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Introduction
Generalized Fourier Series

F(x) = anthn(x)

n=0
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More generally (¢/,(x)),cny can be an orthogonal basis of a Hilbert space.
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Introduction
Good approximation properties.

Approximation of arctan(2x) by Taylor expansion of degree 1
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Introduction
Good approximation properties.

Bad approximation outside its circle of convergence
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Introduction
Good approximation properties.

approximation of arctan(2x) by Chebyshev expansion of degree 1
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Introduction
Good approximation properties.

bad approximation over R
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Introduction
Good approximation properties.

approximation of arctan(2x) by Hermite expansion of degree 1
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Introduction
Our framework

Families of functions t,(x) with two special properties
Mult by x (Py)

Recy (Xi/)n(X)) = Reca (¢n(X))

Examples

Monomial polynomials
(M, = x")

All orthogonal polynomials
Bessel functions

Legendre functions

Parabolic cylinder functions

5 /21

Alexandre Benoit Generalized Fourier Series for Solutions of Linear Differential Equations.



Introduction
Our framework

Families of functions t,(x) with two special properties
Mult by x (Py)

Recy (Xi/)n(X)) = Reca (¢n(X))

Examples

@ Monomial polynomials

(M, = x") xM, = M, 1
@ All orthogonal polynomials 2xTp(x) = Thpp1(x) + Tho1(x)
Bessel functi 1
@ Bessel functions : (<Jne1 — xJn_1) = 20,

@ Legendre functions

@ Parabolic cylinder functions
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Introduction

Our framework

Families of functions t,(x) with two special properties

Recxa (x10n(x)) = Recx (¥n(x))

Differentiation (Pp)

Recar (V(x)) = Recar (¥n(x))

Monomial polynomials

Classical orthogonal
polynomials

Bessel functions

Legendre functions

@ Parabolic cylinder functions
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Introduction

Our framework

Families of functions t,(x) with two special properties

Recxa (x10n(x)) = Recx (¥n(x))

Differentiation (Pp)

Recar (V(x)) = Recar (¥n(x))

!
@ Monomial polynomials Mo = nMp—
1 1
@ Classical orthogonal — Toa(x) — r— T, 1(x) = 2T,(x)
polynomials A , n=
. 205(x) = Ja-1(x) = Jnta(x)
@ Bessel functions
@ Legendre functions
@ Parabolic cylinder functions
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Introduction
Our framework

Families of functions 1,(x) with two special properties
Mult by x (Py)

Recxa (x1hn(x)) = Recx (¥n(x))

Differentiation (Pj)

Recsr (¢;(X)) = Recay (wn(X))

This is our data-structure for 1,(x)

M
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Introduction

Main ldea

Main Idea

If 1n(x) satisfies (Px) and (Py), for any f(x) = > anthn(x) solution of a
linear differential equation with polynomial coefficients, the coefficients a,
are cancelled by a linear recurrence relation with polynomial coefficients.
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Introduction
Main ldea

Main Idea
If 1n(x) satisfies (Px) and (Py), for any f(x) = > anthn(x) solution of a
linear differential equation with polynomial coefficients, the coefficients a,
are cancelled by a linear recurrence relation with polynomial coefficients.
Applications:

o Efficient numerical computation of the coefficients.

e Computation of closed-form for the coefficients (when it's possible).
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Introduction
Previous work

@ Clenshaw (1957): numerical scheme to compute the coefficients
when ¥,(x) = Tp(x) (Chebyshev series).

@ Lewanowicz (1976-2004): algorithms to compute a recurrence
relation when v, is an orthogonal or semi-orthogonal polynomial
family.

@ Rebillard and Zakrajsek (2006): General algorithm computing a
recurrence relation when 1, is a family of hypergeometric
polynomials

@ Benoit and Salvy (2009) : Simple unified presentation and
complexity analysis of the previous algorithms using Fractions of
recurrence relations when v, = T,. New and fast algorithm to
compute the Chebyshev recurrence.
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Introduction

New Results (2011)

@ Simple unified presentation of the previous algorithms using
Pairs of recurrence relations.

o New general algorithm computing the recurrence relation of the
coefficients for a Generalized Fourier Series when 1),(x) satisfies

(Py) and (Py).
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Pairs of Recurrence Relations

Il Pairs of Recurrence Relations
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Pairs of Recurrence Relations

Examples: Chebyshev case (f(x) = > u, T,(x))

Basic rules:

Up—1+ Upy1

xf = Z an Ty (Px ap = >

fl=> bT, (Pa) b1 — b1 = 2nu,.
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Pairs of Recurrence Relations

Examples: Chebyshev case (f(x) = > u, T,(x))

Basic rules:
Up—1+ Upy1
f= nTn x n— A
X Z a (P a >
fr=2 bTn  (Po) br—1— bny1 = 2nu,.
Combine:

fl 4+ 2xf = Z cnTh (Ps + 273)(! Cn—1 — Cnr1 = Recy(up).

Application: Chebyshev series for exp(—x?).
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Pairs of Recurrence Relations

Examples: Chebyshev case (f(x) = > u, T,(x))

Basic rules:
Up—1+ Upy1
f= nTn x n— A
X Z a (P a >
fr=2 bTn  (Po) br—1— bny1 = 2nu,.
Combine:

fl 4+ 2xf = Z cnTh (Ps + 273)(! Cn—1 — Cnr1 = Recy(up).

Application: Chebyshev series for exp(—x?).

(F +2xf) =Y daTa  (Po dp_1 — dpy1 = 20Cp,
— Reca(dp) = Recs(un),
(f' +2xf) — 2f = Ze,,T,, — Recy(e,) = Recs(uy).

Application: Chebyshev series for erf(x).
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Pairs of Recurrence Relations
Rings of Pairs of Recurrence Relations

Theorem (Least Common Left Multiple (Ore 33))

Given Rec; and Recy, there exists a recurrence relation Rec and a pair

(Rfégl, F\’fe\c12> such that for all sequences (un),cy :

Rec (u,) = REI o Rec; (u,) = RAeE2 o Recy (u,)
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Pairs of Recurrence Relations
Rings of Pairs of Recurrence Relations

Theorem (Least Common Left Multiple (Ore 33))

Given Rec; and Recy, there exists a recurrence relation Rec and a pair

(Rfégl, F\’fe\c12> such that for all sequences (un),cy :

Rec (u,) = REI o Rec; (u,) = RAeE2 o Recy (u,)

@ The LCLM is the recurrence relation Rec with minimal order.
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Pairs of Recurrence Relations
Rings of Pairs of Recurrence Relations

Theorem (Least Common Left Multiple (Ore 33))

Given Rec; and Recy, there exists a recurrence relation Rec and a pair

(Rfégl, F\’fe\c12> such that for all sequences (un),cy :

Rec (u,) = REI o Rec; (u,) = RAeE2 o Recy (u,)

@ The LCLM is the recurrence relation Rec with minimal order.
@ Computation : Euclidean algorithm.
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Pairs of Recurrence Relations
Operations of addition and composition

Rec = lclm(Recy, Recy) = Re\cl oRec; = Re\Q o Recy

Operation 1: Addition

Rec;(an) = Recs(uy,), Reca(b,) = Reca(up)

Rec(an) = Recy o Recs(u,), Rec(b,) = Recy o Recy(u,)
— Rec(a, + b,) = (Rfégl o Recs +Iig/c2 o Rec4) (upn).
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Pairs of Recurrence Relations

Operations of addition and composition

Rec = lclm(Recy, Recy) = Re\cl oRec; = Re\Q o Recy

Operation 1: Addition

Rec;(an) = Recs(uy,), Reca(b,) = Reca(up)

Rec(an) = Recy o Recs(u,), Rec(b,) = Recy o Recy(u,)
— Rec(a, + b,) = (Rfégl o Recs +Iig/c2 o Rec4) (upn).

Operation 2: Composition

Rec; (u,) = Recs(a,), Reca(u,) = Recy(by)
Rec(u,) = Recy o Recy(u,) = Recy o Reco(uy,)

— Rec; o Recz(a,) = Recy o Recy(by).
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Pairs of Recurrence Relations
Main Result

Main Result : Morphism

There exists a morphism @ such thatif f = > uph,(x) and g = > vpths(x)
are related by L (f) = g (L a linear differential operator), then:

¢ (L) = (Recy, Recy)  with  Recy (u,) = Recy (v,)

In particular if L(f) =0, then Rec; (u,) = 0.
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Pairs of Recurrence Relations

Definition of the Morphism ¢

f= Z Unwn(X) g =

Z Va¥n(x)

¢(x)
Recxa (xthn(x)) = Reck (¥n(x))

rif xf = g, then
Recxz (Un) = Recyy (vi)

¢(9)
Recaz (¥,(x)) = Recor (¥n(x))

rif f' = g, then
Recs1 (un) = Recgp (vn)
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Pairs of Recurrence Relations

Definition of the Morphism ¢

f= Z Unthn(x) g = Z Vathn(x)

( o(x) rif xf = g, then
LRecxg (x¥n(x)) = Recx (¥n(x)) \ Recxz (Un) = Recyy (vi)
f 0() [if f = g, then
LReCaz (1 (x)) = Recor (¥n(x) \ Recs1 (un) = Recgp (vn)

Example for Chebyshev series:

f 2XTn(X) = Tn+1(X) + Tnfl(X)

Unt1 + Up—1 = 2V,

¥
T/ T/ 1
;:l_(i() = ;7_1(])-() = 2Tn(X) 2u, = n (Vn—l - Vn+1)

Example for Bessel series
( 1 _ Va1 Vn—1

= (<1 = xJp1) = 21 © 2un =T T T

24,(x) = Jn-1(x) = Jnsa(x) i, = il = 2
\ 14 / 21
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Pairs of Recurrence Relations

General Algorithm

Recall

e Definition of ¢ (x) and ¢ (9)
@ Algorithms to compute addition and composition between two pairs
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Pairs of Recurrence Relations
General Algorithm

Recall
e Definition of ¢ (x) and ¢ (9)
@ Algorithms to compute addition and composition between two pairs

General Algorithm

We deduce from this morphism a general Horner-like algorithm to
compute the recurrence relation satisfied by the coefficients of a
generalized Fourier series solution of a linear differential equation.
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Recurrences of Smaller Order

1l Recurrences of Smaller Order
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Recurrences of Smaller Order

Greatest Common Divisor and Reduction of Order

Given a pair (Reci, Recz), the Euclidean algorithm computes the greatest recur-
rence relation Rec (GCLD) such that there exists a pair (li;a, Fggz) with the
following relations for all sequences (un),cy and (vn),en:

Rec oRec; (un) = Recy (up)

Rec oRec, (vn) = Reca (vn)
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Recurrences of Smaller Order

Greatest Common Divisor and Reduction of Order

Given a pair (Reci, Recz), the Euclidean algorithm computes the greatest recur-
rence relation Rec (GCLD) such that there exists a pair (li;a, Fggz) with the
following relations for all sequences (un),cy and (vn),en:

Rec oRec; (un) = Recy (up)

Rec oRec, (v,) = Recs (v,)

The orders of the recurrence relations Rec; are at most those of Rec;.
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Recurrences of Smaller Order

Greatest Common Divisor and Reduction of Order

Given a pair (Reci, Recz), the Euclidean algorithm computes the greatest recur-
rence relation Rec (GCLD) such that there exists a pair (li;a, Fggz) with the

following relations for all sequences (un),cy and (vn),en:

Rec oRec; (un) = Recy (up)
Rec oRec, (vn) = Reca (vn)

The orders of the recurrence relations Rec; are at most those of Rec;.

In a general case, we don't have :

Recy (1) = Recy(vy) = Recy(un) = Reca(vy),
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Recurrences of Smaller Order
G CD for reduction of order

Given L a linear differential operator, f = > upt)n(x), & = > Vathn(x)
such that L(f) = g and a pair (Recy, Recy) = p(L). We have

Recy (up) = Recs (vy)
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Recurrences of Smaller Order
G CD for reduction of order

Given L a linear differential operator, f = > upt)n(x), & = > Vathn(x)
such that L(f) = g and a pair (Recy, Recy) = p(L). We have

Recy (un) = Recy (vi)

Application: Adaptation of the previous algorithm

At the end of the previous algorithm, add a final step:
Remove the GCLD of the two recurrence relations of the pair.
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Recurrences of Smaller Order
Example of reduction for Chebyshev series

4
\/l—XQZZW(2n+ T2nX) ZCn n
neN

neN

V1 — x? is the solution of the differential equation:

xy(x) + (1= x%)y'(x) =0
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Recurrences of Smaller Order
Example of reduction for Chebyshev series

4
\/l—XQZZW(2n+ T2nX) ZCn n
neN

neN

V1 — x? is the solution of the differential equation:
xy(x) + (1= x)y'(x) =0

With the general algorithm we obtain the pair of recurrence relations :

Recy (un) = (n43)upro—2nup+(n—3)up—» and Recy (v) = 2(— Vg1 + Va—1) -

We deduce : (n+ 3)cy12 — 2nc, + (n — 3)cy—2 = 0.
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Recurrences of Smaller Order
Example of reduction for Chebyshev series

4
\/l—XQZZW(2n+ T2nX) ZCn n
neN

neN

V1 — x? is the solution of the differential equation:
xy(x) + (1= x*)y'(x) =0

With the general algorithm we obtain the pair of recurrence relations :

Recy (un) = (n43)upro—2nup+(n—3)up—» and Recy (v) = 2(— Vg1 + Va—1) -
We deduce : (n+ 3)cy12 — 2nc, + (n — 3)cy—2 = 0.
Recy (un) = (7 + 2)tps1 — (n — 2)up_1 and Recy (v,) = 2v,.

We deduce : (n+2)cy11 — (n—2)c,—1 = 0.
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Conclusion

IV Conclusion
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Conclusion

Conclusion

Contributions:
@ Use of Pairs of recurrence relations.
o New general algorithm.

@ Use of the GCLD to reduce order of the recurrence.
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Conclusion
Conclusion

Contributions:

@ Use of Pairs of recurrence relations.

o New general algorithm.

@ Use of the GCLD to reduce order of the recurrence.
Perspectives:

@ Computation of the recurrence of minimal order.

@ Numerical computation of the coefficients.

@ Closed form for the coefficients.

o0

erf (x) = 22 4= (=1)"1F(n+1/2;2n+2; —1)

=0 VT (2n+1)n! Tans1 (%)

@ Integration in the Dynamic Dictionary of Mathematical Functions.
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