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Introduction

Motivations

e The f-vector of a d-polytope P is the vector (fo, fi,o -, fd_l) where faces of P of
dimension 0, 1, 2, d — 2 and d — 1 are called vertices, edges, subfacets (or ridges),
and facets of P, respectively.

e For example the f-vector of a tetrahedron T (a 3-simplex) is f(T) = (4,6,4) and
the f-vector of the octahedron is (6,12, 8).

e For a simplicial complex A of dimension d, its f-vector is (f(A),- -, fa(A));
f4(A) = 1. The h-vector is (ho(A),- - , ha(A)) where

h *i(—l)k”' dri-fe
k — d+1—k i—1,

i=0

Vk=0,---,d+ 1
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Introduction

Motivations

e We set f_; = 1. The f-vector and the h-vector uniquely determine each other
through the linear relation

d

Zf W(t=1)7T = et

k=0

e The g-theorem says that the h-vector increases until the middle
(gi = hi — hi—1 > 0) and h; = hy_;. The h-vector of the tetrahedron is (1,1,1,1)
and for the octahedron is (1, 3,3, 1) and is palindromic. f; — 1, fi — (fo — 1),
fr—fi+fo — 1 =1. Euler formula 3¢ o(—1)fi=1—(-1)%

1
1 6
¢ 1 5 12
1 4 7 8
h= 1 3 3 1
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Introduction

Motivations

e In 1980 Billera & Lee and Stanley have proved the characterization of the f-vectors
of simplicial and of simple polytopes conjectured by McMullen in 1971 through the

famous “g-theorem”.
e Griinbaum, Barnette and Barnette-Reay have characterized for any 0 </ < j <3

the following sets:
{(f,-, 6) : P is a 4-polytope }

e Steinitz found the characterization for d =3, £ = {(fo,f) : 3fo < i <3, —6}.
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Introduction

Motivations

e For d = 4,5 the results is given by the set S = {(fo,fi): ¢ < fi < (g’)} from
which some exceptions have been removed.

e Griinbaum proved the case d = 4 by removing four exceptions: (6,12), (7,14),
(8,17) and (10, 20).

e The case d = 5 becomes more complicated and has been proved in two different
ways by G. Pineda-Villavicencio, J. Ugon and D. Yost, and more recently by T.
Kusunoki and S. Murai. For this case, exceptions are infinitely many:

5 fo
€ = J(hA):sh<h<|,])o\

<{ (fo, {gfb + 1J> i fo > 7} U {(8,20),(925),(13,35)}) , (1)

where | r| denotes the integer part of a rational number r.
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Background

Definitions and background

e The excess degree or excess X(P) of a d-polytope P is defined as the sum of the
excess degrees of its vertices and given by €(P) = 2f; — dfy = >_ (deg(u) — d).

(Proposition 1 G. Pineda-Villavicencio, J. Ugon and D. Yost) Let P be a
d-polytope. Then the smallest values of X(P) are 0 and d — 2.

We set for all d-dimensional polytopes ¢(v,d) = 2dv + (v —d — 1)(2d — v).
(Proposition 2) Let P be a d-polytope. If f(P) < 2d, then A(P) > ¢(f(P), d). If
d > 4, then (fo(P), i(P)) # (d + 4,¢9(d + 4,d) + 1).

e D. W. Barnette proved that for all d-dimensional simplicial polytope the following
inequality holds: fy_1 > (d — 1)fo — (d + 1)(d — 2).
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The (fy, f1)-pairs for 6-polytopes

(fo, f)-vectors pairs for 6-polytopes

e If P is a 6-polytope having a simple vertex v and @ the 6-polytope obtained from
P by truncating the vertex v then

f(Q) = f(P) + 5 and A(Q) = fi(P) + 15.

We can prove that if for a 6-polytope P we have fi(P) < Lfy(P) then P has at
least one simple vertex.

e (Theorem 1) The set of (fo, fi)-vectors pairs for 6-polytopes is given by

56:{(@&):3&)3% (2)}\({(6,3ﬁ)+1):ﬂ)27}u

{(8, 24);(9,27);(9,29); (10, 30); (10, 32); (10, 34); (11, 33); (12, 38); (12, 39); (13, 39);

(14,42); (14, 44); (15,47); (18, 54); (19, 57); (17, 53); (20, 62)}) .
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The (fy, f1)-pairs for 6-polytopes

e If Pis a d-polytope with d > 4, then

wP) 2 | g6P) 1. 3)

o Assume that f(P) = | £f(P) + 1]. If f(P) is even then 2f(P) — dfy(P) = 2 and
0 < 2 < d — 2 which is impossible since from Proposition 1, X(P) can not take any
value between 0 and d — 2. If fo(P) is odd then 2f,(P) — dfy(P) = 1 and
0 <1< d—2 which is also impossible.

e The following relations hold
(8,24);(9,27); (9, 29); (10, 30); (10, 32); (10, 34); (11, 33) ¢ £° and
(h+1,|26+1]) ¢ &° for =7,8,9.
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The (fy, f1)-pairs for 6-polytopes

e The fact that (10,34) ¢ £° is given by Proposition 2 (2) and all the remaining are
given by Proposition 2 (1).

e (Lemma 1) The following result is obtained from pyramids over 5-polytopes

{(fo,ﬁ):Zfo;ﬁs(g’)}\

<{ (fg +1, Efo + 1J> o > 7} U {(9,28),(10,34),(14,48)}) c& (4

e There is no 6-polytope with 11 vertices and 36 edges and no 6-polytope with 12
vertices and 38 edges.
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The (fy, f1)-pairs for 6-polytopes

e The following exist (13,43), (14, 48) € &£°.
e There is no 6-polytope with 12 vertices and 39 edges.

e (Lemma 2) For an odd integer fo > 12 we have (fo+ 1, |1fo +1]) € £°
Furthermore if (fo +1, L%fg + 1J) € &8, then (fo +7, L%(fo +6)+ 1J) € &S,

e Suppose that fy is odd. If f; > 12 then f; — 4 > 8 and from Lemma 1,
(fo—4,|2(fh —4)]) € €% Also | 2(fo — 4)| < Z(fo —4) as fo — 4 is odd then
(b+1,[2f+1]) € £ by truncation of simple vertex.
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The (fy, f1)-pairs for 6-polytopes

e Let P be a 6-polytope with (f, fi)-pairs equal to (/(P) + 1, | Zf(P) +1]) € £°
then after the truncation of a simple vertex of P and a pyramid over a simplex facet
of the resulting polytope we obtain a 6-polytope Q with f(Q) = (P) + 7 and
A(Q) = [5(A(P) +6) +1].

o For any integer f, satisfying fo > 12, (o + 1, |2 +1]) € &£°.

e Assume that fy > 12. From Lemma 2 it is enough to check the result for
fo =12,13,14,15,16,17. The cases fy = 12,13,15,17 come from Lemma 2. We
now consider fy = 14,16 which are (15,50) and (17,57).
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The (fy, f1)-pairs for 6-polytopes

Consider the 6-polytope P with f(P) = 10 and fi(P) = 35 obtained from a
pyramid over a 5-polytope Q.

If we assume that P has no simple vertex then each of its vertices has degree 7
since ) .p deg(v) = 70 and this is impossible since taking a pyramid over Q
implies that P has a vertex of degree 9.

Then P has a simple vertex which truncation gives a polytope P’ with f(P') = 15
and f(P) = 50. Hence (15,50) € &£°.

Let R be a 6-polytope with f(R) = 12 and fi(P) = 42 obtained from a pyramid
over a 5-polytope. The same procedure as above gives (17,57) € £°.

The following polytopes pairs do not exist:

(13,39); (14,42); (14, 44); (15,47); (18,54),(19,57) ¢ £°.
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The (fy, f1)-pairs for 6-polytopes

Consider the case (19,57) which is a simple polytope if it exists. Let P be such
polytope. The dual P* of P is a simplicial polytope with f-vector sequence
(fo, fi, f2, f3, fa, f5) where f; = 57 and fs = 19.

For all d-dimensional simplicial polytope the following inequality holds:
fa—1 > (d—1)fo — (d+1)(d —2). Then fs > 5f, — 28 implies that f =8 or fy, = 9.

The g-theorem for simplicial polytopes says that the sequence of integers
(ho,- -+, h7) is the h-vector of P*. We also have hj = h;—; ¥V i=0,---,7 and now
compute the numbers h's and obtain:

hy
ho
hs
ha
hs
he

—7+ fo,

21 — 6f + f,

—35+15f — 5 + fo,

35— 20fy + 10f; — 41> + f,

—21 4+ 15f — 10f; + 66, — 3K + f,

7 —6fy +5h —4fh + 33 — 2f4 + f5. (5)
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The (fy, f1)-pairs for 6-polytopes

From hy = he and h, = hs we get fo = 1(28 — 14y + 6f, + fs — f;) and the system
of equations hs = hs; hy = hs also gives f, = £(168 — 84 + 34f + ).

Equaling these two expressions of £, we get fi = & (—84 4 42f, + 7, — 9f;) which is
not an integer for f; = 8,9. In conclusion (19,57) ¢ &°.

The following pairs are possible:
(15,45); (15, 49); (16,48); (17,54); (19, 59); (23, 69); (24, 72); (27, 83); (35, 107) € £°.
We set

X' = {(8,24); (9,27); (9,29); (10, 30); (10, 32); (10, 34); (11, 33); (11, 36); (12, 38);
(12,39); (13, 39); (14, 42); (14, 44); (15, 47); (18, 54); (17, 53); (19, 57); (20, 62)}
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The (fy, f1)-pairs for 7-polytopes

o For fo > 7;if (fo,fi) ¢ X" and f € {3f} U3+ 1,26 — L[ then (f, f) € &E°.

e The cases (17,53); (20,62) are unfeasible and (22,68); (25, 77); (30,92) € £° holds.
|

o Let €i3d_10 be the set of d-polytopes whose excess degree is larger than 3d — 10.
For d = 4, the set £2, of 4-polytopes whose excess degree is larger than 2 is given

by:
4 fo
o= (hh): 1426 <A< ()¢
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The (fy, f1)-pairs for 7-polytopes

Thecase d =7

e In the same way for d = 5,6 we obtain:

f
£i5—{(fo,f1) 5+5 2f<fi< (;)}
6 fo
)

o (Theorem 2) Let £ be the set of (fo, fi)-pairs of 7-polytopes. For v = (p, q) such
that p > 8 and %p <g< (’2:') if v & & then e7(v) <4 x7—10=11. In other
words the set of (fy, fi)-vector pairs for 7-polytopes with excess strictly larger than

11 is given by
11 fo
5;1—{(15,5) 3t <fi< (;)}

With eqs(v) = 2q — dp.

and
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The (fy, f1)-pairs for 7-polytopes

Thecase d =7

e From the previous section we had
£ = {(fo,fl):3fo< fi < <f§>}\<{(fo,3fo+l) :ﬁ)z?}u
{(8, 24);(9,27);(9,29); (10, 30); (10, 32); (10, 34); (11, 33); (12, 38); (12, 39);
(13,39); (14, 42); (14, 44); (15,47); (18,54); (19,57); (17,53); (20, 62)}>
(6)

e A pyramid over the 6-polytopes gives:

{(fo,ﬁ):%—4§f1§ (2)}\({(5+1,4ﬁ)+1):ﬂ)27}u

{(9, 32);(10,36); (10, 38); (11, 40); (11,42); (11, 44); (12,44); (13,50); (13,51);

(14,52); (15, 56); (15, 58); (16, 62); (18, 70); (19, 72); (20, 76); (21,82)}) ce.
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The (fy, f1)-pairs for 7-polytopes

A direct computation shows that e7((fo + 1,4fy + 1)) > 11 if and only if f5 > 17.
Assume that f > 17 and let us prove that (fy — 6,3f — 14) € £°.

We have ¢((fo — 6,3f — 14)) = 8 and if (fo — 6,3f — 14) ¢ £° then

(fo — 6,3f, — 14) = (10, 34), because (10, 34) is the only vector not in £° with
excess equal to 8.

Therefore we get fy = 16 which is a contradiction. In conclusion for fy > 17 there is
a 6-polytope P with (fo, f)-pair (fo — 6,3f — 14); and a pyramid over P give a
7-polytope Q having (fo, fi)-vector which is equal to (f, — 5,4f — 20).

As 4(fy — 5) < (4fp — 20) + 1 the polytope Q has a simple vertex whose truncation
gives a 7-polytope having (fy, fi)-pair equals (fo + 1,4f + 1).
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The (fy, f1)-pairs for 7-polytopes

e We can conclude that all the 7-polytopes with excess greater than 11 and with
(fo, f1)-pairs in {(fo +1,4f + 1) cfp > 7} exist.

e Let us focus on the set

L= {(9, 32); (10, 36); (10, 38); (11, 40); (11,42); (11,44); (12, 44); (13, 50); (13, 51);
(14,52); (15,56); (15, 58); (16, 62); (18, 70); (19, 72); (20, 76); (21, 82)},

e The only vectors v = (p, q) € L with e7(v) > 11 are

v = (p, q) = (16,62); (18, 70); (20, 76); (21, 82); (23, 90); (26, 102); (31, 123).
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The (fy, f1)-pairs for 7-polytopes

e For v =(p,q) = (16,62); (20, 76); (21, 82); (26, 102); (31, 123), we compute
V' =(p—8,q—p—20) = (8,26); (12,36); (13,41); (18, 56); (23,72) € &°.

e Then their exist 6-polytopes P, whose (fy, fi)-pairs are equal to v'. A pyramid over
them give 7-polytopes having (fy, fi)-pairs equal to
(p—7,9—28) =(9,34);(13,48); (14,54); (19, 74); (24, 95).

e In each case we observe that g — 28 < 4(p — 7) which means that each of them has
a simple vertex whose truncation give 7-polytopes with (fo, fi)-pairs equal to
(p— 1,9 — 7). As truncations of simple vertices generate simplex facets then
pyramids on these give the result.
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The (fy, f1)-pairs for 7-polytopes

e Consider v = (18,70). There is a 6-polytope R with (f, i) = (10,35). A pyramid
over R gives a 7-polytope R’ having (fo, fi)-vector equal to (11,42). As
42 < 4 x 11 then R’ has a simple vertex whose truncation gives a 7-polytopes R”
with (/(R"), i(R")) = (17,63).

e The truncation of a simple vertex in R” with generate a simplex facet F and a
pyramid other F gives a 7-polytope with (fy, fi)-vector equal to (18,70). The same
method works for (23,90).

e We now turn to the pair v = (fo, f1) with fp > 8 and £ G]%fo,4fo + 1[. The
condition €7(v) > 11 implies that fi > & + £ and then we need to discuss two
cases: %—F%fo>4fo—4and %—F%fo<4fb—4.
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The (fy, f1)-pairs for 7-polytopes

o If % + %fo > 4fy — 4 then there is nothing else to prove as we end up in the
pyramid case. Suppose that % + %fo < 4fy — 4 i.e. f > 19 and set for k,
X{={(k,f); & + Lk < i <4k —4}.

e We can prove by truncation that if X/ C £1;, then X/,s C £11;. To prove that
each vector (fo, 1) satisfying this condition defines a 7-polytope it is sufficient to
show that X/ C £24; for k =8,---,13. Which have already been solved.

e Finally we conclude that all the pairs (p, g) with p > 8, e7(v) > 11 and
%p <g< (g) characterize 7-polytopes. In other words the set of (fy, f1)-vectors
pair for 7-polytopes with excess strictly larger than 11 is given by

7 11 fc
5;11: {(fo,fl)32ﬁ)+2 <fh < <20>}
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Conclusion

Conjecture

Let d > 4 be an integer and £ be the set of (f, fi)-pairs of d-polytopes. For v = (p, q)
such that p > d + 1 and gp <g< (‘2’) if v ¢ £9 then 2g — dp < 4d — 10. In other
words the set of (fy, fi)-pairs for d-polytopes; d > 4 with excess strictly larger than

3d — 10 is given by

d 3d —10 fo
gi3d10:{(f67f1):2ﬂ)+ > <A< <20>}

24/24



	Introduction
	Background
	The (f0, f1)-pairs for 6-polytopes
	The (f0, f1)-pairs for 7-polytopes
	Conclusion

