
T1

T2 T3

T4 T5 ∼=

T6

T7 T8 T9 T10∼=T3

T3

T11 ∼= T12

T13 T10∼=T3

COMBINATORIAL EXPLORATION: GUIDED
BY HUMANS, PROVEN BY COMPUTER

CHRISTIAN BEAN, REYKJAVIK UNIVERSITY > UNIVERSITÉ PARIS 13

LIPN, UNIVERSITÉ PARIS 13, SÉMINAIRE DE COMBINATOIRE, DECEMBER 3, 2019

Joint work with
Michael Albert (NZ)
Arnar Arnarson (ICE)
Ragnar Árdal (ICE > Bloomberg)
Anders Claesson (ICE)
Unnar Erlendsson (ICE > Google)
Tomas Magnusson (ICE > Google)
Émile Nadeau (ICE)
Jay Pantone (US)
Henning Ulfarsson (ICE)

COMBINATORIAL OBJECTS

Permutations: A reordering of the integers .
 is a permutation of length

12⋯n
25314 5

Words: Given an alphabet, say , we consider
all finite strings, such as

{a, b, c}
bbacbaac

Standard Young Tableaux: Increasing rows, increasing columns

1 1 2 1

2

1 2

3

1 3

2

1 2 3 1

2

3

1 3 7 12

2 6 9

4 10 11

5 13

A combinatorial set is a set of objects with an associated size function
such that there are finitely many objects of each size

ENUMERATIVE COMBINATORICS

FindStat: www.findstat.org
Database for information on and connections
between combinatorial objects

Counting how many objects are of a given size

Generate larger objects from smaller instances

Sample objects uniformly at random

Find bijections to other objects

To answer these we
need to understand the
structure of the objects

http://www.findstat.org

WALKING IN THE PLANE

We can build a path by
appending either or
to a shorter one

0 1

We start with a simple example: Walks in the plane consisting of NE, and SE steps
y

x

110100010010111
Generating functions: Quick introduction

A

{ε} 0A

{0} A

1A

{1} A

WALKING IN THE PLANE

If we are interested in a counting sequence
we can “store” it in the formal power series

(a0, a1, a2, a3, …, an, …)

A(x) = a0 + a1x + a2x2 + a3x3 + ⋯ + anxn + ⋯

This is the generating function of the counting sequence

The constant sequence has the generating function(1,1,1,1,1,1,…)

The Fibonacci numbers have the generating function(1,1,2,3,5,8,…)

1 + x + x2 + x3 + x4 + x5 + ⋯ =
1

1 − x

1 + x + 2x2 + 3x3 + 5x4 + 8x5 + ⋯ =
1

1 − x − x2

WALKING IN THE PLANE

We start with a simple example: Walks in the plane consisting of NE, and SE steps
y

x

110100010010111
Generating functions
A(x) = 1 + xA(x) + xA(x)

Solve to get

A(x) =
1

1 − 2x
= 1 + 2x + 4x2 + 8x3 + 16x4 + ⋯

The structural description also allows us to
generate objects, sample them, and perhaps
find bijections

A

{ε} 0A

{0} A

1A

{1} A

We can build a path by
appending either or
to a shorter one

0 1

WALKING IN THE PLANE, WITH AVOIDANCE

We consider the same walks, but require they avoid consecutive 01

The root node
splits into three
cases as before

Here we do not need to
worry about the initial
contributing to an
occurrence of

1

01

However, at
node we need
to consider the
next step

B

A

{ε} 0A

{0} 00A

{0} 0A

01A

∅

1A

{1} A

$

%

'

%

&

$

We now move to the symbolic world

WALKING IN THE PLANE, CROSSING TO SYMBOLICS

A = 1 + B + C

B = x + D + 0 C = x ⋅ A

D = x ⋅ B

This is a combinatorial specification:
Every term used appears exactly once
as a left hand side (and the operations
“make sense”)

We can
easily solve
for the root,

, to getA

A(x) =
1

(1 − x)2
= 1 + 2x + 3x2 + 4x3 + ⋯

A

{ε} 0A

{0} 00A

{0} 0A

01A

∅

1A

{1} A

$

%

'

%

&

$

GENERATING FUNCTIONS AND ASYMPTOTIC ESTIMATION

Analytic Combinatorics: Treat the generating function as a complex function

1
1 − x − x2

= 1 + x + 2x2 + 3x3 + ⋯

The Fibonacci numbers

Have a pole at giving us the exponential growth rate x =
5 − 1
2

(2

5 − 1)
n

= (5 + 1
2)

n

THE PIPELINE, AND THE GAP

STRUCTURAL DESCRIPTION OF
YOUR SET OF OBJECTS

SYSTEM OF EQUATIONS WHERE
TERMS ARE GENERATING

FUNCTIONS

ASYMPTOTIC ESTIMATES

EXACT ENUMERATION

Symbolic combinatorics

Analytic combinatorics
Algebraic methods:
Gröbner bases
Resultants
Guess-and-check

ORIGINAL
PROBLEM

DEFINITION

?

AN ATTEMPT TO FILL THE GAP: COMBINATORIAL EXPLORATION

Why did we consider the first letter in the walks?

A

{ε} 0A 1A

A

{ε} A 0 A 1

Why not consider both, and build a universe of relations between combinatorial objects?

That’s what we do: Given strategies written by the user, apply them in every possible way
to all available objects and build a massive universe of relations. So far we have only seen
one type of strategy: Batch strategies, which break an object into cases, or factors

For the domain of permutation patterns, we’ll see other types of strategies

THE ROOTS OF PATTERN AVOIDING PERMUTATIONS

In an exercise in Chapter 2 of Knuth’s
The Art of Computer Programming we
are asked to enumerate
permutations that avoid .132

In this definition of avoidance we do
not require entries to be adjacent

x

y
The permutation 41257368

4

1
2

5

3

7
6

8

This permutation does not avoid . It contains
many copies of . For example in the subsequence .

132
132 273

ANSWERING KNUTH’S QUESTION

Usually, this is done as follows: Consider a non-empty
permutation that avoids . The maximum element
of , call it , is somewhere

π 132
π n

π = L n R Of course and must avoid . In addition,
every entry of should be greater than
every entry of R.

L R 132
L

∼= ∼= ∼= ∼=

 empty, or
non-empty
π

Place
topmost point

Reduce an
obstruction

Infer
Row-separate

Factor

Now, without handwaving

A = 1 + xA2

TILINGS

A tiling is a triple , where
 are the dimensions,

 are the obstructions, and
 are the requirements

((n, m), 𝒪, ℛ)
(n, m)
𝒪
ℛ

The tiling represents the set of (gridded)
permutations that can be drawn on the
tiling, without containing any obstruction,
while containing every requirement

4
2

3
1

56

7
Here we get the permutation

, although, strictly speaking
we should also write the coordinate of
each point

6423751

MOVING TO THE COMPUTER

∼= ∼= ∼= ∼=

LET´S DO IT!

Av(1243,1342,2143) =

 empty, or
non-empty
π

 avoids
or contains
π 12

The has
been placed, in
a forced way,
followed by
row and
column
separation

12

Factor

Recursion!

Right cell
empty, or
non-empty

A

B

∼=

∼=B

A

∼=

∼=B

Place the
leftmost point
in the cell

Factor

WHY PATTERN AVOIDING PERMUTATIONS?

Short answer: My PhD supervisor told me to

Real answer: They are equivalent to many other objects in discrete mathematics

Smooth Schubert varieties (type) = A Av(3412,4231)

Stack sortable permutations (Knuth) = Av(132)

Rooted non-separable planar maps = permutations avoiding generalized patterns

There is a sharp jump in difficulty from the problem we considered () to
avoiding longer patterns, for example no one knows how to count , and
Zeilberger even claimed that not even God knows how many permutations of
length avoid .

Av(132)
Av(1324)

1000 1324

So in recent decades the focus has been on enumerating permutations avoiding
several patterns of length .4

COMBINATORIAL EXPLORATION: SUCCESSES

The testing ground for new approaches has been the set of permutations
avoiding two length patterns. A total of 56 problems4

Wikipedia page: Enumerations of specific permutation classes

https://en.m.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes#Classes_avoiding_two_patterns_of_length_4

COMBINATORIAL EXPLORATION: SUCCESSES

3RO\QRPLDO
FODVVHV

)LQLWHO\ ODEHOHG
JHQHUDWLQJ WUHH

7HPSODWHV

6WUXFW�FRYHU
YHULILHG

5HJXODU LQVHUWLRQ
HQFRGLQJ

)LQLWH HQXPHUDWLRQ
VFKHPH �=HLOEHUJHU�

6FDQQLQJ HOHPHQWV
DOJRULWKP

)LQLWHO\ PDQ\
VLPSOH SHUPXWDWLRQV

)LQLWH HQXPHUDWLRQ
VFKHPH �9DWWHU�

)OH[LEOH ILQLWH
HQXPHUDWLRQ VFKHPH7LOHVFRSH

About a month ago we were finally able to complete the last of the 56 problems, by finding
a tree for , which had 888 nodes and took 4 days on a very powerful computer.
That class was done in 2018 by humans but has not been published, besides on the arXiv

Av(1432,2143)

For every one of these successes we can write down a system of equations, sometimes
in several variables. We have always been able to solve when there is a single variable,
but when there are more we can turn the solution into a polynomial time algorithm for
the counting sequence

A set of strategies for searching
for the structure of simple
permutations was implemented
in Arnar Arnarson’s MSc thesis,
who graduated June 2019.

https://en.m.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes#Classes_avoiding_two_patterns_of_length_4

 FIRST ENUMERATED BY BEVAN IN 2016Av(4213,3421)

FUSION TREE

Fusion!
(Not all obstructions
drawn on these tilings)

In the tree the fused
tiling recurses to a node higher
in the tree. This ignores the fact
that to count the fused tiling
using the unfused one we need to
know the number of points in
the decreasing run

TRACKED TREE

We start a new search, that restricts the space to
“colored tilings” with the same underlying regular tiling.
This is done to limit an explosion in the search space

At the end of a fusion step we color
the region that needs to be tracked.
This is now a different node than the
uncolored tiling higher in the tree,
so now there is no recursion, and the
searcher needs to keep working on
the colored tiling, eventually working
out how the added color interacts
with the rest of the tree

TURNING THE TREE INTO RECURRENCE RELATIONS

This gives a polynomial time algorithm to create terms
in the counting sequence. We can then use the terms
to guess a generating function, and verify it against the
system of equations it is supposed to satisfy. This is
called guess-and-check.

This was implemented in Unnar Erlendsson’s MSc
thesis. He graduated June 2019.

COMBINATORIAL EXPLORATION: WRAPPING UP

The algorithm is guaranteed to find a combinatorial specification if
it exists in the universe. As we’ll see later, sometimes the universe
contains the answer to your question without having any combinatorial
specification.

We have implemented a framework, https://pypi.org/project/comb-spec-searcher/
in Python, which takes care of all the searching, and book-keeping. To use it for permutation patterns
we implemented tilings https://pypi.org/project/tilings to encode our objects and strategies.
These are both open source.

If you want to use the framework you need to implement a representation of your
favourite combinatorial sets, and strategies to manipulate them. There is a readme at the
CombSpecSearcher link above that goes through a basic example of how to do
consecutive pattern avoidance in words.

(This assumes you have implemented sane strategies)

https://pypi.org/project/comb-spec-searcher/
https://pypi.org/project/tilings

PRODUCTIVE STRATEGIES IMPLY PRODUCTIVE PROOF TREES

TRACKING STATISTICS?

A tree tracking inversions in Av(132)

This will be part of current PhD student
Emile Nadeau’s thesis. Watch this space!
Hopefully, “mesh” statistics as well.

ARTIFICIAL INTELLIGENCE?

Not in the current open implementation. There is an MSc student, Ragnar Ardal, graduating
in January 2020, who has implemented proof-number-search for choosing “good tilings” in
the universe to work on. It has shown great promise for many classes, sometimes reducing
The search time by a factor of 10. It does also get stuck searching down paths that will never
lead to a success. In those cases the current naive brute-force breadth first search is faster.

This is the first tool we try to add from AI

OTHER DOMAINS: SET PARTITIONS

We advised an undergraduate project
which looked at applying our framework
to pattern avoiding set partitions.

You can see many results on ComboPal.

http://combopal.ru.is

OTHER DOMAINS: POLYOMINOES

All polyominoes: ???

OTHER DOMAINS: ALTERNATING SIGN MATRICES (ASM)
n−1∏

k=0

(3k + 1)!

(n+ k)!

Combinatorial specifications forests …

All ASMs:

OTHER DOMAINS AND THE FUTURE

What are other good domains? Necessary properties

• Many (infinite) problems of a similar type

• Some way of representing the state in code

• Strategies that can be coded

Future

• Can find bijections if two inputs have isomorphic proof trees

• Turning the output into human-readable text

• Random sampling of objects

• Proving formally (in Coq, LEAN, …) the underlying framework, and
that the output of a strategy is correct. This would formally verify
any proof tree we produce

