Dendric words and dendric subshifts

Paulina CECCHI B. (Joint work with Valérie Berthé)

Institute de Recherche en Informatique Fondamentale Université Paris Diderot - Paris 7

Departamento de Matemática y Ciencia de la Computación Facultad de Ciencia. Universidad de Santiago de Chile

Séminaire CALIN, Paris, July 2018

$$x=x_0x_1x_2x_3\cdots$$

$$x=x_0x_1x_2x_3\cdots$$

The language $\mathcal{L}(x)$ of x is it set of finite subwords or factors.

$$x = x_0x_1x_2x_3\cdots$$

The language $\mathcal{L}(x)$ of x is it set of finite subwords or factors.

The factor complexity of a x is the map $p_x : \mathbb{N} \to \mathbb{N}$ defined by

$$p_{x}(n) = |\mathcal{L}(x) \cap \mathcal{A}^{n}|.$$

$$x = x_0x_1x_2x_3\cdots$$

The language $\mathcal{L}(x)$ of x is it set of finite subwords or factors.

The factor complexity of a x is the map $p_x : \mathbb{N} \to \mathbb{N}$ defined by

$$p_{x}(n) = |\mathcal{L}(x) \cap \mathcal{A}^{n}|.$$

Given a factor w of x, a right extension of w is a letter $a \in \mathcal{A}$ such that $aw \in \mathcal{L}(x)$. We define analogously a left extension $(wb \in \mathcal{L}(x))$ and a biextension $(awb \in \mathcal{L}(x))$ of w.

$$x = x_0x_1x_2x_3\cdots$$

The language $\mathcal{L}(x)$ of x is it set of finite subwords or factors.

The factor complexity of a x is the map $p_x : \mathbb{N} \to \mathbb{N}$ defined by

$$p_{x}(n) = |\mathcal{L}(x) \cap \mathcal{A}^{n}|.$$

Given a factor w of x, a right extension of w is a letter $a \in \mathcal{A}$ such that $aw \in \mathcal{L}(x)$. We define analogously a left extension $(wb \in \mathcal{L}(x))$ and a biextension $(awb \in \mathcal{L}(x))$ of w.

We are interested in a family of words with linear complexity and some restrictions on the possible extensions of their factors.

Outline

- Dendric words.
- Dendric subshifts (symbolic dynamical systems).
- Exploting properties of extension graphs.
 - Balance in dendric words.
 - Invariant measures and orbit equivalence.

• Let \mathcal{A} be a finite non-empty alphabet and $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$. For $w \in \mathcal{L}(x)$, the extensions of w are the following sets,

$$L(w) = \{ a \in \mathcal{A} \mid aw \in \mathcal{L}(x) \}$$

$$R(w) = \{ a \in \mathcal{A} \mid wa \in \mathcal{L}(x) \}$$

$$B(w) = \{ (a, b) \in \mathcal{A} \times \mathcal{A} \mid awb \in \mathcal{L}(x) \}.$$

• Let \mathcal{A} be a finite non-empty alphabet and $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$. For $w \in \mathcal{L}(x)$, the extensions of w are the following sets,

$$L(w) = \{ a \in \mathcal{A} \mid aw \in \mathcal{L}(x) \}$$

$$R(w) = \{ a \in \mathcal{A} \mid wa \in \mathcal{L}(x) \}$$

$$B(w) = \{ (a, b) \in \mathcal{A} \times \mathcal{A} \mid awb \in \mathcal{L}(x) \}.$$

• The extension graph $\mathcal{E}_x(w)$ of w is the undirected bipartite graph whose set of vertices is the disjoint union of L(w) and R(w) and whose edges are the pairs $(a, b) \in B(w)$.

• Example: Consider the Fibonacci word in $\{a, b\}$

$$x = abaababaabaababaababa \cdots$$

produced by the substitution $\varphi : a \mapsto ab, b \mapsto a \ (x = \varphi^{\omega}(a)).$

• Example: Consider the Fibonacci word in $\{a, b\}$

$$x = abaababaabaababaababa \cdots$$

produced by the substitution $\varphi : a \mapsto ab, b \mapsto a \ (x = \varphi^{\omega}(a)).$

• The extension graphs of a and b are

$$\mathcal{L}_3(x) = \{aba, baa, aab, bab\}.$$

• Example: Consider the Fibonacci word in $\{a, b\}$

$$x = abaababaabaababaababa \cdots$$

produced by the substitution $\varphi : a \mapsto ab, b \mapsto a$.

• The extension graphs of aa, ab, ba are

$$\mathcal{L}_4(x) = \{abaa, baab, aaba, abab, baba\}.$$

• If for all $w \in \mathcal{L}(x)$ the graph $\mathcal{E}_x(w)$ is a tree, x is said to be dendric.

- If for all $w \in \mathcal{L}(x)$ the graph $\mathcal{E}_x(w)$ is a tree, x is said to be dendric.
- The Fibonacci word is a dendric word.

- If for all $w \in \mathcal{L}(x)$ the graph $\mathcal{E}_x(w)$ is a tree, x is said to be dendric.
- The Fibonacci word is a dendric word.
- Consider the Thue-Morse word in {a, b} given by

$$y = abbabaabbaabba \cdots$$

produced by the Thue-Morse substitution $\sigma: a \mapsto ab, b \mapsto ba$. This word is not dendric. The extension graph of ϵ is

• Sturmian words: aperiodic (bi)infinite words with factor complexity $p_x(n) = n + 1$.

- Sturmian words: aperiodic (bi)infinite words with factor complexity $p_x(n) = n + 1$.
- Arnoux-Rauzy words. Consider the alphabet $\mathcal{A} = \{1, 2, \cdots, d\}$, $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is an Arnoux-Rauzy word if every factor appears infinitely often; for all n,

$$p_n(x)=(d-1)n+1,$$

- Sturmian words: aperiodic (bi)infinite words with factor complexity $p_x(n) = n + 1$.
- Arnoux-Rauzy words. Consider the alphabet $\mathcal{A} = \{1, 2, \cdots, d\}$, $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is an Arnoux-Rauzy word if every factor appears infinitely often; for all n,

$$p_n(x)=(d-1)n+1,$$

and there exists exactly one left special factor $(L(w) \ge 2)$ and one rigth special factor $(R(v) \ge 2)$ of each given length.

- Sturmian words: aperiodic (bi)infinite words with factor complexity $p_x(n) = n + 1$.
- Arnoux-Rauzy words. Consider the alphabet $\mathcal{A} = \{1, 2, \cdots, d\}$, $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is an Arnoux-Rauzy word if every factor appears infinitely often; for all n,

$$p_n(x)=(d-1)n+1,$$

and there exists exactly one left special factor $(L(w) \ge 2)$ and one rigth special factor $(R(v) \ge 2)$ of each given length.

• Sturmian words are Arnoux-Rauzy words for d = 2.

• Codings of regular interval exchanges.

• Codings of regular interval exchanges.

Regular means that the orbits of nonzero separation points are infinite and disjoint.

• Codings of regular interval exchanges.

Regular means that the orbits of nonzero separation points are infinite and disjoint.

$$x_p = \cdots abbacb \cdot bacbbacbba \cdots$$

• The set $\mathcal{A}^{\mathbb{Z}}$ equipped with the product topology of the discrete topology is a Cantor space.

- The set $\mathcal{A}^{\mathbb{Z}}$ equipped with the product topology of the discrete topology is a Cantor space.
- The shift map T acts on $\mathcal{A}^{\mathbb{Z}}$ as $T\left((x_n)_{n\in\mathbb{Z}}\right)=(x_{n+1})_{n\in\mathbb{Z}}$.

- The set $\mathcal{A}^{\mathbb{Z}}$ equipped with the product topology of the discrete topology is a Cantor space.
- The shift map T acts on $\mathcal{A}^{\mathbb{Z}}$ as $T\left((x_n)_{n\in\mathbb{Z}}\right)=(x_{n+1})_{n\in\mathbb{Z}}$.
- A subshift is a dynamical system (X, T) where X is a closed shift-invariant subset of $\mathcal{A}^{\mathbb{Z}}$. The language \mathcal{L}_X of the subshift is defined as the union of the language of its elements.

- The set $\mathcal{A}^{\mathbb{Z}}$ equipped with the product topology of the discrete topology is a Cantor space.
- The shift map T acts on $\mathcal{A}^{\mathbb{Z}}$ as $T\left((x_n)_{n\in\mathbb{Z}}\right)=(x_{n+1})_{n\in\mathbb{Z}}.$
- A subshift is a dynamical system (X, T) where X is a closed shift-invariant subset of $\mathcal{A}^{\mathbb{Z}}$. The language \mathcal{L}_X of the subshift is defined as the union of the language of its elements.
- For all $w \in \mathcal{L}_X$, define the cylinder w as

$$[w] = \{x \in X : x_0 \cdots x_{|w|-1} = w\}.$$

The set of all cylinders is a basis of the topology of X.

• (X, T) is minimal if it admits no non-trivial closed and shift-invariant subset: every infinite word $x \in X$ is uniformly recurrent: every word occurring in x occurs infinitely often with bounded gaps, every $x \in X$ has the same language.

- (X, T) is minimal if it admits no non-trivial closed and shift-invariant subset: every infinite word $x \in X$ is uniformly recurrent: every word occurring in x occurs infinitely often with bounded gaps, every $x \in X$ has the same language.
- If for all $w \in \mathcal{L}_X$, the extension graph of w is a tree, X is called a dendric subshift.

- (X, T) is minimal if it admits no non-trivial closed and shift-invariant subset: every infinite word $x \in X$ is uniformly recurrent: every word occurring in x occurs infinitely often with bounded gaps, every $x \in X$ has the same language.
- If for all $w \in \mathcal{L}_X$, the extension graph of w is a tree, X is called a dendric subshift.
- We focus on minimal dendric subshifts. This is the case when there is a dendric word $x=(x_n)_{n\in\mathbb{Z}}$ such that the subshift $X\subseteq \mathcal{A}^{\mathbb{Z}}$ can be obtained as

$$X = \overline{\{T^k\left((x_n)_{n\in\mathbb{Z}}\right): k\in\mathbb{Z}\}}.$$

- (X, T) is minimal if it admits no non-trivial closed and shift-invariant subset: every infinite word $x \in X$ is uniformly recurrent: every word occurring in x occurs infinitely often with bounded gaps, every $x \in X$ has the same language.
- If for all $w \in \mathcal{L}_X$, the extension graph of w is a tree, X is called a dendric subshift.
- We focus on minimal dendric subshifts. This is the case when there is a dendric word $x=(x_n)_{n\in\mathbb{Z}}$ such that the subshift $X\subseteq\mathcal{A}^{\mathbb{Z}}$ can be obtained as

$$X = \overline{\{T^k\left((x_n)_{n\in\mathbb{Z}}\right): k\in\mathbb{Z}\}}.$$

• Equivalently, $X = \{y \in \mathcal{A}^{\mathbb{Z}} : \mathcal{L}(y) \subseteq \mathcal{L}(x)\}.$

Exploting properties of extension graphs.

Extension graph

Lemma (*)

Let $\mathcal T$ be a finite tree, with a bipartition X and Y of its set of vertices, with $|X|, |Y| \ge 2$. Let E be its set of edges. For all $x \in X$, $y \in Y$, define

$$Y_x := \{ y \in Y : (x, y) \in E \}$$
 $X_y := \{ x \in X : (x, y) \in E \}.$

Let (G,+) be an abelian group and H a subgroup of G. Suppose that there exists a function $g:X\cup Y\cup E\to G$ satisfying the following conditions:

- (1) $g(X \cup Y) \subseteq H$;
- (2) for all $x \in X$, $g(x) = \sum_{y \in Y_x} g(x, y)$, and for all $y \in Y$, $g(y) = \sum_{x \in X_y} g(x, y)$.

Then, for all $(x, y) \in E$, $g(x, y) \in H$.

Extension graph *Proof ideas*.

Extension graph *Proof ideas*.

• Conditions (1) and (2) imply that the image under g of any edge connected to a leaf belongs to H.

Extension graph *Proof ideas*.

- Conditions (1) and (2) imply that the image under g of any edge connected to a leaf belongs to H.
- Let $k := \max\{|X|, |Y|\}$. If k = 2, there is only one possibility for \mathcal{T} (modulo relabeling the vertices), since \mathcal{T} is connected and has no cycles, which is

Extension graph *Proof ideas*.

- Conditions (1) and (2) imply that the image under g of any edge connected to a leaf belongs to H.
- Let $k := \max\{|X|, |Y|\}$. If k = 2, there is only one possibility for \mathcal{T} (modulo relabeling the vertices), since \mathcal{T} is connected and has no cycles, which is

• Both $g(x_1, y_1)$ and $g(x_2, y_2)$ are in H because x_1 and y_2 are leaves.

Extension graph

• By Condition (2), one has $g(x_2) = g(x_2, y_1) + g(x_2, y_2)$, and then $g(x_2, y_1) = g(x_2) - g(x_2, y_2)$.

Extension graph

- By Condition (2), one has $g(x_2) = g(x_2, y_1) + g(x_2, y_2)$, and then $g(x_2, y_1) = g(x_2) g(x_2, y_2)$.
- Since $g(x_2) \in H$ by Condition (1) and H is a group, then $g(x_2, y_1) \in H$.

Extension graph

- By Condition (2), one has $g(x_2) = g(x_2, y_1) + g(x_2, y_2)$, and then $g(x_2, y_1) = g(x_2) g(x_2, y_2)$.
- Since $g(x_2) \in H$ by Condition (1) and H is a group, then $g(x_2, y_1) \in H$.
- We proceed by induction for k > 2.

An application: Balance.

• A word $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is balanced on the factor $v \in \mathcal{L}(x)$ if there exists a constant C_v such that for every pair of factors u, w in $\mathcal{L}(x)$ with |u| = |w|,

$$||u|_{v}-|w|_{v}|\leq C_{v}.$$

• A word $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is balanced on the factor $v \in \mathcal{L}(x)$ if there exists a constant C_v such that for every pair of factors u, w in $\mathcal{L}(x)$ with |u| = |w|,

$$||u|_{\nu}-|w|_{\nu}|\leq C_{\nu}.$$

• If $x \in X$ and (X, T) is minimal, balance is a property of the language \mathcal{L}_X .

• A word $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is balanced on the factor $v \in \mathcal{L}(x)$ if there exists a constant C_v such that for every pair of factors u, w in $\mathcal{L}(x)$ with |u| = |w|,

$$||u|_{\nu}-|w|_{\nu}|\leq C_{\nu}.$$

- If $x \in X$ and (X, T) is minimal, balance is a property of the language \mathcal{L}_X .
- Sturmian words are exactly the 1-balanced words on the letters.

• A word $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is balanced on the factor $v \in \mathcal{L}(x)$ if there exists a constant C_v such that for every pair of factors u, w in $\mathcal{L}(x)$ with |u| = |w|,

$$||u|_{\nu}-|w|_{\nu}|\leq C_{\nu}.$$

- If $x \in X$ and (X, T) is minimal, balance is a property of the language \mathcal{L}_X .
- Sturmian words are exactly the 1-balanced words on the letters.
- They are moreover *C*-balanced on factors of any length.

Frequencies

• The frequency of a factor $v \in \mathcal{L}(x)$ in $x \in \mathcal{A}^{\mathbb{Z}}$ is defined as the following limit (if it exists),

$$\lim_{n\to\infty}\frac{|x_{-n}\cdots x_n|_{\nu}}{2n+1}.$$

Proposition

The language \mathcal{L}_X is balanced in the factor v if and only if v has a frequency μ_v and there exists a constant B_v such that for any factor $w \in \mathcal{L}_X$, we have $||w|_v - \mu_v|w|| \leq B_v$.

• Equivalently, v has a frequency μ_v and there exists B_v such that for all $x \in X$ and for all $n \ge 1$,

$$||x_{[0,n)}|_{\nu}-\mu_{\nu}n|\leq B_{\nu}.$$

• Balance is a mesure of disorder: convergence speed of $|x_{[0,n)}|_v/n$ towards μ_v .

- Balance is a mesure of disorder: convergence speed of $|x_{[0,n)}|_v/n$ towards μ_v .
- Balance in factors of length (n + 1) implies balance in factors of length n.

- Balance is a mesure of disorder: convergence speed of $|x_{[0,n)}|_v/n$ towards μ_v .
- Balance in factors of length (n + 1) implies balance in factors of length n.
- But balance behaviour can be different in factors of different lengths.

- Balance is a mesure of disorder: convergence speed of $|x_{[0,n)}|_v/n$ towards μ_v .
- Balance in factors of length (n + 1) implies balance in factors of length n.
- But balance behaviour can be different in factors of different lengths.
- Example: the language of the Thue-Morse word is balanced on letters and it is not balanced on the factors of length ℓ for every $\ell \geq 2$.

Theorem

Let (X, T) be a minimal dendric subshift on a finite alphabet A. Then (X, T) is balanced on the letters if and only if it is balanced on the factors.

Theorem

Let (X, T) be a minimal dendric subshift on a finite alphabet A. Then (X, T) is balanced on the letters if and only if it is balanced on the factors.

Proof idea: use the following lemma,

Theorem

Let (X, T) be a minimal dendric subshift on a finite alphabet \mathcal{A} . Then (X, T) is balanced on the letters if and only if it is balanced on the factors.

Proof idea: use the following lemma,

Lemma

Let (X, T) be a minimal dendric subshift. Let H be the following subset of $C(X, \mathbb{Z})$:

$$H = \left\{ \sum_{\mathbf{a} \in \mathcal{A}} \sum_{\mathbf{k} \in \mathcal{K}_{\mathbf{a}}} \alpha(\mathbf{a}, \mathbf{k}) \chi_{T^{\mathbf{k}}([\mathbf{a}])} : \mathcal{K}_{\mathbf{a}} \subseteq \mathbb{Z}, |\mathcal{K}_{\mathbf{a}}| < \infty, \alpha(\mathbf{a}, \mathbf{k}) \in \mathbb{Z} \right\},$$

where χ_A denotes the characteristic function of the set A, for all $A \subseteq X$. Then, for all $v \in \mathcal{L}_X$, $\chi_{[v]}$ belongs to H.

• Given any factor $v \in \mathcal{L}_X$, we want to find, for all $a \in \mathcal{A}$ a finite set $K_a \subseteq \mathbb{Z}$ and for all $k \in K_a$ an integer $\alpha(a, k)$ such that

$$\chi_{[v]} = \sum_{\mathbf{a} \in \mathcal{A}} \sum_{k \in \mathcal{K}_{\mathbf{a}}} \alpha(\mathbf{a}, k) \chi_{\mathcal{T}^{k}([\mathbf{a}])}.$$

• Given any factor $v \in \mathcal{L}_X$, we want to find, for all $a \in \mathcal{A}$ a finite set $K_a \subseteq \mathbb{Z}$ and for all $k \in K_a$ an integer $\alpha(a, k)$ such that

$$\chi_{[v]} = \sum_{\mathbf{a} \in \mathcal{A}} \sum_{k \in K_{\mathbf{a}}} \alpha(\mathbf{a}, k) \chi_{T^{k}([\mathbf{a}])}.$$

• We proceed by induction on |v|. If |v| = 1, v is a letter and the conclusion follows.

• Given any factor $v \in \mathcal{L}_X$, we want to find, for all $a \in \mathcal{A}$ a finite set $K_a \subseteq \mathbb{Z}$ and for all $k \in K_a$ an integer $\alpha(a, k)$ such that

$$\chi_{[v]} = \sum_{\mathbf{a} \in \mathcal{A}} \sum_{k \in \mathcal{K}_{\mathbf{a}}} \alpha(\mathbf{a}, k) \chi_{T^k([\mathbf{a}])}.$$

- We proceed by induction on |v|. If |v| = 1, v is a letter and the conclusion follows.
- Let $v = v_0 \cdots v_n$,

$$\widetilde{v} = v_1 \cdots v_n,$$
 $v' = v_0 \cdots v_{n-1},$
 $\overline{v} = v_1 \cdots v_n.$

• If $\widetilde{v} = v_1 \cdots v_n$ has only one left extension,

• If $\widetilde{v} = v_1 \cdots v_n$ has only one left extension, for all $x \in X$, $\chi_{[v]}(x) = \chi_{[\widetilde{v}]}(Tx)$. $\chi_{[\widetilde{v}]} \in H$ by induction, so for all $x \in X$,

$$\chi_{[v]}(x) = \sum_{\mathbf{a} \in \mathcal{A}} \sum_{k \in K_{\mathbf{a}}} \alpha(\mathbf{a}, k) \chi_{T^{k}([\mathbf{a}])}(Tx)$$
$$= \sum_{\mathbf{a} \in \mathcal{A}} \sum_{k \in K_{\mathbf{a}}} \alpha(\mathbf{a}, k) \chi_{T^{k-1}([\mathbf{a}])}(x).$$

• If $\widetilde{v} = v_1 \cdots v_n$ has only one left extension, for all $x \in X$, $\chi_{[v]}(x) = \chi_{[\widetilde{v}]}(Tx)$. $\chi_{[\widetilde{v}]} \in H$ by induction, so for all $x \in X$,

$$\chi_{[v]}(x) = \sum_{a \in \mathcal{A}} \sum_{k \in K_a} \alpha(a, k) \chi_{T^k([a])}(Tx)$$
$$= \sum_{a \in \mathcal{A}} \sum_{k \in K_a} \alpha(a, k) \chi_{T^{k-1}([a])}(x).$$

Defining $K'_a := \{k - 1 : k \in K_a\}$ for all $a \in A$, and $\beta(a, k) = \alpha(a, k + 1)$ for all $k \in K'_a$, we conclude

$$\chi_{[v]}(x) = \sum_{a \in \mathcal{A}} \sum_{k \in K_a'} \beta(a, k) \chi_{T^k([a])},$$

and then $\chi_{[\nu]}$ belongs to H.

• If $v' = v_0 \cdots v_{n-1}$ has only one right extension,

• If $v' = v_0 \cdots v_{n-1}$ has only one right extension, for all $x \in X$, $\chi_{[v]}(x) = \chi_{[v']}(x)$. We conclude by applying the induction hypothesis.

- If $v' = v_0 \cdots v_{n-1}$ has only one right extension, for all $x \in X$, $\chi_{[v]}(x) = \chi_{[v']}(x)$. We conclude by applying the induction hypothesis.
- If \tilde{v} has more than one left extension and v' has more than one right extension, let $\mathcal{E}(\bar{v})$ be the extension graph of

$$\bar{v}=v_1\cdots v_{n-1}.$$

 It is a tree by definition, each of the sets in its bipartition of vertices has cardinality at least two.

- If $v' = v_0 \cdots v_{n-1}$ has only one right extension, for all $x \in X$, $\chi_{[v]}(x) = \chi_{[v']}(x)$. We conclude by applying the induction hypothesis.
- If \tilde{v} has more than one left extension and v' has more than one right extension, let $\mathcal{E}(\bar{v})$ be the extension graph of

$$\bar{v} = v_1 \cdots v_{n-1}$$
.

- It is a tree by definition, each of the sets in its bipartition of vertices has cardinality at least two.
- Note that H is a subgroup of $C(X, \mathbb{Z})$.

• Define $g: L(\bar{v}) \cup R(\bar{v}) \cup E(\bar{v}) \to C(X, \mathbb{Z})$ as follows

Proof.

• Define $g: L(\bar{v}) \cup R(\bar{v}) \cup E(\bar{v}) \rightarrow C(X, \mathbb{Z})$ as follows For $a \in L(\bar{v})$, $g(a) = \chi_{[a\bar{v}]}$. For $b \in R(\bar{v})$, $g(b) = \chi_{T^{-1}[\bar{v}b]}$. For $(a,b) \in E(\bar{v})$, $g(a,b) = \chi_{[a\bar{v}b]}$.

Proof.

- Define $g: L(\bar{v}) \cup R(\bar{v}) \cup E(\bar{v}) \rightarrow C(X, \mathbb{Z})$ as follows For $a \in L(\bar{v}), \ g(a) = \chi_{[a\bar{v}]}.$ For $b \in R(\bar{v}), \ g(b) = \chi_{T^{-1}[\bar{v}b]}.$ For $(a,b) \in E(\bar{v}), \ g(a,b) = \chi_{[a\bar{v}b]}.$
- Condition (1) of Lemma (*) holds by induction hypothesis.

Proof.

- Define $g: L(\bar{v}) \cup R(\bar{v}) \cup E(\bar{v}) \rightarrow C(X, \mathbb{Z})$ as follows For $a \in L(\bar{v}), \ g(a) = \chi_{[a\bar{v}]}.$ For $b \in R(\bar{v}), \ g(b) = \chi_{T^{-1}[\bar{v}b]}.$ For $(a,b) \in E(\bar{v}), \ g(a,b) = \chi_{[a\bar{v}b]}.$
- Condition (1) of Lemma (*) holds by induction hypothesis.
- For the second condition, let $a \in L(\bar{v})$. One has

$$\chi_{[a\bar{v}]} = \sum_{b \in R(\bar{v}), (a,b) \in E(\bar{v})} \chi_{[a\bar{v}b]}(x)$$

and thus

$$g(a) = \sum_{b \in R(\bar{v}), (a,b) \in E(\bar{v})} g(a,b).$$

• Similarly, for $b \in R(\bar{v})$ and $x \in X$, one has

$$\chi_{T^{-1}[\bar{v}b]}(x) = \chi_{[\bar{v}b]}(Tx) = \sum_{a \in L(\bar{v}), (a,b) \in E(\bar{v})} \chi_{[a\bar{v}b]}(x).$$

We conclude that for all $b \in R(\bar{v})$,

$$g(b) = \sum_{a \in L(\bar{v}), (a,b) \in E(\bar{v})} g(a,b).$$

Balance *Proof.*

• Similarly, for $b \in R(\bar{v})$ and $x \in X$, one has

$$\chi_{T^{-1}[\bar{v}b]}(x) = \chi_{[\bar{v}b]}(Tx) = \sum_{a \in L(\bar{v}), (a,b) \in E(\bar{v})} \chi_{[a\bar{v}b]}(x).$$

We conclude that for all $b \in R(\bar{v})$,

$$g(b) = \sum_{a \in L(\bar{v}), (a,b) \in E(\bar{v})} g(a,b).$$

• Thanks to Lemma (\star) , every g(a,b) belongs to H. In particular, $g(v_0,v_n)=\chi_{[v]}\in H$.

Balance *Proof of the theorem.*

• Suppose (X, T) is balance on every letter. Let C be a constant of balance on the letters.

- Suppose (X, T) is balance on every letter. Let C be a constant of balance on the letters.
- Let $v \in \mathcal{L}_X$. Let $n \geq 3$ and let u, w be two factors of \mathcal{L}_X of length n-1 with n-1 > |v|. Pick a bi-infinite word $x \in X$ such that $u = x_{[i,i+n)}$ and $w = x_{[j,j+n)}$ for some indices $i,j \in \mathbb{Z}$. We have

$$||u|_{v}-|w|_{v}|=\left|\sum_{\ell=i}^{i+n-1-|v|}\chi_{[v]}(T^{\ell}x)-\sum_{\ell=j}^{j+n-1-|v|}\chi_{[v]}(T^{\ell}x)\right|.$$

$$||u|_{v} - |w|_{v}| = \left| \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_{a}} \alpha(a, k) \left(\sum_{\ell=i}^{i+n-1-|v|} \chi_{T^{k}[a]}(T^{\ell}x) - \sum_{\ell=j}^{j+n-1-|v|} \chi_{T^{k}[a]}(T^{\ell}x) \right) \right|$$

$$||u|_{v} - |w|_{v}| = \left| \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_{a}} \alpha(a, k) \left(\sum_{\ell=i}^{i+n-1-|v|} \chi_{T^{k}[a]}(T^{\ell}x) - \sum_{\ell=j}^{j+n-1-|v|} \chi_{T^{k}[a]}(T^{\ell}x) \right) \right|$$

$$\leq \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_{a}} |\alpha(a, k)| \left| \sum_{\ell=i}^{i+n-1-|v|} \chi_{T^{k}[a]}(T^{\ell}x) - \sum_{\ell=j}^{j+n-1-|v|} \chi_{T^{k}[a]}(T^{\ell}x) \right|$$

$$||u|_{v} - |w|_{v}| = \left| \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_{a}} \alpha(a, k) \left(\sum_{\ell=i}^{i+n-1-|v|} \chi_{T^{k}[a]}(T^{\ell}x) - \sum_{\ell=j}^{j+n-1-|v|} \chi_{T^{k}[a]}(T^{\ell}x) \right) \right|$$

$$\leq \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_{a}} |\alpha(a, k)| \left| \sum_{\ell=i}^{i+n-1-|v|} \chi_{T^{k}[a]}(T^{\ell}x) - \sum_{\ell=j}^{j+n-1-|v|} \chi_{T^{k}[a]}(T^{\ell}x) \right|$$

$$= \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_{a}} |\alpha(a, k)| \left| \sum_{\ell=i}^{i+n-1-|v|} \chi_{[a]}(T^{\ell}(T^{-k}x)) - \sum_{\ell=i}^{j+n-1-|v|} \chi_{[a]}(T^{\ell}(T^{-k}x)) \right|$$

$$||u|_{v} - |w|_{v}| = \left| \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_{a}} \alpha(a, k) \left(\sum_{\ell=i}^{i+n-1-|v|} \chi_{\mathcal{T}^{k}[a]}(\mathcal{T}^{\ell}x) - \sum_{\ell=j}^{j+n-1-|v|} \chi_{\mathcal{T}^{k}[a]}(\mathcal{T}^{\ell}x) \right) \right|$$

$$\leq \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_{a}} |\alpha(a, k)| \left| \sum_{\ell=i}^{i+n-1-|v|} \chi_{\mathcal{T}^{k}[a]}(\mathcal{T}^{\ell}x) - \sum_{\ell=j}^{j+n-1-|v|} \chi_{\mathcal{T}^{k}[a]}(\mathcal{T}^{\ell}x) \right|$$

$$= \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_{a}} |\alpha(a, k)| \left| \sum_{\ell=i}^{i+n-1-|v|} \chi_{[a]}(\mathcal{T}^{\ell}(\mathcal{T}^{-k}x)) - \sum_{\ell=j}^{j+n-1-|v|} \chi_{[a]}(\mathcal{T}^{\ell}(\mathcal{T}^{-k}x)) \right|$$

$$= \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_{a}} |\alpha(a, k)| \cdot \underbrace{||(\mathcal{T}^{-k}x)_{[i, i+n-|v|)}|_{a} - |(\mathcal{T}^{-k}x)_{[j, j+n-|v|)}|_{a}}.$$

Proof of the theorem.

$$||u|_{v} - |w|_{v}| = \left| \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_{a}} \alpha(a, k) \left(\sum_{\ell=i}^{i+n-1-|v|} \chi_{T^{k}[a]}(T^{\ell}x) - \sum_{\ell=j}^{j+n-1-|v|} \chi_{T^{k}[a]}(T^{\ell}x) \right) \right|$$

$$\leq \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_{a}} |\alpha(a, k)| \left| \sum_{\ell=i}^{i+n-1-|v|} \chi_{T^{k}[a]}(T^{\ell}x) - \sum_{\ell=j}^{j+n-1-|v|} \chi_{T^{k}[a]}(T^{\ell}x) \right|$$

$$= \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_{a}} |\alpha(a, k)| \left| \sum_{\ell=i}^{i+n-1-|v|} \chi_{[a]}(T^{\ell}(T^{-k}x)) - \sum_{\ell=j}^{j+n-1-|v|} \chi_{[a]}(T^{\ell}(T^{-k}x)) \right|$$

$$= \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_{a}} |\alpha(a, k)| \cdot \underbrace{||(T^{-k}x)_{[i, i+n-|v|)}|_{a} - |(T^{-k}x)_{[j, j+n-|v|)}|_{a}}_{l}.$$

Then, $||u|_v - |w|_v| \le |\mathcal{A}|KC$, $K = \max_{a \in \mathcal{A}} \{\sum_{k \in K_a} |\alpha(a, k)|\}$.

$$\sigma_i: i \mapsto i; j \mapsto ji \text{ for } i \neq j.$$

• Let $A = \{1, \dots, d\}$. The set of Elementary Arnoux-Rauzy substitutions defined on A is $\{\sigma_i : i \in A\}$ given by

$$\sigma_i: i \mapsto i; j \mapsto ji \text{ for } i \neq j.$$

• An Arnoux-Rauzy substitution is a finite product of σ_i 's.

$$\sigma_i: i \mapsto i; j \mapsto ji \text{ for } i \neq j.$$

- An Arnoux-Rauzy substitution is a finite product of σ_i 's.
- A substitution σ on \mathcal{A} is said to be primitive if there exists a positive integer N such that for every $a, b \in \mathcal{A}$, b appears in $\sigma^N(a)$.
- Words produced by primitive Arnoux-Rauzy substitutions are known to be balanced on the letters (they are Pisot substitutions).

$$\sigma_i: i \mapsto i; j \mapsto ji \text{ for } i \neq j.$$

- An Arnoux-Rauzy substitution is a finite product of σ_i 's.
- A substitution σ on \mathcal{A} is said to be primitive if there exists a positive integer N such that for every $a, b \in \mathcal{A}$, b appears in $\sigma^N(a)$.
- Words produced by primitive Arnoux-Rauzy substitutions are known to be balanced on the letters (they are Pisot substitutions).
- We know automatically that they are balanced on all factors.

$$\sigma_i: i \mapsto i; j \mapsto ji \text{ for } i \neq j.$$

- An Arnoux-Rauzy substitution is a finite product of σ_i 's.
- A substitution σ on \mathcal{A} is said to be primitive if there exists a positive integer N such that for every $a, b \in \mathcal{A}$, b appears in $\sigma^N(a)$.
- Words produced by primitive Arnoux-Rauzy substitutions are known to be balanced on the letters (they are Pisot substitutions).
- We know automatically that they are balanced on all factors.
- Another sufficient conditions exist to guarrantee balance on letters for Arnoux-Rauzy words.

Another application: Invariant measures and Orbit equivalence.

• A probability measure μ on the compact metric space X is T-invariant if for all Borel subset B of X,

$$\mu(T^{-1}(B)) = \mu(B).$$

• A probability measure μ on the compact metric space X is T-invariant if for all Borel subset B of X,

$$\mu(T^{-1}(B)) = \mu(B).$$

 Every dynamical system has invariant measures (Krylov-Bogolyubov's theorem).

• A probability measure μ on the compact metric space X is T-invariant if for all Borel subset B of X,

$$\mu(T^{-1}(B)) = \mu(B).$$

- Every dynamical system has invariant measures (Krylov-Bogolyubov's theorem).
- (X, T) is said to be uniquely ergodic if there exists only one invariant measure.

• A probability measure μ on the compact metric space X is T-invariant if for all Borel subset B of X,

$$\mu(T^{-1}(B)) = \mu(B).$$

- Every dynamical system has invariant measures (Krylov-Bogolyubov's theorem).
- (X, T) is said to be uniquely ergodic if there exists only one invariant measure.
- For minimal systems, unique ergodicity is equivalent to having frequencies.

• Let $\mathcal{M}(X,T)$ the set of T-invariant measures on X. The Image subgroup of (X,T) is the following subgroup of \mathbb{R} .

$$I(X,T) = \bigcap_{\mu \in \mathcal{M}(X,T)} \left\{ \int f d\mu : f \in C(X,\mathbb{Z}) \right\}.$$

• Let $\mathcal{M}(X, T)$ the set of T-invariant measures on X. The Image subgroup of (X, T) is the following subgroup of \mathbb{R} .

$$I(X,T) = \bigcap_{\mu \in \mathcal{M}(X,T)} \left\{ \int f d\mu : f \in C(X,\mathbb{Z}) \right\}.$$

One can show that

$$I(X, T) = \bigcap_{\mu \in \mathcal{M}(X, T)} \langle \mu([w]) : w \in \mathcal{L}_X \rangle.$$

• Let $\mathcal{M}(X,T)$ the set of T-invariant measures on X. The Image subgroup of (X,T) is the following subgroup of \mathbb{R} .

$$I(X,T) = \bigcap_{\mu \in \mathcal{M}(X,T)} \left\{ \int f d\mu : f \in C(X,\mathbb{Z}) \right\}.$$

One can show that

$$I(X,T) = \bigcap_{\mu \in \mathcal{M}(X,T)} \langle \mu([w]) : w \in \mathcal{L}_X \rangle.$$

• If (X, T) is uniquely ergodic with measure μ ,

$$I(X, T) = \langle \mu([w]) : w \in \mathcal{L}_X \rangle$$
.

• Let $\mathcal{M}(X,T)$ the set of T-invariant measures on X. The Image subgroup of (X,T) is the following subgroup of \mathbb{R} .

$$I(X,T) = \bigcap_{\mu \in \mathcal{M}(X,T)} \left\{ \int f d\mu : f \in C(X,\mathbb{Z}) \right\}.$$

One can show that

$$I(X,T) = \bigcap_{\mu \in \mathcal{M}(X,T)} \langle \mu([w]) : w \in \mathcal{L}_X \rangle.$$

• If (X, T) is uniquely ergodic with measure μ ,

$$I(X, T) = \langle \mu([w]) : w \in \mathcal{L}_X \rangle$$
.

• The triple $(I(X, T), I(X, T) \cap \mathbb{R}^+, 1)$ is an order group with unit.

- The triple $(I(X, T), I(X, T) \cap \mathbb{R}^+, 1)$ is an order group with unit.
- $(I(X, T), I(X, T) \cap \mathbb{R}^+, 1)$ is total invariant for Orbit equivalence [Giordano-Putnam-Skau95].
- (X, T) and (Y, S) are orbit equivalent if there is a homeomorphism $h: X \to Y$ such that for all $x \in X$

$$h(\{T^n(x): n \in \mathbb{Z}\}) = \{S^n(h(x)): n \in \mathbb{Z}\},\$$

that is, *h* sends orbits onto orbits.

Theorem

Let (X, T) a uniquely ergodic dendric subshift over the alphabet A and μ its unique invariant measure. Then, the image subgroup of (X, T) is

$$I(X, T) = \sum_{a \in A} \mathbb{Z}\mu([a]).$$

Theorem

Let (X, T) a uniquely ergodic dendric subshift over the alphabet A and μ its unique invariant measure. Then, the image subgroup of (X, T) is

$$I(X, T) = \sum_{a \in A} \mathbb{Z}\mu([a]).$$

Corollary

Two minimal uniquely ergodic dendric subshifts are orbit equivalent if and only if they have the same additive group of letter frequencies.

Theorem

Let (X, T) a uniquely ergodic dendric subshift over the alphabet A and μ its unique invariant measure. Then, the image subgroup of (X, T) is

$$I(X,T) = \sum_{a \in A} \mathbb{Z}\mu([a]).$$

Corollary

Two minimal uniquely ergodic dendric subshifts are orbit equivalent if and only if they have the same additive group of letter frequencies.

Corollary

All dendric subshifts over a three-letter alphabet with the same letter frequencies are orbit equivalent.