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Maps

Def. Planar map = connected graph embedded on the sphere

& »

Easier to draw in the plane (by choosing a face to be the outer face)

H - A




Maps as random discrete surfaces
Natural questions:

e Typical distance between (random) vertices in random maps
the order of magnitude is n'/4 (£ n'/2 in random trees)

random - [Chassaing-Schaeffer'04] probabilistic
quadrang. 7 . [Bouttier Di Francesco Guitter'03] exact GF expressions

e How does a random map (rescaled by n'/4) “look like” ?

convergence to the “Brownian map”

[Le Gall'1l3, Miermont'13]




Counting (rooted) maps
\ with a marked corner

e Very simple counting formulas ([Tutte'60s]), for instance
Let ¢q,, = #{rooted quadrangulations with n faces}
m, = #{rooted maps with n edges}

2 n_(2n)!
n-+2 n!(n+1)!

Then m,, = q, =
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Counting (rooted) maps
\ with a marked corner

e Very simple counting formulas ([Tutte'60s]), for instance
Let ¢q,, = #{rooted quadrangulations with n faces}
m, = #{rooted maps with n edges}

2 n (2n)!
n-+2 n!(n+1)!

Then m,, = q, =

e Proof of m,, = ¢,, by easy local bijection:

But this bijection does not preserve distance-parameters (only bounds)



The k-point function

o Let M = U, M]|n| be a family of maps (quadrangulations, general, ...)
where n is a size-parameter (# faces for quad., # edges for gen. maps)

o Let M) = family of maps from M with k& marked vertices v, ..., vg



The k-point function

o Let M = U, M]|n| be a family of maps (quadrangulations, general, ...)
where n is a size-parameter (# faces for quad., # edges for gen. maps)

o Let M) = family of maps from M with k& marked vertices v, ..., vg

Refinement by distances :
For D = (d; j)1<i<j<k any (g)—tuple of positive integers
let ./\/l%) .= subfamily of M%) where dist(v;,v;) = d;; for 1 <i < j <k

The counting series Gp = Gp(g) of M%) with respect to the size
Is called the k-point function of M

Gl

k=2 k=

dio — 3 dig = 2
di3 = 2
dos = 3

quadrangulation general map



Exact expressions for the k-point function

e For the two-point functions:

- quadrangulations [Bouttier Di Francesco Guitter’03]

- maps with prescribed (bounded) face-degrees  [Bouttier Guitter'08]
- general maps [Ambjgrn Budd’13]

- general hypermaps, general constellations [Bouttier F Guitter’13]

e For the three-point functions

- quadrangulations [Bouttier Guitter’08]

- general maps & bipartite maps [F Guitter’14]



Exact expressions for the £-point function
Outline of the talk

e For the two-point functions:

@— quadrangulatio@ [Bouttier Di Francesco Guitter’03]
uses Schaeffer’s bijection
- maps with prescribed (bounded) face-degrees  [Bouttier Guitter'08]

@_@eraﬂ maps based on cIeve,r ob_ser\_/ation [Ambjgrn Budd’'13]
on Miermont's bijection

- general hypermaps, general constellations [Bouttier F Guitter’13]

e For the three-point functions
@@crangulatio@ uses Miermont’s bijection [Bouttier Guitter’08]

@'@ral maps & bipartite m@ uses AB bijection  LF Guitter'14]




Computing the two-point function of
quadrangulations using the Schaeffer
bijection



Well-labelled trees

Well-la
- eac
- eac

pelled tree = plane tree where
n vertex v has a label {(v) € Z

n edge e = {u, v} satisfies |[{(u) — f(v)| < 1




Pointed quadrangulations, geodesic labelling
Pointed quadrangulation = quadrangulation with a marked vertex v

Geodesic labelling with respect to vg: £(v) = dist(vg, v)

Rk: two types of faces

stretched confluent




The SChaeffer bijection [Schaeffer’99], also [Cori-Vauquelin’81]

Pointed quadrangulation = well-labelled tree with min-label=1
n faces n edges




The 2-point function of quadrangulations (1)
Denote by G4 = G4(g) the two-point function of quadrangulations

bijection = G4(g) = GF of well-labelled trees with min-label=1
and with a marked vertex of label d

Rk: Gd = Fd — Fd—l = AdFd

where F; = Fy(g) = GF of well-labelled trees with positive labels
and with a marked vertex of label d



The 2-point function of quadrangulations (2)

. 1
= by = log i— T rar)

. (2) GF rooted well-labelled
with R; = . .
trees with positive labels

and label 7 at the root




The 2-point function of quadrangulations (2)

. 1
= by = log i— T rar)
v

. (2) GF rooted well-labelled
with R; = . .
trees with positive labels

and label 7 at the root

Equ. for Ri:|R; = 7 7r—3|(s0 Fi = log(R;), G4 = log(52-))




The 2-point function of quadrangulations (2)

. 1
= by = log i— T rar)

v
. (2) GF rooted well-labelled
with R; = . .
trees with positive labels

and label 7 at the root

Equ. for R;: |R; = ; (so F; =log(R;), Gq = log(R};fl ))
e Exact expression for R; [BDG’03]

; E:]ai%z F_—SF]Z] with the notation [i|, = 57—
0 2|t .

_ — _ . R =1+ 3gR?
with 1t = F(g) and 2 = x(g) given by { T = 932(1g+x +:L'2)

Ri=R

_ St/2 /1—(1+69)S—S—24g+1 .
R(g) = % z(g) = \ég v (—1+§ng J with S = /1 — 12¢g




The 2-point function of quadrangulations (2)

. 1
= by = log i— T rar)

v
. (2) GF rooted well-labelled
with R; = . .
trees with positive labels

and label 7 at the root

Equ. for R;: |R; = ; (so F; =log(R;), Gq = log(R};fl ))
e Exact expression for R; [BDG’03]

; E:]:;%Z F_—SF]Z] with the notation [i|, = 57—
i ) .

_ — _ . R =1+ 3gR?
with 1t = F(g) and 2 = x(g) given by { T = 932(1g+x +:L'2)

Ri=R

_ St/2 /1—(1+69)S—S—24g+1 .
R(g) = % x(g) = \ég v (_ngrGg T with S = /T —12g

Final 2-point function expression: |G, = log ([d[i]%[d[gi]g]z)




Asymptotic considerations
e Two-point function of (plane) trees:

Galg) = (9R*)* > X /V\ X \A/ <

with R =1+ gR? = =5 == d=5

(4 is the d th power of a series having a square-root singularity

=N d/nl/2 converges in law (Rayleigh law, density ozexp(—on))
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Asymptotic considerations
e Two-point function of (plane) trees:

Galg) = (9R*)* > X X X X <

with R =1+ gR? = =5 == d=5

(4 is the d th power of a series having a square-root singularity

=N d/nl/2 converges in law (Rayleigh law, density ozexp(—on))

e Two-point function of quadrangulations:

Gd(g) ~d— 00 alafd + agaz2d 4 ...

where © = x(g) has a quartic singularity

= d/n1/4 converges to an explicit law [BDG’03]

Convergence in the two cases “follows” from (proof by Hankel contour)
[Banderier, Flajolet, Louchard, Schaeffer’'03]: for 0 < s < 1,

s 1 o0 .
r(g) ~1—(1—-g)°= [¢g"]z*" ~ — e 'Im(exp(—at®e’™®))dt
g—1 2™ Jo



Computing the two-point and three-point
function of quadrangulations using
Miermont’s bijection



Well-labelled maps
Well-labelled map = map where

- each vertex v has a label ¢(v) € Z
- each edge e = {u, v} satisfies [{(u) —l(v)]| < 1

a well-labelled map M with 3 faces

Rk: Well-labelled tree = well-labelled map with one face



Very-well-labelled quadrangulations

Very-well-labelled quadrangulation = quadrangulation where
- each vertex v has a label ¢(v) € Z
- each edge e = {u, v} satisfies [{(u) —4(v)]| =1

Rk: two types of faces

stretched confluent

a very-well-labelled |
quadrangulation ) with 3 local min

Def: local min= vertex with all neighbours of larger label

Rk: Geodesic labelling < there is just one local min, of label 0



The Miermont bijection [Miermont'07], [Ambjgrn, Budd’13]

Very-well labelled quadrangulation ) = well-labelled map M
n faces n edges

local min v — face f
f(v) = min(f)—1
non-local min —> vertex

same label



The Miermont bijection [Miermont'07], [Ambjgrn, Budd’13]

Very-well labelled quadrangulation ) = well-labelled map M
n faces n edges

recover the Schaeffer
bijection (case of one
local min, of label 0)

local min v — face f
f(v) = min(f)—1
non-local min —> vertex

same label



Proof of the stated properties
O——® implies (O () (follows from the local rules)
@D

From each corner c in a “face” of M starts
= a label-decreasing path of () that stays in the
face and ends at a local min of ()
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@D

From each corner c in a “face” of M starts
a label-decreasing path of () that stays in the
face and ends at a local min of ()

Let n = # faces of (), p = # local min of Q, f = # “faces” of M
#V #E +#F
Q n 4+ 2 2n n
M| n+2—-p n f:,?k—l—Fp

Euler’'s relation, with
k = # connected comp. of M



Proof of the stated properties
O——® implies (O () (follows from the local rules)
@D

From each corner c in a “face” of M starts
a label-decreasing path of () that stays in the
face and ends at a local min of ()

Let n = # faces of (), p = # local min of Q, f = # “faces” of M
#V #E +#F
Q n 4+ 2 2n n
M| n+2—-p n f:,?k—l—Fp

Euler’'s relation, with

Drawing above = f < p k = # connected comp. of M

Hence £k = 1 (M connected) f = p, and there is exactly one local min of @)
in each face of M



The case of two local min .
I' the boundary, here minpr =1

dist(v1,v2) = 2 - minp — £(v1) — £(v2)




The case of two local min .
I' the boundary, here minpr =1

dist(v1,v2) = 2 - minp — £(v1) — £(v2)




The case of two local min boundary, here ming — 1

dist(v1,v2) = 2 - minp — £(v1) — £(v2)

Proof: Vv € I', a shortest path v; — v — vs () — ton)
has length 2¢(v) — £(v1) — £(v2) (because of

the existence of a label-decreasing path on Q-
each side) Y1




Another way of computing the 2-point function
[Bouttier, Guitter’'08] Let d > 2 and let s,¢ > 1 such that s+t = d

A bi-pointed quadrangulation () where dio2 = d has a unique very-well
labelling £(.) with two local min, at vy, v2, and £(vy) = —s, £(vg) = —t.

¢(.) is given by|f(v) = min(dist(vy,v)—s, dist(vg,v)—t)
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e min(f;) = —s+ 1, min(fy) = -t +1
e minpr = 0 (by preceding slide)



Another way of computing the 2-point function
[Bouttier, Guitter’'08] Let d > 2 and let s,¢ > 1 such that s+t = d

A bi-pointed quadrangulation () where dio2 = d has a unique very-well
labelling £(.) with two local min, at vy, v2, and £(vy) = —s, £(vg) = —t.

¢(.) is given by|f(v) = min(dist(vy,v)—s, dist(vg,v)—t)

The associated well-labelled map with two faces f1, fo satisfies:
e min(f;) = —s+ 1, min(fy) = -t +1
e minpr = 0 (by preceding slide)



Another way of computing the 2-point function
We conclude that, ford = s+t (s,t > 1) G4(g) is the series of

min(f;)=1-s

minp = 0

s t

V1 d15 (%)

1st method
corresponds
tot =20

Or (A := discrete differentiation) G4 = A A Fs 4, where Fy; counts

min(f1)>1—s

minp = 0



Another way of computing the 2-point function
Then by the link between cyclic and sequential excursions:
Fyp = log(Xs,¢) ,

SN~
cou nts;/ V
> 1—s | 0=€{] | €1 €2 g ‘é)m=

Equation for Xs,t: Xs,t =1+ gRSRtXS,t(l -+ gRS—I—lRt—I—le—I—l,t—I—l)

(3] [s+1] 4 [t+1] 2 [s+t+3] .
(1] [s+3] 2 [t+3]z[s+t+1] .

= recover |G g = log ([S[ji]%fgii]g]% )

solution (guessing/checking): X, =




A first covered case for the 3-point function
[Bouttier, Guitter’08] This solves the case of 3 “aligned” vertices

min( fi)=1—s

(O] U3 U2

tri-pointed quadrangulations with
d12 :8—|—t, d13 == S, d23 =1

l.e., v3 is on a geodesic path from v; to vy
at respective distances s,t from v, vs



A first covered case for the 3-point function
[Bouttier, Guitter’08] This solves the case of 3 “aligned” vertices

min( fi)=1—s

(O] U3 U2

[ tri-pointed quadrangulations with
d12 :S—|—t, d13 == S, d23 =1

l.e., v3 is on a geodesic path from v; to vy
. at respective distances s,t from vy, v9
minp = 0

Hence Git54(9) = AsAi X5y  where X, = [S]jsﬂﬁﬁigjiiﬁﬂi

X, counts




The different cases for the 3-point function
[Bouttier, Guitter’'08] D = (di2,d;3,d23) can be achieved only if

di2 < di3 4+ dos
di13 < dy2 + das
dos < dyi2 + di3



The different cases for the 3-point function
[Bouttier, Guitter’'08] D = (di2,d;3,d23) can be achieved only if

di2 < di3 + da3 dig =5+t
diz < di2 + das parametri;e diz =s+u
do3 < di2 + di3 doz =1+ u

with s, t,u >0




The different cases for the 3-point function
[Bouttier, Guitter’'08] D = (di2,d;3,d23) can be achieved only if

di2 < di3 + da3 dig =5+t
diz < di2 + das parametri;e diz =s+u
do3 < di2 + di3 doz =1+ u

with s, t,u >0

e 3 points are distinct = at most one of s,t,u is zero

e One of s,t,u (say u) is zero < aligned points (preceding slide)

e Generic case: s,t,u > 0 (non-aligned points)



The generic case dip =5+t
[Bouttier, Guitter'08] write D as dy3 = s+ u

d23 =1+ u
with s, t,u > 0

Endow () with unique very-well labelling with 3 local min at vy, v2, v3
and where £(v1)=—s, l(vg)=—t, L(v3)=—u

Apply the Miermont bijection =

obtain a 3-face well-labelled map where
min(f;)=1—s minr,, =0
min(fs)=1—t minp,, =0

min(f3)=1—vw minp,, =0




The generic case dip =5+t
[Bouttier, Guitter'08] write D as dy3 = s+ u

d23 =1+ u
with s, t,u > 0

Endow () with unique very-well labelling with 3 local min at vy, v2, v3
and where £(v1)=—s, l(vg)=—t, L(v3)=—u

Apply the Miermont bijection =

obtain a 3-face well-labelled map where
min(f;)=1—s minr,, =0
min(fs)=1—t minp,, =0

min(f3)=1—vw minp,, =0



The generic case dip =5+t
[Bouttier, Guitter’08] write D as di3 = s+ u
d23 =t4+u

with s, t,u > 0

Endow () with unique very-well labelling with 3 local min at vy, v2, v3
and where £(v1)=—s, l(vg)=—t, L(v3)=—u

Apply the Miermont bijection =

obtain a 3-face well-labelled map where
min(f;)=1—s minr,, =0
min(fs)=1—t minp,, =0

min(f3)=1—vw minp,, =0

= expression of Gg,,.dis.dos(9) @85 AsAALFy 1o, with Fi o, (g) explicit




Computing the two-point function of general
maps using the Ambjgrn-Budd bijection



The Ambjdgrn-Budd bijection A [Ambjgrn-Budd’13]
Recall the M|ermont bijection & (reformulated by Ambjgrn-Budd)

@ local min of Q

face f of W
min(f) =1+1
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The Ambjdgrn-Budd bijection A [Ambjgrn-Budd’13]
Recall the M|ermont bijection & (reformulated by Ambjgrn-Budd)

@ local min of Q

face f of W
min(f) =1+1

Let op : Z — Z
()

q)_:opoi)o‘ay

W

@ local max of Q
local max of W




The Ambjdgrn-Budd bijection A [Ambjgrn-Budd’13]
Recall the M|ermont bijection & (reformulated by Ambjgrn-Budd)

@ local min of Q

face f of W
min(f) = i+1
Letop:Z — Z ocal min of W~
1 — -1

@ local max of Q
ocal max of W
face f of W~

& max(f) =1—1

q)_:opoi)o‘ay

W




The Ambjdgrn-Budd bijection A [Ambjgrn-Budd’13]
Recall the M|ermont bijection & (reformulated by Ambjgrn-Budd)

@ local min of Q

face f of W
min(f) = i+1
Letop:Z — Z ocal min of W~
1 — -1

@ local max of Q
ocal max of W
face f of W~

& max(f) =1—1

q)_:opoq)o‘oy

W

A is a new “duality” relation
for well-labelled map



The bijection A applied to pointed maps

Rk: pointed maps+geodesic labelling <+ well-labelled maps with one
local min, of label 0

= pointed maps n edges <> well-labelled trees min-label=1 and n edges
(as for quadrang., but this time vertex of M # vy <+ non-local max of T')



The bijection A applied to pointed maps

Rk: pointed maps+geodesic labelling <+ well-labelled maps with one
local min, of label 0

= pointed maps n edges <> well-labelled trees min-label=1 and n edges
(as for quadrang., but this time vertex of M # vy <+ non-local max of T')

Rk: In that case, @~ gives a new bijection from pointed quadrangulations
with n faces to pointed maps with n edges that preserves the distances to
the pointed vertex (not the case with the easy local bijection)



The two-point function of general maps
Let GG4(g) the 2-point function of general maps

AB bijection = G4(g) is the series of well-labelled trees with min-label 1
with a marked non local max of label d
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AB bijection = G4(g) is the series of well-labelled trees with min-label 1
with a marked non local max of label d

Gg=F; — F;_{, with Fdﬁg) := the series of well-labelled trees with
positive labels and a marked non local max of label d

b = log 1—g(Ri—1+R;+Rit1) log 1-g(Ri—1+R;)

= log(1 + gR; Ri41)

= |Gy = log ([‘Hﬂéfig]) for general maps




The two-point function of general maps
Let GG4(g) the 2-point function of general maps

AB bijection = G4(g) is the series of well-labelled trees with min-label 1
with a marked non local max of label d

Gg=F; — F;_{, with Fdﬁg) := the series of well-labelled trees with
positive labels and a marked non local max of label d

b = log 1—g(Ri—1+R;+Rit1) log 1-g(Ri—1+R;)

= log(1 + gR; Ri41)

= |Gy = log ([‘Eﬂgfig]) for general maps

recall G4 = log ([d[i]%id[jﬁ];]g) for quadrang. (same asymptotic laws)



The case of two local min

Let M a well-labelled map with two local min v1, v
Let M'= A(M), let f1, fo the two faces of M’

Let I' the (cycle) boundary of M’, i := minrp

Two cases:
A): no edge of labels i —i on T’ B): 3 an edge of labels ¢ — i on T’

dist s (vy, v9) = 20 — £(v1) — £(v9) dist ys (v, v0) = 26 — £(vy) — £(v9)—1




2 other ways to compute the 2-point function
[F, Guitter’'14] For d > 1, let M a bi-pointed map with di2 = d

A) Write d as s +t with s,t > 1. Endow M with unique well-labelling

where v1,vo are unique local min and /(vy) = —s, £(vg) = —t
0 o

minp = 0
no edge 0-0 on I

B) Write d as s +t — 1 with s,¢ > 1. Endow M with unique well-labelling
where vy, v9 are unique local min and ¢(vy) = —s, f(vy) = —t

minp = 0
d edge 0-0 on I




2 other ways to compute the 2-point function
Case (A): Guri(9) = Al log(N.y) min fi)21~& '

Ns ¢
— 5 counts
XS t 1— gR RtNS b L» )

= exact expression for N ;

[s+t]2 [s+t+3]. )

recover G444 = log ([S+t_1] rt122

. ~ .
Rk: A;A;N; . gives GF of tri-pointed maps DU
with aligned points: di2, di3, dag = (s +t,s,t) (00 edge 0 — 0 on DD

Case (B): Go1i—1(9) = A 1og(1—gRisth )
— L/

Y

\counts .

[s—i—t—l]i[s—l—t—l—Z]a3 )
[s+t—2] 4 [s+t+1]2

min(f;)>1—s

recover G111 = log (

minpy = 0

S— edges 0-0



3-point function: generic (non-aligned) case
Case A: dis + di3 + da3 even
parametrize as:  d,, = s+t  with s,t,u >0
d13 =S+ U
d23 =t{4+u

endow tri-pointed map with unique “(—s, —t, —u)-well-labelling”
and apply the AB bijection A

min(f;)=1—s minr,, =0
min(fo)=1—¢t minp,, =0
min(f3)=1—u minp,, =0

and no edge 0-O on I




3-point function: generic (non-aligned) case
Case A: dis + di3 + da3 even
parametrize as:  d,, = s+t  with s,t,u >0
d13 =S+ U
d23 =t{4+u

endow tri-pointed map with unique “(—s, —t, —u)-well-labelling”
and apply the AB bijection A

min(f;)=1—s minr,, =0
min(fo)=1—¢t minp,, =0
min(f3)=1—u minp,, =0

and no edge 0-O on I




3-point function: generic (non-aligned) case
Case A: d12 -+ dlg —+ d23 even
parametrize as:  d,, = s+t  with s,t,u >0
dlg =S+ U
d23 =t{4+u

endow tri-pointed map with unique “(—s, —t, —u)-well-labelling”
and apply the AB bijection A

and no edge 0-O on I

= expression of Gy, dis.dos () @85 AgALALFSTN with FYN(g) explicit

s,t,u? s,t,u




3-point function: generic (non-aligned) case
Case B: di5 + di3 + do3 odd (dld not exist for quadrang.)

parametrize as: ;5 = s+t —1 with s,t,u > 0
d13 =s+u —1
d23 =14+ u —1

endow tri-pointed map with unique “(—s, —t, —u)-well-labelling”
and apply the AB bijection A

min(f;)=1—s minr,, =0
min(fe)=1—¢t minp,, =0
min(f3)=1—v minpr,, =0

and there is an edge 0-0
on each of Flg, Flg, Fgg




3-point function: generic (non-aligned) case
Case B: di5 + di3 + da3 odd (did not exist for quadrang.)

parametrize as: ;5 = s+t —1 with s,t,u > 0
d13 =s+u —1
d23 =14+ u —1

endow tri-pointed map with unique “(—s, —t, —u)-well-labelling”
and apply the AB bijection A

min(f;)=1—s minr,, =0
min(fe)=1—¢t minp,, =0
min(f3)=1—v minpr,, =0

and there is an edge 0-0
on each of Flg, Flg, Fgg




3-point function: generic (non-aligned) case
Case B: d12 -+ dlg -+ d23 odd (dld not exist for quadrang.)

parametrize as: ;5 = s+t —1 with s,t,u > 0
d13 =s+u —1
d23 =14+ u —1

endow tri-pointed map with unique “(—s, —t, —u)-well-labelling”
and apply the AB bijection A

min(f;)=1—s minr,, =0
min(fe)=1—¢t minp,, =0
min(f3)=1—v minpr,, =0

and there is an edge 0-0
on each of Flg, Flg, Fgg

= expression of Gg,, d,s.dos(9) a5 AsArALF9Y with F2 (g) explicit

s,t,u’ s,t,u




Examples




Conclusion and remarks

e There are exact expressions for the 2-point and 3-point functions of
quadrangulations and general maps (bijections + GF calculations)

e Asymptotically the limit laws (rescaling by n1/4) are the same
for the random quad. (),, of size n as for the random map M,, of size n

Rk: also follows from [Bettinelli, Jacob, Miermont’13]
(Qy, dist/n'/4) and (M,,,dist/n'/*) are close as metric spaces,
when coupling (M,,, @, ) by the AB bijection

e WWe can also obtain similar expressions for bipartite maps
(associated well-labelled maps are restricted to have no edge i — 1)

e The GF expressions Gp(g) for maps/bipartite maps can be extended
to expressions G p(g, z) where z marks the number of faces



