Joint work with

Michael Albert (NZ)

Arnar Arnarson (ICE)

Ragnar Ardal (ICE > Bloomberg)
Anders Claesson (ICE)

Unnar Erlendsson (ICE > Google)
Tomas Magnusson (ICE > Google)
Emile Nadeau (ICE)

Jay Pantone (US)

Henning Ulfarsson (ICE)

CHRISTIAN BEAN, REYKJAVIK UNIVERSITY > UNIVERSITE PARIS 13

COMBINATORIAL EXPLORATION: GUIDED
BY HUMANS, PROVEN BY COMPUTER

LIPN, UNIVERSITE PARIS 13, SEMINAIRE'DE COMBINATOIRE, DECEMBER 3, 2019

COMBINATORIAL OBJECTS

Permutations: A reordering of the integers 12--:n.
25314 is a permutation of length 5

Words: Given an alphabet, say {a, b, ¢}, we consider

all finite strings, such as bbacbaac

Standard Young Tableaux: Increasing rows, increasing columns

1 112 1 112 113 1123 1 1 7112
2 3 2 2 9
3 4 11011
5|13

A combinatorial set is a set of objects with an associated size function
such that there are finitely many objects of each size

ENUMERATIVE COMBINATORICS

FindStat: www.findstat.org Graphs
Database for information on and connections

. : . Ordered trees
between combinatorial objects

Cores

Posets

° . . \ s
Counting how many objects are of a given size Binary trees
Generate larger objects from smaller instances

Sample objects uniformly at random wyamuons

Standard tableaux 7 _—Dyck paths Binary words

Find bijections to other objects

Gelfand-Tsetlin patterns

O\

Semistandard tableaux

Permutations
Integer compositions
\ g

To answer these we
need to understand the
structure of the objects

Parking functions

Alternating sign matrices
Set partitions

Perfect matchings

http://www.findstat.org

WALKING IN THE PLANE

We start with a simple example: Walks in the plane consisting of NE, and SE steps
Y

We can build a path by

appending either O or 1
to a shorter one

7 110100010010111

Generating functions: Quick introduction

{e} 0o/ 1.of

WALKING IN THE PLANE

If we are interested in a counting sequence (q, a,a,5, a3, ...,4,, ...)
we can “store” it in the formal power series

A(X) = ay+ a;x + ax* + ax> + - +a, x" + -

This is the generating function of the counting sequence

The constant sequence (1,1,1,1,1,1,...) has the generating function

1

1 —x

l+x+x2+x0+ x4+ x0+ - =

The Fibonacci numbers (1,1,2,3,5,8,...) have the generating function

14+ x+2x% 4+ 3x7 + 5x* 4+ 8x° + - =

1

] —x — x2

WALKING IN THE PLANE

We start with a simple example: Walks in the plane consisting of NE, and SE steps

We can build a path by
appending either O or 1
to a shorter one

o

{e} 0o/

1o/

110100010010111

Generating functions
Ax) =1+ xAXx) + xAx)

Solve to get

Alx) = =14 2x +4x> + 8x> + 16x* + -+

1 —2x

Q{ The structural description also allows us to

generate objects, sample them, and perhaps

find bijections

WALKING IN THE PLANE, WITH AVOIDANCE

We consider the same walks, but require they avoid consecutive 01 \/

74

A)|cases as before

The root node
splits into three

1€

However, at

0o/

node B we need
to consider the
B next step

Here we do not need to

worry about the initial 1

1o/ contributing to an

C) |occurrence of 01

10}

002/ 01la/
D

10}

0./ 0
B

We now move to the symbolic world

WALKING IN THE PLANE, CROSSING TO SYMBOLICS

2 A=14+B+C
A

{e} Oc@fg%:x+D+O 1%$C=x-A
B C

10} OOJZ%/J} 0le | | {1} %43 D=x-B
D A

This is a combinatorial specification:

We can Every term used appears exactly once
easily solve {O} 0/ @ as a left hand side (and the operations
for the root, B “make sense”)
A, to get 1
2 3
Alx) = =14+2x+3x"+4x" + -

(1 —x)?

GENERATING FUNCTIONS AND ASYMPTOTIC ESTIMATION

Analytic Combinatorics: Treat the generating function as a complex function

The Fibonacci numbers

1

] —x — x2

V5 -1

giving us the exponential growth rate

>\ [(V3+1)
V5 -1 ’

Have a pole atx =

=14+x+2x"+3x> + -

THE PIPELINE, AND THE GAP

STRUCTURAL DESCRIPTION OF

YOUR SET OF OBJECTS

Symbolic combinatorics

SYSTEM OF EQUATIONS WHERE

TERMS ARE GENERATING
FUNCTIONS

ORIGINAL
PROBLEM Analytic combinatorics
DEFINITION Algebraic methods:
Grobner bases
Resultants

Guess-and-check

ASYMPTOTIC ESTIMATES

EXACT ENUMERATION

AN ATTEMPT TO FILL THE GAP: COMBINATORIAL EXPLORATION

Why did we consider the first letter in the walks?

74

1€

0o/

1o/

Why not consider both, and build a universe of relations between combinatorial objects?

That's what we do: Given strategies written by the user, apply them in every possible way
to all available objects and build a massive universe of relations. So far we have only seen

1€

()

1

one type of strategy: Batch strategies, which break an object into cases, or factors

For the domain of permutation patterns, we'll see other types of strategies

THE ROOTS OF PATTERN AVOIDING PERMUTATIONS

In an exercise in Chapter 2 of Kr\uth's The permutation 41257368
The Art of Computer Programming we 8

are asked to enumerate e EER TR R Ty)
permutations that avoid 132. ' : - S . . .

.............

In this definition of avoidance we do ,
not require entries to be adjacent e S ;. L

This permutation does not avoid 132. It contains

many copies of 132. For example in the subsequence 273.

e
‘
' -

ANSWERING KNUTH'S QUESTION

Usually, this is done as follows: Consider a non-empty
permutation z that avoids 132. The maximum element

of r, call it n, is somewhere

T = L n R Of course L and R must avoid 132. In addition,

every entry of L should be greater than
every entry of R.

Now, without handwaving

Place

t t point -
opmost poin . Row separfte \
. L~
/ E=nNR=
 empty, or

non-empty Reduce an
obstruction

A=1+xA?

\
X
[
J
D
L
J
R €—
N
L
J
[E—
[

)

N ==/

- J

—p |

Factor

TILINGS

-

-

_

~

J

®

A tiling is a triple ((n,m), O, %), where
(n, m) are the dimensions,
(0 are the obstructions, and

R are the requirements

The tiling represents the set of (gridded)
permutations that can be drawn on the
tiling, without containing any obstruction,
while containing every requirement

Here we get the permutation
6423751, although, strictly speaking

we should also write the coordinate of
each point

MOVING TO THE COMPUTER o et iones
Obstr :

Y R
I-‘_)‘ | Jo L

uction

—

uction(Perm

- - -

ruction(Perm

—

Tiling(Obsti

Obsti

obstructions=(L S

Obstruction(Perm(Obstruction(Pern
UDSLIUCtiLon erm
)5 Obstruction(Perm

requirements=() Obstruction(Perm
)

requirements=(

(Requirement(Perm

f“n‘ | ~
upsS

Cruction(Perm

- - - L B N
—
I~~~ - -

5 -]
P — — p— p—
—

~ - - - ~ — — S—
- - — — S
- - A~

—

Tiling(
obstructions

Obstruction(Perm

LET'S DO IT!

combrunner poilnt_placements

Intttalising CombSpecSearcher for the combinatorial class:
+-+
|1
+-+
: Av(021)
Crossing obstructions:

Looking for recursive combinatorial specification with the strategies:
Inferral: row_and_column_separation, obstruction_transitivity

Inittial: factor, requirement_corroboration

Verification: subset_verified, globally_verified

Set 1: all cell insertions

Set 2: requirement_placement

Av(1243,1342,2143) = ﬂ

The 12 has
been placed, in

=
.>

a forced way,
followed by
7 empty, or * // \ \ row and
non-empty ,y/\ﬁ column
separation
7 avoids 12 /
or contains h ’
e //\A\/\\ \
%{/\-\/\} N //\\ Factor
| S
__ > T
r
/ \ . Place the
4 leftmost point
Right cell N oA in the cell
empty, or s
non-empty /
Recursion! f A \
7
A flos Factor
s
7]
A

WHY PATTERN AVOIDING PERMUTATIONS?

Short answer: My PhD supervisor told me to

Real answer: They are equivalent to many other objects in discrete mathematics
Smooth Schubert varieties (type A) = Av(3412,4231)
Stack sortable permutations (Knuth) = Av(132)

Rooted non-separable planar maps = permutations avoiding generalized patterns

There is a sharp jump in difficulty from the problem we considered (Av(132)) to

avoiding longer patterns, for example no one knows how to count Av(1324), and
Zeilberger even claimed that not even God knows how many permutations of

length 1000 avoid 1324.

So in recent decades the focus has been on enumerating permutations avoiding
several patterns of length 4.

COMBINATORIAL EXPLORATION: SUCCESSES

The testing ground for new approaches has been the set of permutations
avoiding two length 4 patterns. A total of 56 problems

Wikipedia page: Enumerations of specific permutation classes

. insertion
sequence exact enumeration L.
B . OEIS type of sequence encoding is
enumerating Av,(B) reference
regular
1,2, 6,22, 86, 306,
4321,1234 A206736 [finite Erd6s-Szekeres theorem v
882, 1764, ...
1, 2,6, 22,86, 321,
4312,1234 A116705 |polynomial Kremer & Shiu (2003) v
1085, 3266, ...
1, 2,6, 22,86, 330, . .
4321, 3124 A116708 rational g.f. Kremer & Shiu (2003) v
1198, 4087, ...
1, 2,6, 22,86, 330, . .
4312, 2134 A116706 rational g.f. Kremer & Shiu (2003) v
1206, 4174, ...
1, 2,6, 22,86, 332,
4321,1324 A165524 | polynomial Vatter (2012) v
1217, 4140, ...
1, 2,6, 22, 86, 333, Albert, Atkinson & Brignall
4321, 2143 A165525 rational g.f.
1235, 4339, ... (2012)
1,2, 6, 22, 86, 335, Albert, Atkinson & Brignall
4312,1324 A165526 rational g.f.
1266, 4598, ... (2012)
1,2, 6, 22, 86, 335, Albert, Atkinson & Brignall
4231, 2143 A165527 rational g.f.
1271, 4680, ... (2011)
1,2, 6,22, 86, 336, Albert, Atkinson & Vatter
4231,1324 A165528 rational g.f.
1282, 4758, ... (2009)
1,2, 6,22, 86, 336,)
4213, 2341 A116709 rational g.f. Kremer & Shiu (2003) v
1290, 4870, ...
1, 2,6, 22, 86, 337, Albert, Atkinson & Brignall
4312, 2143 A165529 rational g.f.
1295, 4854, ... (2012)
1,2, 6,22, 86, 337, .)
4213,1243 A116710 rational g.f. Kremer & Shiu (2003) v
17200 4010

https://en.m.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes#Classes_avoiding_two_patterns_of_length_4

COMBINATORIAL EXPLORATION: SUCCESSES

A set of strategies for searching
for the structure of simple
permutations was implemented

: ' : | : : TR Flexible finite
in Arnar Arnarson’s MSc thesis, Tilescope + % . o inite
\
who graduated June 2019. R
4 N \
- \
Struct-cover Finitely many Regular insertion \ | Finite enumeration
verified simple permutations encoding ‘\ scheme (Vatter)
AN \
\ :
Finite enumeration Scanning elements
Templates scheme (Zeilberger) [€ =~~~ 7 algorithm
Polynomial Finitely labeled
classes generating tree

About a month ago we were finally able to complete the last of the 56 problems, by finding
a tree for Av(1432,2143), which had 888 nodes and took 4 days on a very powerful computer.
That class was done in 2018 by humans but has not been published, besides on the arXiv

For every one of these successes we can write down a system of equations, sometimes
in several variables. We have always been able to solve when there is a single variable,

but when there are more we can turn the solution into a polynomial time algorithm for
the counting sequence

https://en.m.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes#Classes_avoiding_two_patterns_of_length_4

Av(4213,3421) FIRST ENUMERATED BY BEVAN IN 2016

pypy3 guided_search.py 4213_3421

Inttialising CombSpecSearcher for the combinatorial class:
+-+
|1]
+-+
: Av(2310,)
Crossing obstructions:

Looking for recursive combinatorial specification with the strategies:
Inferral: row_and_column_separation, obstruction_transitivity

Inttial: factor, requirement_corroboration, fustion

Verification: verify_points

Using forward equivalence only.

Set 1: row_placements, col_placements

Found an untracked proof tree with nodes

FUSION TREE

(Not all obstructions
drawn on these tilings)

In the tree the fused

tiling recurses to a node higher

in the tree. This ignores the fact
that to count the fused tiling

using the unfused one we need to
know the number of points in

the decreasing run

TRACKED TREE

We start a new search, that restricts the space to
“colored tilings” with the same underlying regular tiling.
This is done to limit an explosion in the search space

>0

At the end of a fusion step we color
the region that needs to be tracked.
This is now a different node than the
uncolored tiling higher in the tree,
so now there is no recursion, and the
searcher needs to keep working on
the colored tiling, eventually working
out how the added color interacts
with the rest of the tree

def F_252(n,c0):

if n < c0:
return

1f c0 <
return

1f n <
return

if (n,cO®) in mem['F_252']:
return mem['F_252"'][(n,c0)]

ans =
Imin = max((0,))
rmin = max((0,c0))
bmin = max((0,))
lmax = min((n,))
rmax = min((n,c0))

bmax = min((n,))
for 1 1n range(lmin, Ulmax+1):

if U+r > bmax:
break
i1f bmin <= 1+r:

mem['F_252"][(n,c0®0)] = ans
return ans

for r 1n range(rmin, rmax+1):

ans += F_106(n, cO® = 14r)

OO UL S WN PO

This gives a polynomial time algorithm to create terms
in the counting sequence. We can then use the terms
to guess a generating function, and verify it against the
system of equations it is supposed to satisfy. This is
called guess-and-check.

16 1401195334
17 6678877732
18 31984089193
19 153809536017
20 742462191363

This was implemented in Unnar Erlendsson’s MSc

thesis. He graduated June 2019.

415997039428899
25 2037323575386383

26 10000024336253853
27 49186129273614768
28 242393790200039756

29 1196687427997471342
2N 5017000 T1|RMNADODQ0TA

COMBINATORIAL EXPLORATION: WRAPPING UP

We have implemented a framework, https://pypi.org/project/comb-spec-searcher/

in Python, which takes care of all the searching, and book-keeping. To use it for permutation patterns

we implemented tilings https://pypi.org/project/tilings to encode our objects and strategies.

These are both open source.

If you want to use the framework you need to implement a representation of your
favourite combinatorial sets, and strategies to manipulate them. There is a readme at the
CombSpecSearcher link above that goes through a basic example of how to do
consecutive pattern avoidance in words.

The algorithm is guaranteed to find a combinatorial specification if

it exists in the universe. As we'll see later, sometimes the universe
contains the answer to your question without having any combinatorial
specification.

(This assumes you have implemented sane strategies)

https://pypi.org/project/comb-spec-searcher/
https://pypi.org/project/tilings

PRODUCTIVE STRATEGIES IMPLY PRODUCTIVE PROOF TREES

Definition 3. We call a k-ary strategy S a productive strategy if the following conditions hold for

all combinatorial sets A with corresponding decomposition dg(A) = (BW,...,B®), and for all i €

{1,...,k}. Once again, we use the phrase “ Ay, relies on B]@ " or the diagram A,, — B](i) as a simplified

way of stating the formal information contained in the reliance profile function of S, namely that | €

(rs(n))i-
1. If Ay, relies on B]@, then n > j.
2. Ais not equinumerous to B o
3. If Ay, relies on BY), then |Ap| > |B,(,i) .
4. If A, relies on B,Si) for some n, then Ay relies on Bz(f,) forall N € IN.

Theorem 3. Let P be a proof tree, or the equivalent combinatorial specification, composed entirely of
productive strategies. Then P is a productive proof tree, or equivalently a productive combinatorial
specification.

TRACKING STATISTICS?

73,' A A(n, k) = B(n,k) + C(n, k).
[L
R ~ o 1 fn=k=0
9 ol = *Ne .4 _
' : | L4 *>\°/‘ B(n.) {0 otherwise
]
| b/\\{ C(n? k) = Z F(nlﬁklsel) ' G(n2ak2}e2)
% fl"lé 2++7 l‘i:i»’;»;ik
S Y R TN |
| S 3 F(n, k. 0) = A(n, k) ifn = é’
| 0 otherwise
(Ao {AY
A tree tracking inversions in Av(132) Gln. k.0) = {A(n,k —n) ifn=/¢
T 0 otherwise

This will be part of current PhD student
Emile Nadeau'’s thesis. Watch this space!
Hopefully, “mesh” statistics as well.

ARTIFICIAL INTELLIGENCE?

Not in the current open implementation. There is an MSc student, Ragnar Ardal, graduating
in January 2020, who has implemented proof-number-search for choosing “good tilings” in
the universe to work on. It has shown great promise for many classes, sometimes reducing
The search time by a factor of 10. It does also get stuck searching down paths that will never
lead to a success. In those cases the current naive brute-force breadth first search is faster.

This is the first tool we try to add from Al

OTHER DOMAINS: SET PARTITIONS

Set Partitions avoiding 1223,1231,1233,1234

Proof tree for set partitions avoiding 1223,1231,1233,1234

o [=
m

| B E
@IZI
We advised an undergraduate project
which looked at applying our framework
LD to pattern avoiding set partitions.
Zé You can see many results on ComboPal.
%’3 é ’5 :
7k 72k
%7

http://combopal.ru.is

OTHER DOMAINS: POLYOMINOES

F samlor 12

All polyominoes: 7?7

OTHER DOMAINS: ALTERNATING SIGN MATRICES (ASM)

This “Rling

dors not
wcate,

be cansc

thece Cén

be -1s

arouad

S0 we bokda ow
wWhether the cow wateins
—(or nok

@ikl

\,‘,\S cod “’S‘B
&bo \Og_.\ 6 ¢

\ace I
w 0ot
clawtmost Acawia
) 3
PN ta oS,
— _ here bec
- f 1 w would
3«* NL&33

[VAt
N2 { /\ 1 This s not T 3
— ‘ Olovious bhut Iy 5
—] =11 | 1 SHN vakd
1 1 /\

this steak "33 .
. ab!
w\\\ cont S t e,

LYY :
“ﬁ%f * N becasse Boorion

n—1

All ASMs: | |

k=0

(3k + 1)!
(n+k)!

13-

Combinatorial specifications forests ...

OTHER DOMAINS AND THE FUTURE

What are other good domains? Necessary properties

e Many (infinite) problems of a similar type
e Some way of representing the state in code

e Strategies that can be coded

Future

e Can find bijections if two inputs have isomorphic proof trees
e Turning the output into human-readable text
e Random sampling of objects

e Proving formally (in Coq, LEAN, ...) the underlying framework, and
that the output of a strategy is correct. This would formally verify
any proof tree we produce

