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Cellular automata (CA)
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I An infinite lattice of cells (in this talk, we consider 1D-CA),

I each cell has a state chosen from a finite set.

I This state evolves over time according to a unique local rule ...

I ... applied simultaneously and uniformly.
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I Syntactically, a CA is given by

I a regular lattice of cells (Z in this talk)

I a finite set of states, the alphabet:
Q, with n = |Q|.

I a finite neighbourhood:
V = {ν1, ν2, ..., νk} ⊆ Z

I a local evolution rule
δ : Qk → Q

⇒ A 1D-CA is given by a triplet (Q,V , δ)

I It defines a global behaviour

I for configurations x ∈ QZ

I the global rule: F : QZ → QZ

is defined locally:
F (x)z = δ(xz+ν1 , xz+ν2 , . . . , xz+νk )
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Some examples (1/2)

I MAX is ({0, 1}, {−1, 0, 1}, δMAX : x , y , z 7→ max(x , y , z)) :

I JustGliders is ({L, ∅,R}, {−1, 0, 1}, δJG ) with δJG s.t. L
moves left, R moves right, and they disappear if they collide :
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Some examples (2/2)

I 184 is ({0, 1}, {−1, 0, 1}, δ184) with δ184 :


10? 7→ 1

?10 7→ 0

?11 7→ 1

00? 7→ 0
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Exploring the set of CA : a historical review

Here we don’t focus on particular CA :

I What are CA in general ?

The usual answer :
I Study properties of CA:

I global maps properties : surjectivity, injectivity, ...
I topological properties (equicontinuity, sensitivity, expansivity...)
I specific tools such as limit sets

I Classify:
I In a finite number of classes

I empirical classifications due to Wolfram (from experiences)
I topological classification (Kurka...)
I ...

I More finely
I using the preorder induced by the intrinsic simulation relation

I No quantitative information !
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Limit sets of CA

A tool to study long term behaviour of CA.

I For one given CA A,

Definition (Limit set)

ΩA
def
=

⋂
t∈N
At(QZ)

”Configurations that may appear arbitrarily late in the evolution.”

Examples :

I ΩMAX = {ω1ω} ∪ {ω0ω} ∪ {ω1 · 0ω} ∪ {ω0 · 1ω} ∪ {ω1 · 0∗ · 1ω}
I ΩJustGliders = ω {R, ∅} · {L, ∅}ω

Definition (Nilpotency)

A ∈ Nil
def⇔ ΩA = {c}

”The CA always converges to this single configuration.”
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Intrinsic simulation (1/2)

Mazoyer, Delorme, Rapaport, Ollinger, Theyssier (1998-2010)
I A simulation relation
Two ingredients :

I the sub-automaton relation v
restriction of the local rule to a stable subset of Q
Example : in JustGliders: {L, ∅} defines a sub-automaton,
{L,R} doesn’t.

I rescalings (spatio-temporal transforms)
I packing
I time cutting
I shifting

Definition (Simulation)

4v
def⇔ v up to spatio-temporal transform

”The simulator can emulate uniformly the behaviour of the
simulated CA.”

Cellular Automata – Simulations and universality 10/32
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Intrinsic simulation (2/2)

Definition (Universality)

U ∈ Univ
def⇔ ∀A, A4vU

”U is able to emulate the behaviour of any other CA.”

Theorem (N. Ollinger – 2003)

There exists a universal CA.

Remarks :

I Central notion in CA litterature,

I Stronger than Turing universality in CA,

I Elements of Univ are maximal elements in the preorder
induced by 4v.

Cellular Automata – Simulations and universality 11/32



Intrinsic simulation (2/2)

Definition (Universality)

U ∈ Univ
def⇔ ∀A, A4vU

”U is able to emulate the behaviour of any other CA.”

Theorem (N. Ollinger – 2003)

There exists a universal CA.

Remarks :

I Central notion in CA litterature,

I Stronger than Turing universality in CA,

I Elements of Univ are maximal elements in the preorder
induced by 4v.

Cellular Automata – Simulations and universality 11/32



Intrinsic simulation (2/2)

Definition (Universality)

U ∈ Univ
def⇔ ∀A, A4vU

”U is able to emulate the behaviour of any other CA.”

Theorem (N. Ollinger – 2003)

There exists a universal CA.

Remarks :

I Central notion in CA litterature,

I Stronger than Turing universality in CA,

I Elements of Univ are maximal elements in the preorder
induced by 4v.

Cellular Automata – Simulations and universality 11/32



Subfamilies of CA (example 1)

I Captive CA

Definition (Captive CA)

A ∈ K def⇔ ∀x1, x2, . . . , xk ∈ Q,
δA(x1, x2, . . . , xk) ∈ {x1, x2, . . . , xk}

I Introduced by G. Theyssier (2004),
I under some conditions most captive CA are universal (2005).
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Subfamilies of CA (example 2)

I Multiset CA

Definition (Multiset CA)

A ∈MS def⇔
for all permutation π : {1, . . . k} → {1, . . . k},
δA(x1, x2, . . . , xk) = δA(xπ(1), xπ(2), . . . , xπ(k))

I Captures the idea of isotropy.
I Other interesting properties (rescalings...).
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Motivations and previous related work

I Goal:

I quantify properties of CA,

I precise properties of random CA.

I Previous related work :
I Dubacq, Durand, Formenti – 2001

I used Kolmogorov complexity as a classification parameter,
I proved that some properties are rare.

I Theyssier – 2005
I Studied density of universality among captive CA.

I Our contribution :

I a unified framework to study density among CA or subfamilies,

I various results.
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Objects and properties

I What objects ?

We consider the set CA of triplets (Qn,Vk , δ) for n, k ∈ N, with

I Qn = {0, 1, . . . , n − 1}
I Vk centered and connected neighbourhood of size k

I δ any function (Qn)k → Qn

1. some restrictions
 but no influence on results.

2. syntactical descriptions
 but redundancy does not biaised results.

We consider densities among CA or among subfamilies C ⊆ CA.

I Which properties ?
Any subset P ⊆ CA.
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Enumeration

CA is infinite =⇒ asymptotic densities,

I Which enumerations of CA ?
Every possible enumeration  meaningless results.

But a natural possibility:

I pack CA by size (n, k),

CAn,k
def
= {(Qn,Vk , δ)} and Cn,k

def
= C ∩ CAn,k

I and consider the proportions

Dn,k(C,P)
def
=

# (Cn,k ∩ P)

# (Cn,k)

Cn,k elements of size (n, k) of the family C,
P a property.
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Paths among sizes

Dn,k(C,P) has no canonical limit,
I How to consider successive sizes (n, k) ?

Definition (Paths)

ρ path
def⇔ ρ : N→ N2 injective

I ρ (n0, k0)-path
def⇔ ρ(N) ⊆ Nn0 × Nk0

I ρ (n0, k0)-surjective
def⇔ ρ(N) = Nn0 × Nk0

I We may consider

I every possible size (with surjective path)

I or particular paths
e.g. if ρn = π1 ◦ ρ or ρk = π2 ◦ ρ is upperbounded)
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Density of properties

Definition (Density of P among C following ρ :)

dρ(C,P)
def
= lim

i→∞

#
(
Cρ(i) ∩ P

)
#
(
Cρ(i)

) if the limit exists.

”The limit of the proportion along the path.”

Remarks :

1. not always defined

2. non-cumulative density.

3. P negligible along ρ
def⇔ dρ(CA,P) = 0

Proposition

Density is path-independent in the surjective case.
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One example

I Quiescent CA

A ∈ Quies
def⇔ ∃x ∈ QA, δA(x , x , . . . , x) = x

Dn,k(CA,Quies) = 1−
(

1− 1

n

)n

Which yields to the following densities

I dρ(CA,Quies) = 1− 1
e if limi→∞ ρn(i) = +∞

I dρ(CA,Quies) = 1− (1− 1
n0

)n0 if limi→∞ ρn(i) = n0

I dρ(CA,Quies) is not defined if limi→∞ ρn(i) does not exists.

Density of properties – Densities among CA 20/32



One example

I Quiescent CA

A ∈ Quies
def⇔ ∃x ∈ QA, δA(x , x , . . . , x) = x

Dn,k(CA,Quies) = 1−
(

1− 1

n

)n

Which yields to the following densities

I dρ(CA,Quies) = 1− 1
e if limi→∞ ρn(i) = +∞

I dρ(CA,Quies) = 1− (1− 1
n0

)n0 if limi→∞ ρn(i) = n0

I dρ(CA,Quies) is not defined if limi→∞ ρn(i) does not exists.

Density of properties – Densities among CA 20/32



One example

I Quiescent CA

A ∈ Quies
def⇔ ∃x ∈ QA, δA(x , x , . . . , x) = x

Dn,k(CA,Quies) = 1−
(

1− 1

n

)n

Which yields to the following densities

I dρ(CA,Quies) = 1− 1
e if limi→∞ ρn(i) = +∞

I dρ(CA,Quies) = 1− (1− 1
n0

)n0 if limi→∞ ρn(i) = n0

I dρ(CA,Quies) is not defined if limi→∞ ρn(i) does not exists.

Density of properties – Densities among CA 20/32



One example

I Quiescent CA

A ∈ Quies
def⇔ ∃x ∈ QA, δA(x , x , . . . , x) = x

Dn,k(CA,Quies) = 1−
(

1− 1

n

)n

Which yields to the following densities

I dρ(CA,Quies) = 1− 1
e if limi→∞ ρn(i) = +∞

I dρ(CA,Quies) = 1− (1− 1
n0

)n0 if limi→∞ ρn(i) = n0

I dρ(CA,Quies) is not defined if limi→∞ ρn(i) does not exists.

Density of properties – Densities among CA 20/32

k

n



One example

I Quiescent CA

A ∈ Quies
def⇔ ∃x ∈ QA, δA(x , x , . . . , x) = x

Dn,k(CA,Quies) = 1−
(

1− 1

n

)n

Which yields to the following densities

I dρ(CA,Quies) = 1− 1
e if limi→∞ ρn(i) = +∞

I dρ(CA,Quies) = 1− (1− 1
n0

)n0 if limi→∞ ρn(i) = n0

I dρ(CA,Quies) is not defined if limi→∞ ρn(i) does not exists.

Density of properties – Densities among CA 20/32

k

n



One example

I Quiescent CA

A ∈ Quies
def⇔ ∃x ∈ QA, δA(x , x , . . . , x) = x

Dn,k(CA,Quies) = 1−
(

1− 1

n

)n

Which yields to the following densities

I dρ(CA,Quies) = 1− 1
e if limi→∞ ρn(i) = +∞

I dρ(CA,Quies) = 1− (1− 1
n0

)n0 if limi→∞ ρn(i) = n0

I dρ(CA,Quies) is not defined if limi→∞ ρn(i) does not exists.

Density of properties – Densities among CA 20/32

k

n



Density of nilpotency

Theorem
Nil is negligible among CA following any (2, 1)-path.

Lemma (gluing)

+ + ⇒

+ specific combinatorial arguments for each case.
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Intuitions (1/2): Fixed neighbourhood

“With increasing number of states, Nil is negligible.”

I Consider the graph of uniform configurations (Qn,GA):

I Qn the alphabet

I (x , y) ∈ GA
def⇔ δA(xkA) = y

I Two properties :

I A ∈ Nil =⇒ (Qn,GA) is a tree,

I the map A 7→ GA is balanced.

I “trees are asympotically negligible among functionnal graphs”...
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Intuitions (2/2): Fixed state set

“With increasing neighbourhood, Nil is negligible.”

Periodic subshifts: ∀u ∈ Q∗n , Σu
def⇔ ωuω

I A ∈ Nil =⇒ A(Σu) 6⊆ Σu

A

p p

k

v

u

v

u

v v

uu u

I Transitions u∗ 7→ x are constrained,
I Combining those constraints makes it possible to conclude..
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Link with Kolmogorov Complexity

”K (u)
def⇔ |shortest algorithmical description of u|”

u c-random
def⇔ K (u) ≥ l − c .

Lemma (Well-known Kolmogorov complexity result)

The proportion of c-random words in {0, 1}l is less than 1/2l−c .

I Kolmogorov complexity for CA rules :

Lemma [
A ∈ P ⇒ K (A) << |A|

] ⇒ P is negligible.

I Gives a procedure to prove negligeability:
“Describe shortly CA from P.”
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CA having a sub-automaton

Proposition

The set of CA having a non-trivial sub-automaton is negligible
among any (1, 3)-path.

I To describe a CA A of size (n, k) having a sub-automaton B
of size (m, k), 1 < m < n, it is sufficient to describe :

1. the size m

log(n) bits

2. the states of the sub-automaton

m.log(n) bits

3. the transition rule of B

mk .log(m) bits

4. the remaining transitions

(nk −mk).log(n) bits

I Which takes a total number of
(1 + m).dlog(m)e+ dmk .log(m)e+ d(nk −mk).log(n)e bits

I The gain tends to infinity (...).
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Propagation of information

“Propagation of a state at maximal speed on a uniform backgound.”

I Density with increasing number of states ?

Theorem
The CA having at least one state propagating on a uniform
background is 1 among the set CA

I Mind the cycle of uniform configurations.
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Propagation of information

Let X be a cycle on the graph of uniform configurations.

I Consider the functional graphs (Qn × X ,GA) such that:

I ((x , y), (z , t)) ∈ GA
def⇔ [δA(x · ykA−1) = z and δA(ykA) = t]

I a state propagate in A ⇒ GA contains at least 2 cycles,
I the map (A,X ) 7→ GA is balanced.

I The probability to have 2 cycles is at least ε with 0 < ε < 1.
I In random functional graphs, the number of cycles is increasing
with the number of states.
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Summary and main results about density among CA

I A general framework

I Link with Kolmogorov complexity

I Important density results :

1. Nilpotency

2. Information propagation on a uniform background

3. Results about limit sets (size of the smallest word of Eden...)

NB: 2 classes out of 4 from Kurka’s classification are negligible.
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Density among subclasses

Theorem (Theyssier – 2004)

The density of universal CA among captive CA is 1.

(along paths with constant neighbourhood.)

Using our framework,

I we extended this result

1. to other syntactically defined subsets of CA,

2. still studying the universality,

3. with various path adapted to each subsets.
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Main results
syntactically defined subclasses  universality everywhere

Theorem
Among multiset CA the density of univerality along any path with
constant state set is 1.

I Dual of the captive case.

Theorem
Among multiset captive CA the density of univerality along any
path is 1.

I Most general case.

I Other similar results (set captive, outer-totalistic, persistent...).
Two necessary steps for each family :
I Point out a universal CA in C,
I Find possible simulation subshifts,

I in increasing number along the considered paths,
I on which the simulating probability is not too small,
I which are independents.
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Density of universality among sublclasses : summary

I Many results of high density of universality among syntactically
defined subclasses.

I No real understanding of this phenomenon

I Do local restrictions increase the structure ?

I Or is universality widespread in the general case of CA ?

I Universality is not as algorithmic as we thought before.
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Perspectives for density questions

I Among subclasses :

I Give a global understanding to our results !

a new technique: relate density between different families.

I In the general case :
I Extend the set of quantified properties.

I Propagation of information
?
 sensitivity,

=⇒ would conclude the quantification of Kurka’s classification.
I Universality, or height in the simulation pre-order.
I Other notions of universality.

I Average computability (The problem of Nil).

I In both cases, precise the information :

I Convergence speed of limit densities,

I Precise finite proportions.
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