(χ̂f (a))

2 ≥ 2n

Hence : for every n-variable Boolean function f , the nonlinearity is always
upper bounded by 2n−1 − 2

n
2−1

ÔIt can reach this value if and only if n is even.

Ô The functions used as combining or filtering functions must have
nonlinearity close to this maximum.
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Bent Boolean functions

General upper bound on the nonlinearity of any n-variable Boolean
function : nl(f ) ≤ 2n−1 − 2

n
2−1

DEFINITION (BENT FUNCTION [ROTHAUS, 76])

f : Fn
2 → F2 (n even) is said to be a bent function if nl(f ) = 2n−1 − 2

n
2−1

Bent functions have been studied for 35 years (initiators : Dillon 1974 ;
Rothaus 1976).

A main characterization of "bentness" :

(f is bent ) ⇐⇒ χ̂f (ω) = ±2
n
2 , ∀ω ∈ Fn

2
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Bent Boolean functions

Bent functions are combinatorial objects :

DEFINITION

Let G be a finite (abelian) group of order µ. A subset D of G of cardinality
k is called (µ, k, λ)-difference set in G if every element g ∈ G, different
from the identity, can be written as d1 − d2, d1, d2 ∈ D, in exactly λ
different ways.

Hadamard difference set in elementary abelian 2-group :
(µ, k, λ) = (2n, 2n−1 ± 2

n
2−1, 2n−2 ± 2

n
2−1).

THEOREM

A Boolean function f over Fn
2 is bent if and only if

supp(f ) := {x ∈ Fn
2 | f (x) = 1} is a Hadamard difference set in Fn

2.
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Bent Boolean functions

Example : Let f a Boolean function defined on F4
2 (n = 4) by

f (x1, x2, x3, x4) = x1x4 + x2x3 The support of f is
Supp(f ) = {(1, 0, 0, 1), (1, 0, 1, 1), (1, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 1, 1, 0)} is a
Hadamard (16, 6, 2)-difference set of F4

2.
d1 d2 d1 + d2

1001 1011 0010
1001 1101 0100
1001 0110 1111
1001 0111 1110
1001 1110 0111
1011 1101 0110
1011 0110 1101
1011 0111 1100
1011 1110 0101
1101 0110 1011
1101 0111 1010
1101 1110 0011
0110 0111 0001
0110 1110 1000
0111 1110 1001 24 / 72



The covering radius of RM(1, n) and bent functions

+ The Covering radius ρ(1, n) of the Reed-Muller code RM(1, n) coincides
with the maximum nonlinearity nl(f ).

+ General upper bound on the nonlinearity : nl(f ) ≤ 2n−1 − 2
n
2−1

When n is odd, ρ(1, n) < 2n−1 − 2
n
2−1

When n is even, ρ(1, n) = 2n−1 − 2
n
2−1 and the associated n-variable

Boolean functions are the bent functions.
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Covering radius of the Reed-Muller code RM(r, n)

+ The maximal nonlinearity of order r of n-variable Boolean functions
coincides with the covering radius of RM(r, n).

DEFINITION (COVERING RADIUS OF THE REED-MULLER CODE RM(r, n))

Covering radius of the Reed-Muller code RM(r, n) of order r and length 2n :

•ρ(r, n) := max
f∈Bn

min
g∈RM(r,n)

dH(f , g) = max
f∈Bn

nlr(f )

where Bn := {f : Fn
2 → F2}. Or :

•ρ(r, n) := min{d ∈ N | ∪
x∈RM(r,n)

B(x, d) = Fn
2}

where B(x, d) := {y ∈ Fn
2 | dH(x, y) ≤ d}(Hamming ball)

+ The covering radius plays an important role in error correcting codes :
measures the maximum errors to be corrected in the context of
maximum-likelihood decoding.
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Covering radius of the Reed-Muller code RM(r, n)

THEOREM ([CARLET-SM 2007])

Let r > 1. The covering radius of the Reed-Muller code of order r satisfies
asymptotically :ρ(r, n) ≤ 2n−1 −

√
15
2 · (1 +

√
2)r−2 · 2n/2 + O(nr−2)

Our results have improved the best known upper bounds dating from 15
years ago. Up to now, our bounds are the best bounds known in the
literature.
Our results are obtained by induction on r thanks to improved upper bounds
on the covering radius ρ(2, n) :

THEOREM ([CARLET-SM 2007 ])

For every positive integer n ≥ 17, the covering radius ρ(2, n) of the
second-order Reed-Muller code RM(2, n) is upper bounded by⌊

2n−1 −
√

15
2
· 2 n

2 ·
(

1− 122929
21 · 2n −

155582504573
4410 · 22n

)⌋
(1)
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Brief outline of the proof

Bn := {f : Fn
2 → F2}.

We prove an asymptotic upper bound on the covering radius ρ(2, n) of
the Reed-Muller code of order 2 :

ρ(2, n) ≤ 2n−1 −
√

15 2
n
2−1 + O(1).

Indeed, we have :

∀k ∈ N, ρ(2, n) ≤ 2n−1 − 1
2

min
f∈Bn

√
Sk+1(f )

Sk(f )

where

Sk(f ) =
∑

g∈RM(2,n)

∑
x∈Fn

2

(−1)f (x)+g(x)

2k

, f ∈ Bn, k ∈ N
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Brief outline of the proof

∀k ∈ N, ρ(2, n) ≤ 2n−1 − 1
2

min
f∈Bn

√
Sk+1(f )

Sk(f )

1 Decomposition of Sk(f ) into sums of characters :
Sk(f ) =

∑k
w=0 N(2w)

k M(2w)
f where M(2w)

f =
∑

g∈RM(n−3,n)
wt(g)=2w

(−1)〈f ,g〉

and N(2w)
k is an integer independent of f

2 Lower bound of the sums of characters M(2w)
f thanks to the

characterization of the words of Reed-Muller codes given by
Kasami, Tokura and Azumi : ∀f ∈ Bn, M(2w)

f ≥ M(2w)
min .

3 Lower bound of Sk+1(f )
Sk(f )

, ∀f , leading to an upper bound

ρ(2, n) ≤ 2n−1 − 1
2

√
Smin

k+1
Smin

k
for k ≤ kn where kn varies according to

the value of n and Smin
k =

∑k
w=0 N(2w)

k M(2w)
min .
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Brief outline of the proof

∀k ∈ N, ρ(2, n) ≤ 2n−1 − 1
2

min
f∈Bn

√
Sk+1(f )

Sk(f )

1 Decomposition of Sk(f ) into sums of characters :
Sk(f ) =

∑k
w=0 N(2w)

k M(2w)
f where M(2w)

f =
∑

g∈RM(n−3,n)
wt(g)=2w

(−1)〈f ,g〉

and N(2w)
k is an integer independent of f

2 Lower bound of the sums of characters M(2w)
f thanks to the

characterization of the words of Reed-Muller codes given by
Kasami, Tokura and Azumi : ∀f ∈ Bn, M(2w)

f ≥ M(2w)
min .

3 Lower bound of Sk+1(f )
Sk(f )

, ∀f , leading to an upper bound

ρ(2, n) ≤ 2n−1 − 1
2

√
Smin

k+1
Smin

k
for k ≤ kn where kn varies according to

the value of n and Smin
k =

∑k
w=0 N(2w)

k M(2w)
min .
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Brief outline of the proof

∀k ∈ N, ρ(2, n) ≤ 2n−1 − 1
2

min
f∈Bn

√
Sk+1(f )

Sk(f )

1 Decomposition of Sk(f ) into sums of characters :
Sk(f ) =

∑k
w=0 N(2w)

k M(2w)
f where M(2w)

f =
∑

g∈RM(n−3,n)
wt(g)=2w

(−1)〈f ,g〉

and N(2w)
k is an integer independent of f

2 Lower bound of the sums of characters M(2w)
f thanks to the

characterization of the words of Reed-Muller codes given by
Kasami, Tokura and Azumi : ∀f ∈ Bn, M(2w)

f ≥ M(2w)
min .

3 Lower bound of Sk+1(f )
Sk(f )

, ∀f , leading to an upper bound

ρ(2, n) ≤ 2n−1 − 1
2

√
Smin

k+1
Smin

k
for k ≤ kn where kn varies according to

the value of n and Smin
k =

∑k
w=0 N(2w)

k M(2w)
min .
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Covering radius of the Reed-Muller code RM(r, n)

Final remarks :

ρ(2, n) ≤ 2n−1 − 1
2

√
Smin

k+1

Smin
k

for k ≤ kn where kn varies according to the value

of n :

n 3− 8 9− 11 12− 13 ≥ 14
kn 4 5 6 7

The greater we take the value of k, the better the upper bound obtained.
Moreover, using Cauchy-Schwartz’s inequality in the Euclidean space
RRM(r,n) and tends k to infinity show that the exact value of ρ(2, n) is
reached. Unfortunately, we are brought to restrict the choice of k and we
get only a bound.

Our method could be applied directly to ρ(r, n) but the best result is
obtained with our method to ρ(2, n). Indeed, we are able to improve the
upper bound thanks the knowledge of the codewords in the dual code
RM(n− 3, n). For r > 2 the knowledge of the codewords of
RM(n− r − 1, n) is not enough to improve the upper bounds.

We can further improve ρ(2, n) thanks to a good estimation of M(2w)
f :

combinatorial idea are needed ! 32 / 72



Preliminaries on Boolean bent functions

Some properties are known.
Properties of bent functions :

The bentness is an affine invariant.
If f is bent and ` is affine, then f + ` is bent.
The automorphism group of the set of bent functions

{σ permutation s.t.f ◦ σ bent, ∀f bent }

is the general affine group.
A class of bent functions is called complete if it is globally invariant under
the action of the general affine group and under the addition of affine
functions.
Two functions f and f ◦ σ+ affine are called EA-equivalent.

If f is bent then deg f ≤ n
2 .

if f is bent then wt(f ) = 2n−1 ± 2
n
2−1.

If f is bent then χ̂f (ω) = 2
n
2 (−1)f̃ (ω), for all ω ∈ Fn

2, defines the dual
function f̃ of f . The dual is bent too.
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Bent functions

Classification and enumeration :

+ The classification of bent functions for n ≥ 10 and even counting them
are still wide open problems.

The number of bent functions is known for n ≤ 8. For n = 8, it equals
approximately 2106.3 [Langevin-Leander-Rabizzoni-Veron-Zanotti 08].

Only bounds on their number are known (cf. [Carlet-Klapper 02]).

The problem of determining an efficient lower bound on the number of
n-variable bent functions is open.

Few constructions are known.
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The bivariate representation of Boolean functions

+ From now, n = 2m be an (even) integer.

The bivariate representation (unique) : n = 2m

F2n ≈ F2m × F2m

f (x, y) =
∑

0≤i,j≤2m−1

ai,jxiyj; ai,j ∈ F2m

.

Then the algebraic degree of f equals max(i,j) | ai,j 6=0(w2(i) + w2(j)).

And f being Boolean, its bivariate representation can be written in the
form f (x, y) = Trm

1 (P(x, y)) where P(x, y) is some polynomial over F2m .
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General Primary constructions of bent functions

Maiorana-Mc Farland’s classM : the best known construction of bent
functions defined in bivariate form (explicit construction).
fπ,g(x, y) = x · π(y) + g(y), with π : Fm

2 → Fm
2 be a permutation and

g : Fm
2 → F2 any mapping.

Dillon’s Partial Spreads class PS− : well known construction of bent
functions functions whose bentness is achieved under a condition based
on a decomposition of its supports (not explicit construction) :
supp(f ) =

⋃2m−1

i=1 E?i where {Ei, 1 ≤ i ≤ 2m−1} are m-dimensional
subspaces with Ei ∩ Ej = {0}.
Dillon’s Partial Spreads class PSap : a subclass of PS−’s class.
Functions in PSap are defined explicitly in bivariate form :
f (x, y) = g(xy2m−2) with g is a balanced Boolean function on F2m which
vanishes at 0.

Dillon’s class H : a nice original construction of bent functions in
bivariate representation but less known because Dillon could only exhibit
functions which already belonged to the well known Maiorana-Mc
Farland class. The bentness is achieved under some non-obvious
conditions.
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Spread

DEFINITION (SPREAD)

A m-spread of F2n is a set of pairwise supplementary m-dimensional
subspaces of F2n whose union equals F2n

EXAMPLE (A CLASSICAL EXAMPLE OF m-SPREAD)

in F2n : {uF2m , u ∈ U} where U := {u ∈ F2n | u2m+1 = 1}

in F2n ≈ F2m × F2m : {Ea, a ∈ F2m} ∪ {E∞} where Ea := {(x, ax) ; x ∈ F2m}
and E∞ := {(0, y) ; y ∈ F2m} = {0} × F2m .

+ We were interested in bent functions g defined on F2m × F2m , whose
restrictions to elements of the m-spread {Ea,E∞} are linear.
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Class H

Functions g defined on F2m × F2m whose restrictions to elements of the
m-spread {Ea,E∞} are linear, are of the form (2)

g(x, y) =

{
Trm

1

(
xψ
( y

x

))
if x 6= 0

Trm
1 (µy) if x = 0 (2)

where ψ : F2m → F2m and µ ∈ F2m .

PROPOSITION ([CARLET-SM 2012])

Let g be a function defined on F2m × F2m by (2) : Then g is bent iff

G(z) := ψ(z) + µz is a permutation on F2m (3)

∀β ∈ F?2m , the function z 7→ G(z) + βz is 2-to-1 on F2m . (4)

DEFINITION (CLASS H [CARLET-SM 2012])

We call H the class of functions of the form (2) satisfying (3) and (4).

The class H of Dillon is a subclass of H.
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Class H and Niho bent functions

A first contribution thanks to the introduction of the class H :

If we identify F2m × F2m with F2n , then the vector spaces {(x, ax) ; x ∈ F2m} and
{(0, y) ; y ∈ F2m} become the 2m + 1 vector spaces uF2m .

Nonlinear Boolean functions whose restrictions to any vector space uF2m

(where u ∈ U) are linear are sums of Niho power functions, that is of functions
of the form :

Tro((2m−1)s+1)
1

(
asx(2m−1)s+1

)
with 2 ≤ s ≤ 2m

d is said to be an exponent of type Niho if d ≡ 2i (mod 2m − 1)

+ Functions of class H in univariate form are the known Niho bent
functions→ new framework to study the Niho bent functions.
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Niho bent functions

Known Niho bent functions :

f (x) = Trm
1

(
ax2m+1

)
, a ∈ F?2m [Kasami]

Three families of binomial functions
[Dobbertin-Leander-Canteaut-Carlet-Felke-Gaborit 2006] :
f (x) = Trm

1 (at2m+1) + Trn
1(bxd2) where a = b2m+1 ∈ F?2m

1 d2 = (2m − 1) 3 + 1 (if m ≡ 2 [mod 4], then b must be the fifth power
of an element in F2n ; otherwise, b can be any nonzero element),
(degree m) ;

2 d2 = (2m − 1) 1
4 + 1 (m odd), (degree 3) ;

3 d2 = (2m − 1) 1
6 + 1 (m even), (degree m).

The second Dobbertin et al.’s class has been extended
[Leander-Kholosha 2006] into the functions : Trn

1

(
αx2m+1 +

∑2r−1−1
i=1 xsi

)
,

r > 1 such that
- gcd(r,m) = 1,
- α ∈ F2n such that α+ α2m

= 1,
- si = (2m − 1) i

2r mod (2m + 1) + 1, i ∈ {1, · · · , 2r−1 − 1}.
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Class H and Niho bent functions

Thanks to the correspondence between the bent functions (bivariate
forms) of class H and the Niho bent functions (univariate forms) we give
answers to many questions left open in the literature :

1 The duals of the known cubic binomial Niho functions are calculated.
Moreover, they are not of Niho type. [Carlet-SM 2012].

2 The duals of the multi-monomial Niho bent functions are calculated.
Moreover, they are not of Niho type [Carlet-Helleseth-Kholosha-SM
2011], [Budaghyan-Carlet-Helleseth-Kholosha-SM 2012].

3 The family of the cubic binomial Niho functions is in the completedM
class [Carlet-SM 2012].

4 The multi-monomial Niho bent functions is in the completedM class
[Carlet-Helleseth-Kholosha-SM 2011],
[Budaghyan-Carlet-Helleseth-Kholosha-SM 2012].

5 The class H of Dillon is not contained in the completedM class
[Budaghyan-Carlet-Helleseth-Kholosha-SM 2012].
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Class H and o-polynomes

A second contribution thanks to the introduction of the class H :

Recall : A function g in the class H is bent if and only if

G(z) := ψ(z) + µz is a permutation on F2m (5)

∀β ∈ F?2m , function z 7→ G(z) + βz is 2-to-1 on F2m . (6)

We have :

PROPOSITION ([CARLET-SM 2012])

The condition (6) implies the condition (5).

Any function G from F2m to F2m satisfies (6) if and only if,for every γ ∈ F2m ,

the function Hγ : z ∈ F2m 7→
{ G(z+γ)+G(γ)

z if z 6= 0
0 if z = 0

is a permutation on

F2m .
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o-polynomes

DEFINITION

Let m be any positive integer. A permutation polynomial G over F2m is called
an o-polynomial if, for every γ ∈ F2m , the function Hγ :

z ∈ F2m 7→
{ G(z+γ)+G(γ)

z if z 6= 0
0 if z = 0

is a permutation on F2m .

The notion of o-polynomial comes from Finite Projective Geometry :

+ There is a close connection between "o-polynomials" and "hyperovals"
from Finite Projective Geometry !

DEFINITION (A HYPEROVAL OF PG2(2n))

Denote by PG2(2n) the projective plane over F2n .
A hyperoval of PG2(2n) is a set of 2n + 2 points no three collinear.

A hyperoval of PG2(2n) can then be represented by
D(f ) = {(1, t, f (t)), t ∈ F2n} ∪ {(0, 1, 0), (0, 0, 1)} or
D(f ) = {(f (t), t, 1), t ∈ F2n} ∪ {(0, 1, 0), (1, 0, 0)} where f is an o-polynomial.
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The list, up to equivalence, of the known o-polynomials on F2m

1 G(z) = z6 where m is odd ;

2 G(z) = z3·2k+4, where m = 2k − 1 ;

3 G(z) = z2k+22k
, where m = 4k − 1 ;

4 G(z) = z22k+1+23k+1
, where m = 4k + 1 ;

5 G(z) = z2k
+ z2k+2 + z3·2k+4, where m = 2k − 1 ;

6 G(z) = z
1
6 + z

3
6 + z

5
6 where m is odd ;

7 G(z) = δ2(z4+z)+δ2(1+δ+δ2)(z3+z2)
z4+δ2z2+1 + z1/2, where Trm

1 (1/δ) = 1 and, if m ≡ 2
[mod 4], then δ 6∈ F4 ;

8 G(z) = z1/2 + 1
Trn

m(b) (Trn
m(br)(z + 1)+

Trn
m((bz + b2m

)r)(z + Trn
m(b)z1/2 + 1)1−r

)
,

where m is even, r = ± 2m−1
3 , b ∈ F22m , b2m+1 = 1 and b 6= 1, where

Trn
m(x) = x + x2m

is the trace function from F2n to F2m .
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Class H and o-polynomes

Thanks to the connection between bent functions in the class H with
the o-polynomes we construct 16 potentially new families of bent
functions in H and thus new bent functions of type Niho :

In the literature, 8 classes of o-polynomials discovered by the geometers
in 40 years.

Each o-polynomial G leads to two potentially new families of bent
functions in H (G−1 is an o-polynomial too) and thus in the set of Niho
bent functions [Carlet-SM 2012].

We have proved that some of those families of bent functions are affinely
inequivalent [Carlet-SM 2012]

Moreover,
•We have identified the associate o-polynomials of all the known Niho bent
functions [Carlet-SM 2012], [Helleseth-Kholosha-SM 2011],
[Helleseth-Kholosha 2012].
•We have found new bent functions in a known class of binomial Niho bent.
Moreover, relations between a known class of binomial Niho bent and
o-polynomials give rise to the Subiaco and Adelaide classes of hyperovals
[Helleseth-Kholosha-SM 2011].
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Class H, Niho bent functions and o-polynomial

Class H (bent functions in bivariate forms ; contains a class H introduced by
Dillon in 1974).

Class H Niho bent functions

o-polynomials

(1)
(2)

1 The correspondence (1), offers a new framework to study Niho bent
functions. We have used a such framework to answer many questions
left open in the literature.

2 Thanks to the connection (2) and thanks to the results of the geometers
(obtained in 40 years), we construct several potentially new families of
bent functions in H and thus new bent functions of type Niho.
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Bent functions with Dillon-like exponents

Bent functions whose restrictions to the multiplicative cosets uF?2m (u ∈ U) are
constant :

PROPOSITION (SM 2014)

Let n = 2m. Let f a Boolean function defined on F2n such that f (0) = 0. The
two assertions are equivalent :

1 f (x) =
∑

i Tro(di)
1 (aixdi) with ∀i, di ≡ 0 (mod 2m − 1) ;

2 ∀u ∈ U, the restriction of f to uF?2m is constant (that is,
f (uy) = f (u),∀y ∈ F?2m ) ;

NOTATION

We denote by Dn the set of bent functions f defined on F2n by f (0) = 0 and
f (x) =

∑
i Tro(di)

1 (aixdi) with ∀i, di ≡ 0 (mod 2m − 1).

Note that Dn is the set of bent functions whose polynomial form is the sum of
multiple trace terms via Dillon-like exponents.

+ We have proved that the elements of Dn are in a known subclass of bent
functions : the so-called hyper-bent functions !
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Hyper-bent Boolean functions

DEFINITION (HYPER-BENT BOOLEAN FUNCTION [YOUSSEF-GONG 01])

f : F2n → F2 (n even) is said to be a hyper-bent if the function x 7→ f (xi) is
bent, for every integer i co-prime to 2n − 1.

Characterization : f is hyper-bent on F2n if and only if its extended Hadamard
transform takes only the values ±2

n
2 .

DEFINITION (THE EXTENDED DISCRETE FOURIER (WALSH) TRANSFORM)

∀ω ∈ F2n , χ̂f (ω, k) =
∑

x∈F2n

(−1)f (x)+Trn
1(ωxk),with gcd(k, 2n − 1) = 1.

Hyper-bent functions have properties stronger than bent functions ; they
are rarer than bent functions.

+ Hyper-bent functions are used in S-boxes (DES).
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Bent functions and hyper-bent functions

NOTATION

We denote by Hn the set of hyper-bent functions f defined on F2n

We have the following result : (alternative proof of : PSap ⊂ Hn

([Carlet-Gaborit 2006])

THEOREM (SM 2014)

1 Functions in Dn are the functions of the form g(x) = f (δx) with f ∈ PSap

and δ ∈ F?2n

2 PS#
ap = Dn ∪ (1 +Dn)

3 PSap ⊂ Dn ⊂ PS#
ap ⊂ Hn

4 PS#
ap ∩ PS

− = Dn

5 Dn ⊂ Hn ∩ PS−

Note that there exists f ∈ Hn such that f /∈ PS#
ap (for n = 4 obtained by

computer [Carlet-Gaborit 2006]).
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Bent functions form partial spreads and hyperbent functions

Bent functions

PS−

PS]ap

Hn

PSap
Dn
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Characterizations of hyper-bent Boolean functions in polynomial forms

For any bent/ hyper-bent Boolean function f defined over F2n :

Polynomial form :

∀x ∈ F2n , f (x) =
∑
j∈Γn

Tro(j)
1 (ajxj) , aj ∈ F2o(j)

PROBLEM (HARD)

Characterize classes of bent / hyper-bent functions in polynomial form, by
giving explicitly the coefficients aj.
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Characterizations of hyper-bent Boolean functions in polynomial forms

All the known characterizations of hyper-bentness are obtained for functions
in Dn (and 1 + f ∈ PS#

ap) :

Until 2009, the only know construction of hyper-bent function is the
monomial bent function (x 7→ Trn

1(ax2m−1)) of [Dillon 1974] extended by
[Charpin-Gong 2008]. The (hyper-)bentness has been characterized by
means of Kloosterman sums !

In 2009 : we have constructed the first (two) classes of binomial
hyper-bent functions [SM 2009].

in the first class : we have characterized the hyper-bentess by
means of Kloosterman sums ;
in the second class : we have characterized the hyper-bentess by
means of Kloosterman sums and cubic sums.
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Kloosterman sums with the value 0 and 4

Hyper-bentness can be characterized by means of Kloosterman sums :

It is known since 1974 that the zeros of Kloosterman sums give rise
to (hyper)-bent functions :
[Dillon 1974] (r = 1)[Charpin-Gong 2008] (r such that gcd(r, 2m + 1) = 1) :
Let n = 2m. Let a ∈ F?2m

f (r)
a : F2n −→ F2

x 7−→ Trn
1(axr(2m−1))

then : f (r)
a,b is (hyper)-bent if and only if Km(a) = 0.

In 2009 we have shown that the value 4 of Kloosterman sums leads
to constructions of hyper-bent functions :
[SM 2009] : Let n = 2m (m odd). Let a ∈ F?2m and b ∈ F?4 .

f (r)
a,b : F2n −→ F2

x 7−→ Trn
1

(
axr(2m−1)

)
+ Tr2

1

(
bx

2n−1
3

)
; gcd(r, 2m + 1) = 1

then : f (r)
a,b is (hyper)-bent if and only if Km(a) = 4.

•We have computed a such that Km(a) = 4 [Flori-SM-Cohen ]
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Hyper-bent functions which are sum of multiple trace terms

When all the coefficients in the polynomial forms belong to F2m , Charpin and
Gong have provided a nice characterization of hyper-bentness of functions
which are sum of several Dillon-like monomial functions in terms of Dickson
polynomials.

+ [Charpin-Gong 2008] : the link between the zero of Kloosterman sums
and Dillon monomial hyper-bent functions ([Dillon 1974]) has been
generalized into a link between hyper-bent functions of a sub-class of Dn

and some exponential sums involving Dickson polynomials of degree r.

+ [SM 2010] : the link between the value 4 of Kloosterman sums and
binomial hyper-bent functions ([SM 2009]) has been generalized into a
link between hyper-bent functions of another sub-class of Dn and
exponential sums involving Dickson polynomials of degree r and 3.

54 / 72



Hyper-bent functions with multiple trace terms via Dillon-like exponents

Next, we have studied the hyper-bentness of functions of the general form in
Dn ([SM-Flori 2012]) :

far,b(x) =
∑
r∈R

Trn
1(arxr(2m−1)) + Trt

1(bxs(2m−1))

where

R is a set of representatives of the cyclotomic classes modulo 2m + 1 (not
necessary of maximal size as in the Charpin-Gong criterion)

the coefficients ar are in F2m ,

s divides 2m + 1, i.e s(2m − 1) is a Dillon-like exponent. Set τ = 2m+1
s .

t = o(s(2m − 1)), i.e t is the size of the cyclotomic coset of s modulo
2m + 1,

the coefficient b is in F2t .

+ Our approach : generalization of the approach obtained previously in
[SM 2009] and [SM 2013].
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Application of our approach

An application([SM-Flori 2012])

we characterize the hyper-bentness for a potentially new family

far,b(x) =
∑
r∈R

Trn
1(arxr(2m−1)) + Tr6

1(bx
2n−1

9 ), b ∈ F?64 ,m ≡ 3 (mod 6)

we characterize the hyper-bentness for a potentially new family

far,b(x) =
∑
r∈R

Trn
1(arxr(2m−1)) + Tr10

1 (bx
2n−1

11 ), b ∈ F?210 ,m ≡ 5 (mod 10)

we characterize the hyper-bentness for a potentially new family

far,b(x) =
∑
r∈R

Trn
1(arxr(2m−1)) + Tr12

1 (bx
2n−1

13 ), b ∈ F?212 ,m ≡ 6 (mod 12)

we characterize the hyper-bentness for a potentially new family

far,b(x) =
∑
r∈R

Trn
1(arxr(2m−1)) + Tr8

1(bx
2n−1

17 ), b ∈ F?28 ,m ≡ 4 (mod 8)

we characterize the hyper-bentness for a potentially new family

far,b(x) =
∑
r∈R

Trn
1(arxr(2m−1)) + Tr10

1 (bx
2n−1

33 ), b ∈ F?210 ,m ≡ 5 (mod 10)56 / 72



Hyper-bent functions and hyperelliptic curves

The characterizations for hyper-bent functions in Dn requires time and
space which is exponential in m !

We can use the hyperelliptic curve formalism to reduce computational
complexity : polynomial time and space in m ([Lisonek 2010],[Flori-SM
2012]).

To obtain efficient characterizations of the hyper-bentness we use :
1 Two fundamental results on the link between Boolean functions,

exponential sums and cardinalities of hyperelliptic curve [Flori-SM 2012]
2 The current implementation of point counting over hyperelliptic curves

[Vercauteren 2004], [Hubrechts 2007].

DEFINITION

A (imaginary) hyperelliptic curve of genus g over K is a non- singular curve
given by an equation of the form H : y2 + h(x)y = f (x) where h(x) is of degree
≤ g and f (x) is monic of degree 2g + 1

Here we denote #H the number of F2m -rational points on H.
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Exponential sums and hyperelliptic curves

• A classical link between Kloosterman sums and cardinality of elliptic
curves :

THEOREM ([LACHAUD-WOLFMANN 87], [KATZ-LIVNÉ 87])

Let m ≥ 3, a ∈ F?2n . Let Ea : y2 + xy = x3 + a
Then :

Km(a) = −2m + #Ea.

• Link between exponential sums and cardinalities of hyperelliptic curve : a
first fundamental result :

THEOREM ([FLORI-SM 2012])

Let f : F2m → F2m be a function such that f (0) = 0 and Gf be the (affine) curve
defined over F2m by

Gf : y2 + y = f (x)

Then : ∑
x∈F∗

2m

χ(Trm
1 (f )(x)) = −2m − 1 + #Gf .
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Exponential sums and hyperelliptic curves

Link between exponential sums and cardinalities of hyperelliptic curves : a
second fundamental result :

THEOREM ([FLORI-SM 2012])

Let f : F2m → F2m be a function and Hf be the (affine) curve defined over F2m by

Hf : y2 + xy = x + x2f (x)

Then : ∑
x∈F∗

2m

χ(Trm
1 (1/x) + Trm

1 (f )(x)) = −2m + #Hf .

We have studied the action of Dickson polynomials on subsets of finite
fields of even characteristic related to the trace of the inverse of an
element which generalizes results of [Charpin-Helleseth-Zonoviev 2009].
Such properties refine our results on the characterizations of
hyper-bentness and are used to reduce the number of cardinalities of
hyperelliptic curves.
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Bent functions whose restrictions to the multiplicative cosets uF?2m

(u ∈ U) are affine

NOTATION

An := {f : F2n → F2 such that the restriction to uF?2m is affine for every u ∈ U}

The bent functions in An : ([Carlet-SM 2012], [SM 2013]) :

THEOREM

The bent functions in An are :

1 Functions which are the sum of a function from the class PS#
ap and an

affine function.

2 Niho bent functions

3 Functions which are the sum of a Niho bent function and the function
1 + 1u0F2m or the sum of a Niho bent function and the function 1u0F2m

where u0 ∈ U.
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Several new infinite families of bent functions and their duals

Very recently, we have provided 7 new infinite families of bent functions by
explicitly calculating their dual functions [SM 2014] based on a nice result of
[Carlet 2004] (a secondary construction of bent functions) :

THEOREM

Let n be an even integer. Let f1, f2 and f3 be three pairwise distinct bent
functions over F2n such that ψ = f3 + f2 + f1 is bent. Let g be a Boolean
function defined by g(x) = f1(x)f2(x) + f1(x)f3(x) + f2(x)f3(x). Then g is bent if
and only if f̃1 + f̃2 + f̃3 + ψ̃ = 0.
Furthermore, if g is bent then its dual function g̃ is given by

g̃(x) = f̃1(x)f̃2(x) + f̃2(x)f̃3(x) + f̃3(x)f̃1(x),∀x ∈ F2n .

Racall The dual function of a bent function f denoted by f̃ is defined by the
equation : (−1)̃f (x)2

n
2 = χ̂f (x).
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Bent vectorial functions

Let F : F2n → F2r be an (n, r)-(vectorial) function.
The nonlinearity is defined as the minimum nonlinearity of all their component
functions v · F (where "·" is a scalar product in F2r ), v ∈ F?2r and we have :

nl(F) = 2n−1 − 1
2

max
v∈F?

2r ; u∈F2n

∣∣∣∣∣∣
∑

x∈F2n

(−1)Trm
1 (vF(x))+Trn

1(ux)

∣∣∣∣∣∣ .
DEFINITION (BENT VECTORIAL FUNCTION)

Let n be an even integer and r be an integer. An (n, r)-function F : F2n → F2r is
called bent if the upper bound 2n−1 − 2n/2−1 on its nonlinearity nl(F) is
achieved with equality.

Bent (n, r)-functions exist if and only if n is even and r ≤ n
2 [Nyberg 1991].

The bentness of vectorial functions can be characterized by the
bentness of their component (Boolean) functions : an (n, r)-function F is
bent if and only if all of the component functions of F are bent.
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General primary constructions of bent vectorial functions

There exist 5 general constructions of bent vectorial functions :

1 A general construction from the strict Maiorana-McFarland (bent (2m, r)-
function) : F(x, y) = L(xπ(y)) + G(y), where π permutation of F2m , and G
is any (m, r)-function ;

2 A general construction from the extended Maiorana-McFarland class
(bent (2m, r)- function) : F(x, y) = ψ(x, y) + G(y) where G is any (m, r)-
function ; ∀y ∈ F2m , x 7→ ψ(x, y) is linear ; ∀x ∈ F2m \ {0}, y 7→ ψ(x, y) is
balanced ;

3 A general construction from the general Maiorana-McFarland class ;

4 A general construction form PSap class (bent (2m, r)- function) :
F(x, y) = G

(
x
y

)
; (x, y) ∈ F2m × F2m where G is a balanced (m, r)-function ;

5 A general construction from Partial Spread construction (bent
(2n + 2m, r)-function) F(x, y) = K( x

y ,
z
t ), where K is a (n + m, r)-function

st. ∀x ∈ F2n , y ∈ F2m 7→ K(x, y) is balanced and ∀y ∈ F2m , x ∈ F2n 7→ K(x, y)
is balanced.
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A new general primary constructions of bent vectorial functions

THEOREM ([SM 2014])

Let G be an o-polynomial on F2m . Let F be a function from F2m × F2m to F2m

such that for (x, y) ∈ F2m × F2m ,

F(x, y) = xG(yx2m−2),

then the vectorial function F is bent.
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Linear codes from hyperovals

Minimal linear codes are combinatorial objects : linear codes such that
the support of every codeword does not contain the support of another
linearly independent codeword :

DEFINITION

The support of a codeword c ∈ C is supp(c) = {i ∈ {1, . . . , n}|ci 6= 0}. A
codeword c covers a codeword c′ if supp(c′) ⊂ supp(c).

DEFINITION (MINIMAL CODEWORD)

A codeword c is minimal if ∀c′ ∈ C, (supp(c′) ⊂ supp(c))⇒ (c, c′) linearly
dependent.

DEFINITION (MINIMAL LINEAR CODE)

A linear code C is minimal if every non-zero codeword c ∈ C is minimal.

the motivation for finding minimal linear codes is no longer secret
sharing but in a new proposal for secure two-party computation, where it
is required that minimal linear codes are used to ensure privacy.
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Codes and S-box from o-polynomials

Linear codes S-boxes bent functions

o-polynomials
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Construction of linear codes CG, where G is an o-polynomial

Minimal codes : algebraic approach
Let m be a positive integer and r a divisor of m.
Let G be an o-polynomial over F2m such that G(0) = 0. For any α ∈ F2m , we
define the (2m, r)-function fα as follows :

fα : F2m × F2m −→ F2r

(x, y) 7−→ fα(x, y) := Trm
r (αxG(yx2m−2)).

Set {Ea,E∞} where Ea := {(x, ax) | x ∈ F2m} and E∞ := {(0, y) | y ∈ F2m}.
(F2m × F2m) \ (E0 ∪ E∞) can be described as {(γi, ζi) | 1 ≤ i ≤ (2m − 1)2}.
We define a linear code CG over (the ambient space) F2r as :

CG := {c̄α = (fα(γ1, ζ1), · · · , fα(γ(2m−1)2 , ζ(2m−1)2)) | α ∈ F2m}
= {c̄α = (Trm

r (αγiG(ζiγi
2m−2)) | 1 ≤ i ≤ (2m − 1)2);α ∈ F2m}.

(7)
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Minimal Linear codes from hyperovals : algebraic approach

Linear codes from hyperovals give rise to minimal codes !

THEOREM (INCLUDING THE DEFINITION OF q-ARY SIMPLEX CODES)

The q-ary simplex code Sk(q) is a q-ary code with generator matrix having for
columns any set of qk−1

q−1 representatives of the distinct 1-dimensional
subspaces of Fk

q.

The q-ary simplex code Sk(q) has parameters [ qk−1
q−1 , k, q

k−1]

THEOREM ([SM 2014])

Let G be an o-polynomial on F2m such that G(0) = 0. Then the hyperoval
D(G) = {(1, t,G(t)), t ∈ F2m} ∪ {(0, 1, 0), (0, 0, 1)} in the projective space
PG2(2m) give rise to linear codes C (constructed via vectorial functions) of a
constant weight code with parameters [(2m − 1)2, m

r , 2
m−r(2r − 1)(2m − 1)].

Such codes C are equivalent to (2m − 1)(2r − 1)-multiples of 2r-ary simplex
codes S m

r
(2r) where r is a divisor of m whose duals are the 2r-ary perfect

single error-correcting Hamming codes.
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Minimal Linear codes : asymptotic approach

Asymptotic approach : Upper bound, non-existence, construction by
concatenation, etc.[Cohen-SM-Patey 2013] :

THEOREM (MAXIMAL BOUND)

Let C a minimal linear [n, k, d] q-ary code, then, asymptotically,
R := k/n ≤ logq(2).

DEFINITION (QUASI-MINIMAL CODEWORD)

A codeword c is quasi-minimal if ∀c′ ∈ C, (supp(c′) = supp(c)) =⇒ (c, c′)
linearly dependent.

DEFINITION (QUASI-MINIMAL LINEAR CODE)

A linear code C is quasi-minimal if every non-zero codeword c ∈ C is
quasi-minimal.

THEOREM (MAXIMAL BOUND)

Let C be a quasi-minimal linear [n, k, d]q code, then, asymptotically,
R := k/n ≤ logq(2).
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Minimal Linear codes : combinatorial approach

Combinatorial approach : constructions, finite properties, etc.
[Cohen-SM-Patey 2013] :

THEOREM (SUFFICIENT CONDITION FOR QUASI-MINIMALITY)

Let C be a linear [n, k, d]q code ; if d/n > (q− 2)/(q− 1), then C is
quasi-minimal.

PROPOSITION

The product C1 ⊗ C2 of a minimal [n1, k1, d1]q code C1 and of a minimal
[n2, k2, d2]q code C2 is a minimal [n1 × n2, k1 × k2, d1 × d2]q code.
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minimal Linear codes : Probabilistic approach

Probabilistic approach : results of existence, non-constructive,etc.
[Cohen-SM-Patey 2013] :

THEOREM (MINIMAL BOUND)

For any R, 0 ≤ R = k/n ≤ 1
2 logq( q2

q2−q+1 ), there exists an infinite sequence of
[n, k] minimal linear codes.
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Open questions :

Study the difference sets related to the class of hyperbent functions ;

Improve the upper bound on the number of bent functions ; asymptotic
bounds (asymptotic approach, etc).

Study further the combinatorial aspect of the minimal codes in order to
exhibit more "good" codes

Improve the upper bound on the covering radius using combinatorial
idea (combinatorial words, etc).

Links between finite geometry and combinatoric ( ? !)
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