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The Ising model and the
XOR-Ising model



The Ising model

I Let G = (V,E) be a finite graph embedded in the plane
I spin configuration σ : V −→ {−1,+1}
I σ assigns to every vertex x a spin σx ∈ {−,+}

+1/−1 are represented by green/blue dots.



The Ising model

I Edges of G are assigned positive coupling constants:
J = (Je)e∈E.

I Ising Boltzmann measure:

∀σ ∈ {−1, 1}V, PIsing(σ) =
1

ZIsing(G, J)
exp

 ∑
e=xy∈E

Jxyσxσy

 ,

where ZIsing(G, J) =
∑

σ∈{−1,1}V
exp

 ∑
e=xy∈E

Jxyσxσy

 is the

Ising partition function.
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Conjecture for the XOR-Ising model

Conjecture (Wilson (11), Ikhlef–Picco–Santachiara)

The scaling limit of polygon configurations separating ±1 clusters
of the critical XOR-Ising model are contour lines of the Gaussian
free field, with the heights of the contours spaced

√
2 times as far

apart as they are for [...] the double dimer model on the square
lattice.



Result

Theorem (B–dT)

I Polygon configurations of the XOR-Ising model have the same
law as a family of contours in a bipartite dimer model.

I This family of contours are the level lines of a restriction of
the height function of this bipartite dimer model.

Remark
Proved when the graph G is embedded in a surface of genus g, or
when G is planar, infinite.

I When the XOR-Ising model is critical, so is the bipartite
dimer model.

I Using results of [dT] on the convergence of the height
function, this gives partial proof of Wilson’s conjecture.



Contour expansion of the Ising
partition function [Kramers &

Wannier]



Low temperature expansion

I Polygon configuration: subset of edges s.t. each vertex is
incident to an even number of edges.

I Write eJeσxσy = eJe(δ{σx=σy} + e−2Jeδ{σx 6=σy}).

The partition function is then equal to (LTE):

ZIsing(G, J) =
∑

σ∈{−1,1}V

∏
e=xy∈E

eJeσxσy = C
∑

P∗∈P(G∗)

∏
e∗∈P∗

e−2Je .

I Geometric interp: polygon config. separate clusters of ±1
spins.



High temperature expansion

I Write, eJeσxσy = cosh(Je)(1 + σxσy tanh(Je)).

The partition function is then equal to (HTE):

ZIsing(G, J) =
∑

σ∈{−1,1}V

∏
e=xy∈E

eJeσxσy = C′
∑

P∈P(G)

∏
e∈P

tanh(Je).

I No geometric interpretation using spin configurations.



Mixed contour expansion for
the double Ising model



The double Ising model

I Take 2 independent copies (red/blue) of an Ising model on G,
with coupling constants J .

I Using the LTE, consider the probability measure P2-Ising:
if P∗, P∗ are two polygon configurations.

P2-Ising(P∗,P∗) =

C2
( ∏
e∗∈P∗

e−2Je
)( ∏
e∗∈P∗

e−2Je
)

Z2-Ising(G, J)
,

where Z2-Ising(G, J) = ZIsing(G, J)2.



The double Ising model

I Let P∗, P∗ be two polygon configurations.

I Consider the superimposition P∗ ∪ P∗.

I Define two new edge configurations:
I Mono(P∗,P∗): monochromatic edges.
I Bi(P∗,P∗): bichromatic edges.



Monochromatic edges

Monochromatic edge configuration of P∗ ∪ P∗

Lemma
Mono(P∗,P∗) is the polygon configuration separating ±1 clusters
of the corresponding XOR-Ising spin configuration.

Goal: understand the law of monochromatic edge configurations.



Bichromatic edge configurations

I Let (P∗,P∗) be two polygon configurations.

I Mono(P∗,P∗) splits the surface into connected comp. (Σi)i.

Σ6

Σ7

Σ2

Σ5

Σ9 Σ8

Σ4

Σ1

Σ3

Lemma
For every i, the restriction of Bi(P∗,P∗) to Σi is the LTE of an
Ising configuration on GΣi , with coupling constants (2Je).



Probability of monochromatic configurations

Lemma
Let P∗ be a polygon configuration, separating the surface into
n connected components. For every i, let P∗i be a polygon
configuration of G∗Σi

.

Then, there are 2n pairs of polygon configurations (P∗,P∗) having
P∗ as monochromatic edges, and P∗1, · · · ,P∗n as bichromatic edges.

Denote by W (P∗) the contribution to Z2-Ising(G, J) of the pairs of
polygon configurations (P∗,P∗) such that Mono(P∗,P∗) = P∗.

Corollary

I W (P∗) = C
(∏

e∗∈P∗ e
−2Je

)∏n
i=1

(
2ZLT(G∗Σi

, 2J)
)

I Z2-Ising(G, J) =
∑

P∗∈P(G∗)W (P∗)

P2-Ising(Mono = P∗) = W (P∗)
Z2-Ising(G,J) .



Mixed contour expansion

W (P∗) = C
(∏

e∗∈P∗ e
−2Je

)∏n
i=1

(
2ZLT(G∗Σi

, 2J)
)
.

Idea [Nienhuis]: high temperature expansion in each connected
component Σi.

ZLT(G∗Σi
, 2J) = C(Σi)ZHT(GΣi , 2J).

Low temp. expansion on G∗Σi
High temp. expansion on GΣi

.



Mixed contour expansion

Proposition
For every polygon configuration P∗,

W (P∗) = C
∏

e∗∈P∗

(
2e−2Je

1 + e−4Je

) ∑
{P∈P(G):P∗∩P=∅}

∏
e∈P

(
1− e−4Je

1 + e−4Je

)

P2-Ising(Mono = P∗) =

∏
e∗∈P∗

(
2e−2Je

1+e−4Je

) ∑
{P∈P(G): P∗∩P=∅}

∏
e∈P

(
1−e−4Je

1+e−4Je

)
∑

P∗∈P(G∗)
···



Higher genus

If the graph is embedded in a surface Σ of genus g ≥ 0.

I Consider H1(Σ,Z/2Z) ' {0, 1}2g.

I Family of Ising models, indexed by ε ∈ {0, 1}2g.

I The double Ising model partition function is defined as:

Z2-Ising(G, J) =
∑

ε∈{0,1}2g
ZεIsing(G, J)2.



From mixed polygon
configurations to dimers



The graph GQ = (VQ,EQ)



The dimer model on GQ

dimer configuration of GQ: a subset of edges M such that each
vertex is incident to exactly on edge of M

weight function ν on the edges
Dimer Boltzmann measure: Pdimer(M) ∝

∏
e∈EQ νe
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The dimer model on GQ

dimer configuration of GQ: a subset of edges M such that each
vertex is incident to exactly on edge of M

weight function ν on the edges
Dimer Boltzmann measure: Pdimer(M) ∝

∏
e∈EQ νe



First step: from polygons to 6-vertex [Nienhuis]

1 2 3 4 5 6

1 2 3 4 5 6Local mapping

Weights: ω12 = 2e−2Je

1+e−4Je
, ω34 = 1−e−4Je

1+e−4Je
, ω56 = 1.
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Second step: from 6V to dimers [Wu-Lin, Dubédat]

1 2 3 4 5 6

= 1+
2 2

1

1

1 1

1
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Conclusion

I To every dimer configuration M of GQ, assign

Poly(M) = (Poly1(M),Poly2(M)),

the pair of polygon configurations given by the mappings.

Theorem
For every polygon configuration P∗ of G∗,

P2-Ising(Mono = P∗) = Pdimer(Poly1 = P∗)



Height function for bipartite dimers (Thurston)



Height function for bipartite dimers (Thurston)
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Height function for bipartite dimers (Thurston)
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Height function for bipartite dimers (Thurston)
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The critical XOR-Ising model on
isoradial graphs



Isoradial graphs

A graph G is isoradial if it is planar and can be embedded in the
plane in such a way that all faces are inscribed in a circle of
radius 1, and that the circumcenters are in the interior of the faces.
[Duffin, Mercat, Kenyon]



Isoradial graphs



Isoradial graphs



Isoradial graphs



Isoradial graphs



Associated rhombus graph



Critical Ising model on isoradial graphs

I To each edge e is naturally associated an angle θe
I The Ising model defined on an isoradial graph G is

critical if the coupling constants are given by:

Je =
1

2
log

(
1 + sin θe

cos θe

)
.

(Z-invariance + duality [Baxter], proof in period. case [Li,

Duminil–Cimasoni])

Example: G = Z2: θe = π
4 , Je = 1

2 log(1 +
√

2).

I The corresponding bipartite graph GQ is also isoradial,
and the weights are the critical dimer weights:

θe

e

sin

sin

θ

cosθ

θ

cos θ
θ

1

1 1

1



Back to Wilson’s conjecture

Conjecture (Wilson)

The scaling limit of polygon configurations separating ±1 clusters
of the critical XOR-Ising model are contour lines of the Gaussian
free field, with the heights of the contours spaced

√
2 times as far

apart as they are for [...] the double dimer model on the square
lattice.

Theorem (B–dT)

XOR-polygon configurations of the double Ising model on G have
the same law as level lines of a restriction of the height function of
the bipartite dimer model on GQ, with an explicit coupling.

Theorem (dT)

The height function (as a random distribution) of the critical dimer
model defined on a bipartite graph converges weakly in law to 1√

π

a Gaussian free field of the plane.



Back to Wilson’s conjecture

Suppose we had strong form of convergence, allowing for
convergence of level lines. Then:

level lines of hε → level lines of GFF

(k, k ∈ Z) (
√
πk, k ∈ Z)

(k + 1
2 , k ∈ Z) (

√
π

2 (2k + 1), k ∈ Z) XOR loops

For the critical double dimer model. The height function is
hε1 − hε2, where h1 and h2 are independent, and each converges
weakly in distribution to 1√

π
a Gaussian free field. Thus, h1 − h2

converges weakly in distribution to
√

2√
π

a Gaussian free field.

level lines of hε1 − hε2 → level lines of GFF

(k, k ∈ Z) (
√
π√
2
k, k ∈ Z)

(k + 1
2 , k ∈ Z) (

√
π

2
√

2
(2k + 1), k ∈ Z) d-dimer loops
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