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Catalan sequence:
1,2,5,14,42,...(A000108)
Dyck paths, AV(132),...

Baxter sequence:
1,2,6,22,92,...(A001181)
AV(2-41-3, 3-14-2),...

Factorial sequence:
1,2,6,24,120,...(A000142)

permutations,...
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Goal 1.
To provide a
continuum from
Catalan to
Baxter through
Schröder.

Catalan sequence:
1,2,5,14,42,...(A000108)
Dyck paths, AV(132),...

Baxter sequence:
1,2,6,22,92,...(A001181)
AV(2-41-3, 3-14-2),...

Schröder sequence:
1,2,6,22,90,...(A006318)
Schröder paths, separable

permutations,...

Factorial sequence:
1,2,6,24,120,...(A000142)

permutations,...
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Goal 1.
To provide a
continuum from
Catalan to
Baxter through
Schröder.

Catalan sequence:
1,2,5,14,42,...(A000108)
Dyck paths, AV(132),...

Baxter sequence:
1,2,6,22,92,...(A001181)
AV(2-41-3, 3-14-2),...

Schröder sequence:
1,2,6,22,90,...(A006318)
Schröder paths, separable

permutations,...

Factorial sequence:
1,2,6,24,120,...(A000142)

permutations,...

Semi-Baxter sequence:
1,2,6,23,104,...(A117106)

plane permutations,
AV(2-41-3),...

Goal 2.
To provide a
continuum from
Baxter to Factorial
through semi-Baxter.
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How to establish such continuum?

At the abstract level of generating trees and succession rules so that
each inclusion is valid for all the families of objects enumerated by
the corresponding sequences.

ECO method. Enumerating Combinatorial Objects is a method for
the exhaustive generation of a class C of combinatorial objects
equipped with a size | · | : C → N.

An ECO-operator is ϑ : Cn → 2Cn+1 s.t.
- for any o, o′ ∈ Cn, if o 6= o′, then ϑ(o) ∩ ϑ(o′) = ∅;
-
⋃

o∈Cn
ϑ(o) = Cn+1.

A permutation π of length n avoids τ of length
k ≤ n iff there are no i1, . . . , ik such that
πi1 . . . πik is order isomorphic to τ .
Example. π = 64 2 1 5 3 contains τ = 13 2;
ρ = 64 3 5 1 2 avoids τ .
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How to establish such continuum?
Definition.
Let ϑ be an ECO-operator for C. A generating tree for C is a infinite
rooted tree such that the vertices at level n are the objects of size n
and their sons are the objects produced by ϑ.

3 2 12 1 

1

2 11

12 11 2 33

2

233

A compact notation for generating trees is the notion of:

Definition.
A succession rule is system ((r),S) consisting of an axiom (r) and a
set of productions S

Ω =
{

(r)
(`) (e1), (e2), . . . , (ek(`))



Number
sequences

Generating trees

Slicings of
parallelogram
polyominoes

Slicings
generalizations

Permutations

Semi-Baxter
sequence

Lattice paths

How to establish such continuum?
Definition.
Let ϑ be an ECO-operator for C. A generating tree for C is a infinite
rooted tree such that the vertices at level n are the objects of size n
and their sons are the objects produced by ϑ.

(1)

(3)(2)(1)(2)(1)

(2)(1)

A compact notation for generating trees is the notion of:

Definition.
A succession rule is system ((r),S) consisting of an axiom (r) and a
set of productions S

Ω =
{
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How to establish such continuum?
Definition.
Let ϑ be an ECO-operator for C. A generating tree for C is a infinite
rooted tree such that the vertices at level n are the objects of size n
and their sons are the objects produced by ϑ.

ΩCat =
{

(1)
(i) (1), (2), . . . , (i), (i + 1)

A compact notation for generating trees is the notion of:

Definition.
A succession rule is system ((r),S) consisting of an axiom (r) and a
set of productions S

Ω =
{

(r)
(`) (e1), (e2), . . . , (ek(`))
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Examples

Catalan succession rule:

ΩCat =
{

(1)
(i) (1), (2), . . . , (i), (i + 1)

Schröder succession rule:

ΩSep =
{

(2)
(j) (2), (3), . . . , (j), (j + 1), (j + 1)

Baxter succession rule:

ΩBax =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h + 1, 1), . . . , (h + 1, k)



Number
sequences

Generating trees

Slicings of
parallelogram
polyominoes

Slicings
generalizations

Permutations

Semi-Baxter
sequence

Lattice paths

Baxter permutations

Definition. A Baxter permutation π is a permutation avoiding the
generalized permutation patterns 2-41-3 and 3-14-2.

Each Baxter permutation of length n + 1 is obtained by adding the
rightmost point just above a right-to-left maximum or just below a
right-to-left minimum of a Baxter permutation π of length n.
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Comparison of the generating trees

(1, 1)

(1, 2)

(1, 3)

(1, 4)
(2, 1)
(2, 2)
(2, 3)

(2, 1)

(1, 2)
(2, 2)
(3, 1)

(2, 2)

(1, 3)
(2, 3)
(3, 1)
(3, 2)

(2, 1)

(1, 2)

(1, 3)
(2, 1)
(2, 2)

(2, 2)

(1, 3)
(2, 3)
(3, 1)
(3, 2)

(3, 1)

(1, 2)
(2, 2)
(3, 2)
(4, 1)

ΩCat =
{

(1)
(i) (1), (2), . . . , (i), (i + 1)
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Baxter slicings
Definition.
A parallelogram polyomino P is a set of cells in the Cartesian plane
whose boundary is given by two non-intersecting lattice paths. The
size of P is its semi-perimeter minus 1.

The number of parallelogram polyominoes of size n is the nth
Catalan number.

Definition.
A Baxter slicing is a parallelogram polyomino P of size n whose
interior is divided in n blocks of width or height 1 such that removing
the most outer block it remains a Baxter slicing of size n − 1.
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Baxter slicings
Theorem.
Baxter slicings grow according to

ΩBax =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h + 1, 1), . . . , (h + 1, k)

Hence, they are enumerated by Baxter numbers.

.
, ,

,,

(4,3)(4,2)(4,1)

(3,4)(2,4)(1,4)(3,3)

;
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Catalan and Schröder slicings
Definition.
A Catalan slicing is a Baxter slicing having all horizontal blocks of
width 1.

Definition.
A Schröder slicing is a Baxter slicing having the width of any
horizontal block u limited by r(u) + 1.

X(u)

u

r(u)

Every Catalan slicing is a Schröder slicing. The new Schröder family
of slicings restricts the Baxter family and includes the Catalan family.



Number
sequences

Generating trees

Slicings of
parallelogram
polyominoes

Slicings
generalizations

Permutations

Semi-Baxter
sequence

Lattice paths

Catalan and Schröder slicings
Definition.
A Catalan slicing is a Baxter slicing having all horizontal blocks of
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New Schröder succession rule

ΩSch =

 (1, 1)
(h, k) (1, k + 1), (2, k + 1), . . . , (h, k + 1),

(2, 1), (2, 2), . . . , (2, k − 1), (h + 1, k)

k

 h
 h

k
 j

 h

kk

 h

k

 i

, ,

Theorem.
The enumeration sequence associated with this new rule ΩSch is that
of Schröder numbers.

• The rules ΩSch and ΩSep produce isomorphic generating trees.
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Row-restricted slicings

Definition. A m-row-restricted slicing is a Baxter slicing having the
width of any horizontal block u limited by m, where m ≥ 1.

u

Ω(m)
row =


(1, 1)
(h, k) (1, k + 1), (2, k + 1), . . . , (h, k + 1),

(h + 1, 1), . . . , (h + 1, k), if h < m,
(m, 1), . . . , (m, k), if h = m.
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System for m-row-restricted
slicings

The generating function of m-row-restricted slicings is given by
G1(1, 1) + . . .+ Gm(1, 1), where each Gi (u, v) =

∑
α uivk(α)xn(α) is

defined by



G1(u, v) = xuv + xuv(G1(1, v) + G2(1, v) + . . . + Gm(1, v))
...
Gi (u, v) = xui v

1−v (Gi−1(1, 1)− Gi−1(1, v)) + xui v(Gi (1, v) + . . . + Gm(1, v))
...
Gm(u, v) = xumv

1−v (Gm(1, 1)− Gm(1, v) + Gm−1(1, 1)− Gm−1(1, v)) + xumvGm(1, v)

This system can be rewritten
• without u in Hi (v) ≡ Gi (1, v);
• in the form of a matrix equation.
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System for m-row-restricted
slicings

Km(v)Hm(v) = Bm(v)Hm(1) + Cm(v)

Km(v) =


1− xv −xv −xv −xv · · · −xv

xv
1−v 1− xv −xv −xv · · · −xv
0 xv

1−v 1− xv −xv · · · −xv
...

. . .
. . .

. . .
. . .

...
0 0 · · · xv

1−v 1− xv −xv
0 0 0 · · · xv

1−v 1− xv + xv
1−v

 ,Cm(v) =

xv
0
...
0



Hm(v) =

(H1(v)
...

Hm(v)

)
and Bm(v) =


0 0 0 0 · · · 0
xv

1−v 0 0 0 · · · 0
0 xv

1−v 0 0 · · · 0
0 0 xv

1−v 0 · · · 0
...

...
. . .

. . .
. . .

...
0 0 0 · · · xv

1−v
xv

1−v

 .
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System for m-row-restricted
slicings

Let K∗m(v) = |Km(v)|K−1m (v). Multiplying on the left by K∗m(v) gives

|Km(v)|Hm(v) = K∗m(v) [Bm(v)Hm(1) + Cm(v)] .

• The RHS of the mth equation is a linear combination of all the
m unknows H1(1), . . . ,Hm(1);

• The equation |Km(v)| = 0 has m − 2 solutions in v which are
finite at x = 0. (N. R. Beaton)

Conjecture.
For all m ≥ 0, the generating functions of m-row-restricted slicings
are algebraic.

• It holds for small value of m (m ≤ 5).
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Skinny slicings

Definition. A m-skinny slicing is a Baxter slicing having the width of
any horizontal block u limited by r(u) + m.

X(u)

u

r(u)

Ω(m)
sk =


(1, 1)
(h, k) (1, k + 1), (2, k + 1), . . . , (h, k + 1),

(h + 1, 1), . . . , (h + 1, k − 1), (h + 1, k), if h < m,
(m + 1, 1), . . . , (m + 1, k − 1), (h + 1, k), if h ≥ m.
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System for m-skinny slicings



F1(u, v) = xuv + xuv(F1(1, v) + F2(1, v) + . . . + Fm(1, v))
F2(u, v) = xu2v

1−v (F1(1, 1)− F1(1, v)) + xu2v(F2(1, v) + . . . + Fm(1, v))
...
Fi (u, v) = xui v

1−v (Fi−1(1, 1)− Fi−1(1, v)) + xui v(Fi (1, v) + . . . + Fm(1, v))
...
Fm(u, v) = xumv

1−v (Fm−1(1, 1)− Fm−1(1, v)) + xum+1
1−v (vFm(1, 1)− Fm(1, v)) + xuFm(u, v)

+ xuv
1−u (um−1Fm(1, v)− Fm(u, v)),

where Fi (u, v) =
∑

α
ui vk(α)xn(α).

• The generating function of m-skinny slicings is given by
F1(1, 1) + . . .+ Fm(1, 1).

0 1 2 3 4 5 · · · ∞
m-row-restricted

slicings 1
1−x

1−
√
1−4x
2x alg. alg. alg. alg. · · · D-fin.

m-skinny
slicings alg. 1−x−

√
1−6x+x2
2x alg. alg. ? ? · · · D-fin.
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Goal 1.
To provide a
continuum from
Catalan to
Baxter through
Schröder.

Catalan sequence:
1,2,5,14,42,...(A000108)
AV(132),Dyck paths,...

Baxter sequence:
1,2,6,22,92,...(A001181)
AV(2-41-3, 3-14-2),...

Schröder sequence:
1,2,6,22,90,...(A006318)
Schröder paths, separable

permutations,...

Factorial sequence:
1,2,6,24,120,...(A000142)

permutations,...

Semi-Baxter sequence:
1,2,6,23,104,...(A117106)

plane permutations,
AV(2-41-3),...

Goal 2.
To provide a
continuum from
Baxter to Factorial
through semi-Baxter.
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Permutations
The number of permutations of length n is n!.

• For n ≥ 2, factorial numbers satisfy:

fn = n fn−1, with f1 = 1.

• Succession rule:

Ω =
{

(1)
(n)→ (n + 1)n+1
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Permutations
The number of permutations of length n is n!.

• For n ≥ 2, factorial numbers satisfy:

fn = n fn−1, with f1 = 1.

• Succession rule:

Ω =
{

(1)
(n)→ (n + 1)n+1

h

k
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Permutations
The number of permutations of length n is n!.

• For n ≥ 2, factorial numbers satisfy:

fn = n fn−1, with f1 = 1.

• Succession rule:

ΩFac =

 (1, 1)
(h, k) (1, h + k), . . . , (h, k + 1)

(h + k, 1), . . . , (h + 1, k)

h

k
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Semi-Baxter permutations

Definition.
A semi-Baxter permutation π is a permutation avoiding the
generalized permutation pattern 2-41-3.

Theorem.
Semi-Baxter permutations grow according to

Ωsemi =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h + k, 1), . . . , (h + 1, k)
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Semi-Baxter permutations

Definition.
A semi-Baxter permutation π is a permutation avoiding the
generalized permutation pattern 2-41-3.

Theorem.
Semi-Baxter permutations grow according to

Ωsemi =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h + k, 1), . . . , (h + 1, k)
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Semi-Baxter permutations

Definition.
A semi-Baxter permutation π is a permutation avoiding the
generalized permutation pattern 2-41-3.

Theorem.
Semi-Baxter permutations grow according to

Ωsemi =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h + k, 1), . . . , (h + 1, k)
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Semi-Baxter permutations

Definition.
A semi-Baxter permutation π is a permutation avoiding the
generalized permutation pattern 2-41-3.

Theorem.
Semi-Baxter permutations grow according to

Ωsemi =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h + k, 1), . . . , (h + 1, k)
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Semi-Baxter permutations

Definition.
A semi-Baxter permutation π is a permutation avoiding the
generalized permutation pattern 2-41-3.

Theorem.
Semi-Baxter permutations grow according to

Ωsemi =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h + k, 1), . . . , (h + 1, k)
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Semi-Baxter permutations

Definition.
A semi-Baxter permutation π is a permutation avoiding the
generalized permutation pattern 2-41-3.

(3,2) (1,3)

Theorem.
Semi-Baxter permutations grow according to

Ωsemi =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h + k, 1), . . . , (h + 1, k)
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Semi-Baxter permutations

Definition.
A semi-Baxter permutation π is a permutation avoiding the
generalized permutation pattern 2-41-3.

(1,2)
(3,1)(2,2)(1,3)

Theorem.
Semi-Baxter permutations grow according to

Ωsemi =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h + k, 1), . . . , (h + 1, k)
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Plane permutations

Definition.
A plane permutation π is a permutation avoiding the generalized
permutation pattern 2-14-3.

• Enumerating plane permutations: open problem by Bousquet
-Mélou and Butler.

(3,1)(1,2) (1,3) (2,2)

Theorem.
Plane permutations grow according to

Ωsemi =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h + k, 1), . . . , (h + 1, k)
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Comparison of the generating trees

(1,1)(1,1)(1,1)

(1,2)(1,2)(1,2)

(1,3)(1,3)(1,3)

(1,4)(1,4)(1,4)
(2,1)(4,1)(4,1)
(2,2)(3,2)(3,2)
(2,3)(2,3)(2,3)

(2,1)(3,1)(3,1)

(1,2)(1,2)(1,4)
(2,2)(2,2)(2,3)
(3,2)(3,2)(3,2)
(3,1)(4,1)(4,1)

(2,2)(2,2)(2,2)

(1,3)(1,3)(1,4)
(2,3)(2,3)(2,3)
(3,1)(4,1)(4,1)
(3,2)(3,2)(3,2)

(2,1)(2,1)(2,1)

(1,2)(1,2)(1,3)

(1,3)(1,3)(1,4)
(2,1)(3,1)(4,1)
(2,2)(2,2)(3,2)
(2,2)(2,2)(2,3)

(2,2)(2,2)(2,2)

(1,3)(1,3)(1,4)
(2,3)(2,3)(2,3)
(3,1)(4,1)(4,1)
(3,2)(3,2)(3,2)

(3,1)(3,1)(3,1)

(1,2)(1,2)(1,4)
(2,2)(2,2)(2,3)
(3,2)(3,2)(3,2)
(4,1)(4,1)(4,1)

Ωsemi =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h + k, 1), . . . , (h + 1, k)
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Enumerative properties
From Ωsemi , S(x ; y , z) ≡ S(y , z) =

∑
n,h,k≥1 Sh,kxnyhzk satisfies:

S(y , z) = xyz + xyz
1− y (S(1, z)− S(y , z)) + xyz

z − y (S(y , z)− S(y , y))

• Set y = 1 + a. Write the kernel form:

K (a, z)S(1+a, z) = xz(1+a)+xz(1 + a)
a S(1, z)−xz(1 + a)

z − 1− a S(1+a, 1+a)

• By exploiting transformations that leave K (a, z) unchanged, we
obtain a system of 5 equations in 6 overlapping unknowns.

• Set Z+ be such that K (a,Z+) = 0. Eliminating overlapping
unknowns, yields:

S(1 + a, 1 + a)− (1 + a)2x
a4 S (1, 1 + ā)− P(a,Z+) = 0.
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Enumerative properties
From Ωsemi , S(x ; y , z) ≡ S(y , z) =

∑
n,h,k≥1 Sh,kxnyhzk satisfies:

S(y , z) = xyz + xyz
1− y (S(1, z)− S(y , z)) + xyz

z − y (S(y , z)− S(y , y))

Theorem.
Let W (x ; a) ≡W be such that

W = xā(1 + a)(W + 1 + a)(W + a).

The series solution S(y , z) satisfies

S(1 + a, 1 + a) = Ω≥[P(a,W + 1 + a)], where

P(a,W + 1 + a) = (1 + a)2 x +
(
ā5 + ā4 + 2 + 2a

)
x W − (ā5 + ā4

−ā3 + ā2 + ā − 1) x W 2 −
(
ā4 − ā2

)
x W 3.
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Enumerative properties

Corollary.
For all n ≥ 1, the semi-Baxter numbers SBn satisfy:

SBn+1 = 1
n
∑n

j=0
(n

j
) [

2
(n+1

j+2
)(n+j+2

n+2
)

+
( n

j+1
)(n+j+2

n−3
)

+ 3
( n

j+4
)(n+j+4

n+1
)

+2 nj−j2−n2−8j+4n−15
(n+1)(j+5)

( n
j+2
)(n+j+4

n
)

+ 2n
j+3
( n

j+2
)(n+j+2

n
)]

Conjecture. (PhD thesis by D. Bevan)
For n ≥ 2,

SBn = 24((5n3 − 5n + 6)an+1 − (5n2 + 15n + 18)an)
5(n − 1)n2(n + 2)2(n + 3)2(n + 4) ,

where an =
∑n

k=0
(n

k
)2(n+k

k
)
is the nth Apéry number.
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P-recursiveness

The numbers SBn are recursively defined by SB0 = 0, SB1 = 1 and
for n ≥ 2,

SBn = 11n2+11n−6
(n+4)(n+3) SBn−1 + (n−3)(n−2)

(n+4)(n+3) SBn−2.

It holds for Baxter numbers that B0 = 0, B1 = 1 and for n ≥ 2,

Bn = 7n2 + 7n − 2
(n + 3)(n + 2)Bn−1 + 8(n − 2)(n − 1)

(n + 3)(n + 2) Bn−2.

• SBn ∼n→∞
A µn

n6

(
1 + O

( 1
n
))
, where µ = 11

2 + 5
2
√
5 and A ≈ 94.34
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P-recursiveness

The numbers SBn are recursively defined by SB0 = 0, SB1 = 1 and
for n ≥ 2,

SBn = 11n2+11n−6
(n+4)(n+3) SBn−1 + (n−3)(n−2)

(n+4)(n+3) SBn−2.

It holds for Baxter numbers that B0 = 0, B1 = 1 and for n ≥ 2,

Bn = 7n2 + 7n − 2
(n + 3)(n + 2)Bn−1 + 8(n − 2)(n − 1)

(n + 3)(n + 2) Bn−2.

• SBn ∼n→∞
A µn

n6

(
1 + O

( 1
n
))
, where µ = 11

2 + 5
2
√
5 and A ≈ 94.34
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Another occurrence

Definition.
An inversion sequence is an integer sequence (e1, e2, . . . , en)
satisfying 0 ≤ ei < i for all i ∈ {1, 2, . . . , n}.

Example. (0, 1, 2) is an inversion sequence, (0, 2, 1) is not.

The inversion sequence e = (0, 0, 2, 1, 4, 1, 3, 7) avoids 210, but
contains 100.

Theorem. (Conjectured by Martinez and Savage1)
The family of inversion sequences avoiding 210 and 100 is
enumerated by semi-Baxter numbers.

1Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of
Relations, online available on Arxiv1609.08106.
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Factorial paths

Definition.
A factorial path is a Dyck path P in which every free (not lying in a
valley) up steps U has a label in [1, e + 1], where e is the number of
down steps preceeding U in P.

Theorem.
Factorial paths satisfy the recursive relation for factorial numbers

fn = n fn−1, where f1 = 1.
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Factorial paths

Definition.
A factorial path is a Dyck path P in which every free (not lying in a
valley) up steps U has a label in [1, e + 1], where e is the number of
down steps preceeding U in P.

1

1

Theorem.
Factorial paths satisfy the recursive relation for factorial numbers

fn = n fn−1, where f1 = 1.
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Factorial paths

Definition.
A factorial path is a Dyck path P in which every free (not lying in a
valley) up steps U has a label in [1, e + 1], where e is the number of
down steps preceeding U in P.

52

3
1

1

6

5

1

1

2

Theorem.
Factorial paths satisfy the recursive relation for factorial numbers

fn = n fn−1, where f1 = 1.
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Factorial paths

Definition.
A factorial path is a Dyck path P in which every free (not lying in a
valley) up steps U has a label in [1, e + 1], where e is the number of
down steps preceeding U in P.

52

6

5

1

1

2

Theorem.
Factorial paths satisfy the recursive relation for factorial numbers

fn = n fn−1, where f1 = 1.
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Factorial paths

Definition.
A factorial path is a Dyck path P in which every free (not lying in a
valley) up steps U has a label in [1, e + 1], where e is the number of
down steps preceeding U in P.

6

5

1

1

2

Theorem.
Factorial paths satisfy the recursive relation for factorial numbers

fn = n fn−1, where f1 = 1.
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Factorial paths

Definition.
A factorial path is a Dyck path P in which every free (not lying in a
valley) up steps U has a label in [1, e + 1], where e is the number of
down steps preceeding U in P.

Theorem.
Factorial paths satisfy the recursive relation for factorial numbers

fn = n fn−1, where f1 = 1.
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Factorial paths

Definition.
A factorial path is a Dyck path P in which every free (not lying in a
valley) up steps U has a label in [1, e + 1], where e is the number of
down steps preceeding U in P.

Theorem.
Factorial paths satisfy the recursive relation for factorial numbers

fn = n fn−1, where f1 = 1.
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Semi-Baxter paths
Definition.
A semi-Baxter path is a factorial path in which, for every pair of
consecutive free up step (U ′,U ′′), the label of U ′′ is in [1, h], where
h ≥ 1 is given by summing the label of U ′ with the number of down
steps between U ′ and U ′′.

1

1 3

5 654

31

1

Theorem.
Semi-Baxter paths grow according to

Ωsemi =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h + k, 1), . . . , (h + 1, k)



Number
sequences

Generating trees

Slicings of
parallelogram
polyominoes

Slicings
generalizations

Permutations

Semi-Baxter
sequence

Lattice paths

Semi-Baxter paths
Definition.
A semi-Baxter path is a factorial path in which, for every pair of
consecutive free up step (U ′,U ′′), the label of U ′′ is in [1, h], where
h ≥ 1 is given by summing the label of U ′ with the number of down
steps between U ′ and U ′′.

(5,1) (4,2)

1

1

1

(3,3)

31

1

1

(2,3)

21

1

1

1

1

1

1

1

1

1

1

1

1

(3,2) (1,3)

Theorem.
Semi-Baxter paths grow according to

Ωsemi =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h + k, 1), . . . , (h + 1, k)
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Baxter paths
Definition.
A Baxter path is a factorial path in which, for every pair of
consecutive free up step (U ′,U ′′), the label of U ′′ is in [1, h], where
h ≥ 1 is given by summing the label of U ′ with the number of DU
factors between U ′ and U ′′.

4

1

1 2

3 5

1

1

2

3

Theorem.
Baxter paths grow according to

ΩBax =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h + 1, 1), . . . , (h + 1, k)
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Baxter paths
Definition.
A Baxter path is a factorial path in which, for every pair of
consecutive free up step (U ′,U ′′), the label of U ′′ is in [1, h], where
h ≥ 1 is given by summing the label of U ′ with the number of DU
factors between U ′ and U ′′.

(3,2)

1

1

1

1

1

1

1

1

1

1

(2,3)(1,3)

21

1

1

1

1

1

(2,2)

(3,1)

Theorem.
Baxter paths grow according to

ΩBax =

 (1, 1)
(h, k) (1, k + 1), . . . , (h, k + 1)

(h + 1, 1), . . . , (h + 1, k)
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Further work
• Investigate skew representation of factorial paths:

52

3
1

1

It may suggest some constraints to impose on the family of factorial
paths to discover other sequences generalizing Baxter.

• Steady paths

They are enumerated by 1, 2, 6, 23, 105, 549, . . . (A113227) and are in
simple bijection with AV(1-34-2).
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THANK YOU

for your kind attention
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