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Deterministic Finite Automata and their Graphs

By deterministic finite automaton (DFA) A we mean 〈Q,Σ〉, where Q
is the state set and Σ is the alphabet; each a ∈ Σ is a mapping from Q
to Q.

The underlying graph of each letter a ∈ Σ defined as
UG(a) = (Q, {(p,p.a) | p ∈ Q}) consists of one or more
connected components called clusters.

The underlying graph of A is the edge union of the underlying
graphs of its letters.

Automata are usually classified by their underlying graphs.
Examples: circular, one-cluster, Eulerian, etc.
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Synchronizing Automata

The set of words Σ∗ corresponds to the transformation monoid.

A word v is reset for A if it is a constant mapping, that is,
q.v = p.v for each p,q ∈ Q. In other words, each path labeled by
v leads to a particular state.

A is called synchronizing if it possesses a reset word.

The minimum length of reset words for A is called its reset
threshold.

Applications: coding theory, data transmission, robotics, software
verification, dna-computing, symbolic dynamics, etc.
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The History
The notion was formalized in a paper by Jan Černý (Poznámka
k homogénnym eksperimentom s konečnými automatami,
Matematicko-fyzikalny Časopis Slovensk. Akad. Vied 14, no.3 (1964)
208–216 [in Slovak]) though implicitly it had been around since at least
1956.

The idea of synchronization is pretty natural and of obvious
importance: we aim to restore control over a device whose current
state is not known.

Think of a satellite which loops around the Moon and cannot be
controlled from the Earth while “behind” the Moon (Černý’s original
motivation).

Independently, the same notion was discovered in coding theory
by Shimon Even (Test for synchronizability of finite automata and
variable length codes, IEEE Trans. Inform. Theory 10 (1964)
185–189). The name synchronizing seems to have originated
from Even’s paper.
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Matematicko-fyzikalny Časopis Slovensk. Akad. Vied 14, no.3 (1964)
208–216 [in Slovak]) though implicitly it had been around since at least
1956.

The idea of synchronization is pretty natural and of obvious
importance: we aim to restore control over a device whose current
state is not known.

Think of a satellite which loops around the Moon and cannot be
controlled from the Earth while “behind” the Moon (Černý’s original
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k homogénnym eksperimentom s konečnými automatami,
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Greedy compressing algorithm for synchronization

1 2

34

b b
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A reset word is v =baababaaab.
δ(Q, v) =

The word v is reset whence rt(A ) ≤ |v | = 10.

The shortest reset word for A is ba3ba3b whence rt(A ) = 9 < |v |.
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Various Settings for Synchronization and Outline
Whether or not a given automaton is synchronizing?

If it is synchronizing, how hard is to synchronize it?

1 Deterministic Setting
Černý conjecture and Markov Chains
Testing for Synchronization
Random Case
Expected Reset Threshold
Computing Reset Thresholds

2 Modifiable Setting
Road Coloring Problem
Computing Synchronizing Colorings

3 Stochastic Setting
Synchronization and Prediction Rates
Markov Chain Convergence vs Reset Threshold
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The Černý conjecture

Černý, 1964

For each n there is an n-state automaton Cn with rt(Cn) = (n − 1)2.

The Černý conjecture, 1964
Each n-state synchronizing automaton has a reset word of length
(n − 1)2, i.e. rt(A ) ≤ (n − 1)2.

Greedy compression algorithm yields the cubic upper bound Θ(n3/2)
for the reset threshold.

Pin, 1983 (based on a combinatorial result of Frankl, 1982)

Each n-state automaton has a reset word of length (n3 − n)/6.

Quadratic upper bounds on the reset threshold?
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Particular Cases
Quadratic bounds were approved for various classes:

Circular automata with prime number of states [Pin, 1978];
Orientable automata [Eppstein, 1990];
Circular automata [Dubuc, 1998];
Eulerian automata [Kari, 2003];
Aperiodic automata [Trahtman, 2007];
Weakly-monotonic automata [Volkov, 2009];
With monoids belonging to DS class automata [Almeida, Margolis,
Steinberg, Volkov, 2009];
One-cluster automata [Béal M., Perrin D., 2009];
One-cluster with prime number of states [Steinberg, 2011];
Respecting intervals of a directed graph automata [Grech,
Kisielewicz, 2012];
...

Linear Algebra, Group and Semigroup theories, theory of Markov
chains, ...

Mikhail V. Berlinkov Paris, 2015 8 / 22



Example from the Italian Job Movie
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Kari Automaton and Greedy Extension Method

0 1 2

543

a a

a
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bbb
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b

A reset word is the reverse to v = baabbbabbaab...
Augmenting sequence is v1 = b, v2 = aabb, v3 = babbaab, v4 = . . ..

This method is optimal for the Černý series but returns a reset word of
length more than 25 = (6 − 1)2 for this automaton.
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length more than 25 = (6 − 1)2 for this automaton.
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Random Walk Synchronization
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The probability of catching is

Augmenting sequence w.r.t. α is b.aaa.ba.a.a.b

The lengths of words in the augmenting sequence w.r.t. α is always at
most n − 1 but there can be a-priori even exponential.

The method can be extended to sets of words uW where u is a
‘’compressing words” and W is “complete” for < Q.u > keeping |uW |
bound for augmenting words.
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Synchronizing Automata and Markov Chains
Let A = (Q,Σ) be a s.c. automaton.

B. IJFCS 2012
The following are equivalent

1 There is a p.d. π : Σn−1 7→ R+ with the stationary distribution α of
the Markov chain M (A n−1, π);

2 A is synchronizing and for each x /∈< 1n > there is a word
u ∈ Σn−1 such that (αu, x) > (α, x);

Corollary: Renew and generalize quadratic bounds on the r.t. for
Eulerian and one-cluster case.

Berlinkov, M; Szykuła, M; 2015 (submitted to MFCS)

n log3 n bound for the reset threshold of Prefix Code Automata.

The Černý conjecture for automata with a letter of rank 3
√

6n − 6.
The previous bound is 1 + log2 n.
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Testing for Synchronization

Černý, 1964
A is synchronizing if and only if each pair of states p,q can be
synchronized, i.e. p.v = q.v for some v ∈ Σ∗.

The criterion yields O(n2) algorithm (basically due to Eppstein) which
verifies whether or not A is synchronizing.

Are there more effective (on average) algorithms?
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The probability of being synchronizable
Let A = (Q,Σ) be an n-state random automaton, that is, the actions of
all k letters are chosen u.a.r. and independently from the set of all nn

mappings.

The probability is 1 −Θ(1
n ) for k = 2? [Cameron, 2011].

B. 2013 in ArXiv

The probability for automata of being synchronizable is 1 − O( 1
nk/2 )

and the bound is tight for the 2-letter alphabet case.

B. 2013 in ArXiv
Given a random n-state automaton, testing for synchronization can be
done in O(n) expected time (and it is optimal).

1 Connected case? Supposed bound is 1 − αn for some α < 1.
2 k-ary alphabet? Supposed bound is 1 −Θ(1/nk−1).
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Expected Reset Threshold

Let A be a random n-state synchronizing automaton.
What is the expected reset threshold of A ?

Experiments show that the expected reset threshold is in Ω(2.5
√

n)
[Kisielewicz, Kowalski, Szykuła 2012].

Nycaud, 2014
For each 0 < ǫ < 1/8 a random binary n-state automaton has a reset
word of length at most n1+ǫ with probability 1 − O(n−

1
8+ǫ).

This yields O(n2.875) upper bound on the expected reset threshold.

Corollary; B., Szykuła, 2015 (submitted to MFCS)

The expected value of the reset threshold is at most n7/4+o(1).

We guess the bound can be improved to n1+o(1).

Mikhail V. Berlinkov Paris, 2015 15 / 22
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Hardness of Computing a Reset Threshold

Given a k-letter n-state synchronizing automaton A , compute its reset
threshold.

Unless P = NP, there are no polynomial-time algorithm for the
following approximation.

exactly [Rystsov, 1980; Eppstein, 1990],

within any constant factor for k = 2 [B. CSR, 2010],

within c log n for k ↑ [Gerbush, Heeringa, 2011],

within 0.5c log n for k = 2 [B. 2013]

within nǫ for k = 2 and certain ǫ > 0 [Gawrychovski, 2014].

What is the minimum of ǫ ≤ 1 for which nǫ-approximation is possible?
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Finding Reset Words of Prescribed Lengths

Given a k-letter n-state synchronizing automaton A such that
rt(A ) ≤ L, return a reset word of length at most L.

Greedy compression algorithm for the general case;

Particular classes for which the proof is constructive and
polynomial;

B., Szykuła, 2015 (submitted)
Polynomial algorithms for (Quasi-)Eulerian, (Quasi-)One-Cluster and
Prefix code automata.

Given a k-letter n-state circular synchronizing automaton, return a
reset word of length at most (n − 1)2.
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Road Coloring Problem

Let A be a (non-synchronizing) automaton. Is there a synchronizing
automaton B with the same underlying graph as A ?

Road Coloring Problem [Adler, Goodwin, Weiss, 1977]
Does each strongly-connected aperiodic graph (AGW-graph) have a
synchronizing coloring?

Trahtman, 2007
Each AGW-graph has a synchronizing coloring.

Proof sketch:

Find a coloring s.t. one letter has a unique highest tree;

Find a stable pair of states at the bottom of this tree.

Consider the factor automaton with respect to the stability relation.
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Computing Synchronizing Coloring

Let A be an n-state automaton with AGW-graph. How complicated to
find a synchronizing coloring?

Trahtman, 2008
Cubic time algorithm.

Béal, Perrin, 2008
Quadratic time algorithm.

How complicated to find an optimal synchronizing coloring?

B. 2009, Applied Discrete Mathematics J. (in Russian)
No polynomial time algorithm can approximate this problem within a
constant factor less than 2.

Complexity of approximation within factor 2?
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Synchronization and Prediction Rates
Let A be a s.c. automaton equipped with transition probabilities
defined for each state independently. If there are no pairs with
equivalent probability future, A is called an ǫ-machine.

Travers, N.; Crutchfield, P; 2011

Let pj(u) be the probability of the most probable state if u ∈ Σj is
generated by A . Then for some 0 < a,b < 1

If A is synchronizing then Pr(pj < 1) ≤ O(aL) - exact;

If A is not synchronizing, Pr(pj < 1 − bL) → 0 - asymptotic.

The infinum of such a and b are called synchronization rate and
prediction rate constants resp.

B. 2014 (in ArXiv)
The synchronization and prediction rate constants can be
approximated in polynomial time with any given precision.
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Markov Chain Convergence vs Reset Threshold

Let u ∈ Σj be a randomly generated word by ǫ-machine A and p ∈ Q
and j ≥ n − 1. Then rt(A ) ≤ j if either

Pr(u is reset ) > 0 or
∑

q∈Q Pr(p.u 6= q.u) < 1 or

Pr(q1.u = p;q2.u = p) ≥ Pr(q1.u = p)Pr(q2.u = p).

Suppose A has the AGW-graph; Then

The corresponding Markov chain M is mixing.

Due to the RCP solution, we can define a synchronizing
automaton within the probability distribution on the alphabet such
that the induced Markov chain is M [Kouji Yano, Kenji Yasutom].

Does the condition that a graph is the AGW-graph imply faster
convergence of M?
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Toward the solution of the Černý Conjecture
Université Paris Diderot (LIAFA), May, 29
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