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Motivations

• The f -vector of a d-polytope P is the vector
(
f0, f1, · · · , fd−1

)
where faces of P of

dimension 0, 1, 2, d − 2 and d − 1 are called vertices, edges, subfacets (or ridges),
and facets of P, respectively.

• For example the f -vector of a tetrahedron T (a 3-simplex) is f (T ) = (4, 6, 4) and
the f -vector of the octahedron is (6, 12, 8).

• For a simplicial complex ∆ of dimension d , its f -vector is (f0(∆), · · · , fd(∆));
fd(∆) = 1. The h-vector is (h0(∆), · · · , hd(∆)) where

hk =
k∑

i=0

(−1)k−i

(
d + 1− i

d + 1− k

)
fi−1;

∀ k = 0, · · · , d + 1.
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Motivations

• We set f−1 = 1. The f -vector and the h-vector uniquely determine each other
through the linear relation

d∑
i=0

fi−1(t − 1)d−i =
d∑

k=0

hkt
d−k .

• The g -theorem says that the h-vector increases until the middle
(gi = hi − hi−1 ≥ 0) and hi = hd−i . The h-vector of the tetrahedron is (1, 1, 1, 1)
and for the octahedron is (1, 3, 3, 1) and is palindromic. f0 − 1, f1 − (f0 − 1),
f2 − f1 + f0 − 1 = 1. Euler formula

∑d
i=0(−1)i fi = 1− (−1)d .

•

1
1 6

1 5 12
1 4 7 8

h= 1 3 3 1
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Motivations

• In 1980 Billera & Lee and Stanley have proved the characterization of the f -vectors
of simplicial and of simple polytopes conjectured by McMullen in 1971 through the
famous “g -theorem”.

• Grünbaum, Barnette and Barnette-Reay have characterized for any 0 ≤ i < j ≤ 3
the following sets: {(

fi , fj
)

: P is a 4-polytope
}
.

• Steinitz found the characterization for d = 3, E3 =
{

(f0, f1) : 3
2
f0 ≤ f1 ≤ 3f0 − 6

}
.
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Motivations

• For d = 4, 5 the results is given by the set S =
{

(f0, f1) : d
2
f0 ≤ f1 ≤

(
f0
2

)}
from

which some exceptions have been removed.

• Grünbaum proved the case d = 4 by removing four exceptions: (6, 12), (7, 14),
(8, 17) and (10, 20).

• The case d = 5 becomes more complicated and has been proved in two different
ways by G. Pineda-Villavicencio, J. Ugon and D. Yost, and more recently by T.
Kusunoki and S. Murai. For this case, exceptions are infinitely many:

E5 =

{
(f0, f1) :

5

2
f0 ≤ f1 ≤

(
f0
2

)}
\({(

f0,

⌊
5

2
f0 + 1

⌋)
: f0 ≥ 7

}
∪

{
(8, 20), (9, 25), (13, 35)

})
, (1)

where brc denotes the integer part of a rational number r .
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Definitions and background

• The excess degree or excess Σ(P) of a d-polytope P is defined as the sum of the
excess degrees of its vertices and given by ε(P) = 2f1 − df0 =

∑
u(deg(u)− d).

• (Proposition 1 G. Pineda-Villavicencio, J. Ugon and D. Yost) Let P be a
d-polytope. Then the smallest values of Σ(P) are 0 and d − 2.

• We set for all d-dimensional polytopes φ(v , d) = 1
2
dv + 1

2
(v − d − 1)(2d − v).

• (Proposition 2) Let P be a d-polytope. If f0(P) ≤ 2d , then f1(P) ≥ φ(f0(P), d). If
d ≥ 4, then (f0(P), f1(P)) 6= (d + 4, φ(d + 4, d) + 1).

• D. W. Barnette proved that for all d-dimensional simplicial polytope the following
inequality holds: fd−1 ≥ (d − 1)f0 − (d + 1)(d − 2).

7 / 24



Introduction
Background

The (f0, f1)-pairs for 6-polytopes
The (f0, f1)-pairs for 7-polytopes

Conclusion

(f0, f1)-vectors pairs for 6-polytopes

• If P is a 6-polytope having a simple vertex v and Q the 6-polytope obtained from
P by truncating the vertex v then

f0(Q) = f0(P) + 5 and f1(Q) = f1(P) + 15.

We can prove that if for a 6-polytope P we have f1(P) ≤ 7
2
f0(P) then P has at

least one simple vertex.

• (Theorem 1) The set of (f0, f1)-vectors pairs for 6-polytopes is given by

E6 =

{
(f0, f1) : 3f0 ≤ f1 ≤

(
f0
2

)}
\

({(
f0, 3f0 + 1

)
: f0 ≥ 7

}
∪{

(8, 24); (9, 27); (9, 29); (10, 30); (10, 32); (10, 34); (11, 33); (12, 38); (12, 39); (13, 39);

(14, 42); (14, 44); (15, 47); (18, 54); (19, 57); (17, 53); (20, 62)
})

. (2)
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Proof

• If P is a d-polytope with d > 4, then

f1(P) 6=
⌊
d

2
f0(P) + 1

⌋
. (3)

• Assume that f1(P) =
⌊
d
2
f0(P) + 1

⌋
. If f0(P) is even then 2f1(P)− df0(P) = 2 and

0 < 2 < d − 2 which is impossible since from Proposition 1, Σ(P) can not take any
value between 0 and d − 2. If f0(P) is odd then 2f1(P)− df0(P) = 1 and
0 < 1 < d − 2 which is also impossible.

• The following relations hold
(8, 24); (9, 27); (9, 29); (10, 30); (10, 32); (10, 34); (11, 33) /∈ E6 and(
f0 + 1,

⌊
7
2
f0 + 1

⌋)
/∈ E6 for f0 = 7, 8, 9.
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Proof

• The fact that (10, 34) /∈ E6 is given by Proposition 2 (2) and all the remaining are
given by Proposition 2 (1).

• (Lemma 1) The following result is obtained from pyramids over 5-polytopes{
(f0, f1) :

7

2
f0 −

7

2
≤ f1 ≤

(
f0
2

)}
\({(

f0 + 1,

⌊
7

2
f0 + 1

⌋)
: f0 ≥ 7

}
∪

{
(9, 28), (10, 34), (14, 48)

})
⊂ E6. (4)

• There is no 6-polytope with 11 vertices and 36 edges and no 6-polytope with 12
vertices and 38 edges.
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Proof

• The following exist (13, 43), (14, 48) ∈ E6.

• There is no 6-polytope with 12 vertices and 39 edges.

• (Lemma 2) For an odd integer f0 ≥ 12 we have
(
f0 + 1,

⌊
7
2
f0 + 1

⌋)
∈ E6.

Furthermore if
(
f0 + 1,

⌊
7
2
f0 + 1

⌋)
∈ E6, then

(
f0 + 7,

⌊
7
2
(f0 + 6) + 1

⌋)
∈ E6.

• Suppose that f0 is odd. If f0 ≥ 12 then f0 − 4 ≥ 8 and from Lemma 1,
(f0 − 4,

⌊
7
2
(f0 − 4)

⌋
) ∈ E6. Also

⌊
7
2
(f0 − 4)

⌋
< 7

2
(f0 − 4) as f0 − 4 is odd then(

f0 + 1,
⌊
7
2
f0 + 1

⌋)
∈ E6 by truncation of simple vertex.
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• Let P be a 6-polytope with (f0, f1)-pairs equal to
(
f0(P) + 1,

⌊
7
2
f0(P) + 1

⌋)
∈ E6

then after the truncation of a simple vertex of P and a pyramid over a simplex facet
of the resulting polytope we obtain a 6-polytope Q with f0(Q) = f0(P) + 7 and
f1(Q) =

⌊
7
2
(f0(P) + 6) + 1

⌋
.

• For any integer f0 satisfying f0 ≥ 12,
(
f0 + 1,

⌊
7
2
f0 + 1

⌋)
∈ E6.

• Assume that f0 ≥ 12. From Lemma 2 it is enough to check the result for
f0 = 12, 13, 14, 15, 16, 17. The cases f0 = 12, 13, 15, 17 come from Lemma 2. We
now consider f0 = 14, 16 which are (15, 50) and (17, 57).
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• Consider the 6-polytope P with f0(P) = 10 and f1(P) = 35 obtained from a
pyramid over a 5-polytope Q.

• If we assume that P has no simple vertex then each of its vertices has degree 7
since

∑
v∈P deg(v) = 70 and this is impossible since taking a pyramid over Q

implies that P has a vertex of degree 9.

• Then P has a simple vertex which truncation gives a polytope P ′ with f0(P ′) = 15
and f1(P) = 50. Hence (15, 50) ∈ E6.

Let R be a 6-polytope with f0(R) = 12 and f1(P) = 42 obtained from a pyramid
over a 5-polytope. The same procedure as above gives (17, 57) ∈ E6.

• The following polytopes pairs do not exist:

(13, 39); (14, 42); (14, 44); (15, 47); (18, 54), (19, 57) /∈ E6.
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• Consider the case (19, 57) which is a simple polytope if it exists. Let P be such
polytope. The dual P? of P is a simplicial polytope with f -vector sequence
(f0, f1, f2, f3, f4, f5) where f4 = 57 and f5 = 19.

• For all d-dimensional simplicial polytope the following inequality holds:
fd−1 ≥ (d − 1)f0 − (d + 1)(d − 2). Then f5 ≥ 5f0 − 28 implies that f0 = 8 or f0 = 9.

• The g -theorem for simplicial polytopes says that the sequence of integers
(h0, · · · , h7) is the h-vector of P?. We also have hi = h7−i ∀ i = 0, · · · , 7 and now
compute the numbers h′i s and obtain:

•

h1 = −7 + f0,
h2 = 21− 6f0 + f1,
h3 = −35 + 15f0 − 5f1 + f2,
h4 = 35− 20f0 + 10f1 − 4f2 + f3,
h5 = −21 + 15f0 − 10f1 + 6f2 − 3f3 + f4,
h6 = 7− 6f0 + 5f1 − 4f2 + 3f3 − 2f4 + f5. (5)
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• From h1 = h6 and h2 = h5 we get f2 = 1
2
(28− 14f0 + 6f1 + f4 − f5) and the system

of equations h3 = h4; h2 = h5 also gives f2 = 1
9
(168− 84f0 + 34f1 + f4).

• Equaling these two expressions of f2 we get f1 = 1
14

(−84 + 42f0 + 7f4 − 9f5) which is
not an integer for f0 = 8, 9. In conclusion (19, 57) /∈ E6.

• The following pairs are possible:

(15, 45); (15, 49); (16, 48); (17, 54); (19, 59); (23, 69); (24, 72); (27, 83); (35, 107) ∈ E6.

• We set

X ′ =
{

(8, 24); (9, 27); (9, 29); (10, 30); (10, 32); (10, 34); (11, 33); (11, 36); (12, 38);

(12, 39); (13, 39); (14, 42); (14, 44); (15, 47); (18, 54); (17, 53); (19, 57); (20, 62)
}
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• For f0 ≥ 7; if (f0, f1) /∈ X ′ and f1 ∈ {3f0} ∪
]
3f0 + 1, 7

2
f0 − 7

2

[
then (f0, f1) ∈ E6.

• The cases (17, 53); (20, 62) are unfeasible and (22, 68); (25, 77); (30, 92) ∈ E6 holds.

• Let Ed>3d−10 be the set of d-polytopes whose excess degree is larger than 3d − 10.
For d = 4, the set E4>2 of 4-polytopes whose excess degree is larger than 2 is given
by:

E4>2 =

{
(f0, f1) : 1 + 2f0 < f1 ≤

(
f0
2

)}
.
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The case d = 7

• In the same way for d = 5, 6 we obtain:

E5>5 =

{
(f0, f1) :

5

2
+

5

2
f0 < f1 ≤

(
f0
2

)}
,

and

E6>8 =

{
(f0, f1) : 4 + 3f0 < f1 ≤

(
f0
2

)}
.

• (Theorem 2) Let E7 be the set of (f0, f1)-pairs of 7-polytopes. For v = (p, q) such
that p ≥ 8 and 7

2
p ≤ q ≤

(
p
2

)
, if v /∈ E7 then ε7(v) ≤ 4× 7− 10 = 11. In other

words the set of (f0, f1)-vector pairs for 7-polytopes with excess strictly larger than
11 is given by

E7>11 =

{
(f0, f1) :

7

2
f0 +

11

2
< f1 ≤

(
f0
2

)}
.

With εd(v) = 2q − dp.

17 / 24



Introduction
Background

The (f0, f1)-pairs for 6-polytopes
The (f0, f1)-pairs for 7-polytopes

Conclusion

The case d = 7

• From the previous section we had

E6 =

{
(f0, f1) : 3f0 ≤ f1 ≤

(
f0
2

)}
\

({(
f0, 3f0 + 1

)
: f0 ≥ 7

}
∪{

(8, 24); (9, 27); (9, 29); (10, 30); (10, 32); (10, 34); (11, 33); (12, 38); (12, 39);

(13, 39); (14, 42); (14, 44); (15, 47); (18, 54); (19, 57); (17, 53); (20, 62)
})

(6)

• A pyramid over the 6-polytopes gives:{
(f0, f1) : 4f0 − 4 ≤ f1 ≤

(
f0
2

)}
\

({(
f0 + 1, 4f0 + 1

)
: f0 ≥ 7

}
∪{

(9, 32); (10, 36); (10, 38); (11, 40); (11, 42); (11, 44); (12, 44); (13, 50); (13, 51);

(14, 52); (15, 56); (15, 58); (16, 62); (18, 70); (19, 72); (20, 76); (21, 82)
})
⊂ E7.
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Proof

• A direct computation shows that ε7((f0 + 1, 4f0 + 1)) > 11 if and only if f0 > 17.
Assume that f0 > 17 and let us prove that (f0 − 6, 3f0 − 14) ∈ E6.

• We have ε6((f0 − 6, 3f0 − 14)) = 8 and if (f0 − 6, 3f0 − 14) /∈ E6 then
(f0 − 6, 3f0 − 14) = (10, 34), because (10, 34) is the only vector not in E6 with
excess equal to 8.

• Therefore we get f0 = 16 which is a contradiction. In conclusion for f0 > 17 there is
a 6-polytope P with (f0, f1)-pair (f0 − 6, 3f0 − 14); and a pyramid over P give a
7-polytope Q having (f0, f1)-vector which is equal to (f0 − 5, 4f0 − 20).

• As 4(f0 − 5) < (4f0 − 20) + 1 the polytope Q has a simple vertex whose truncation
gives a 7-polytope having (f0, f1)-pair equals (f0 + 1, 4f0 + 1).
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Proof

• We can conclude that all the 7-polytopes with excess greater than 11 and with

(f0, f1)-pairs in
{(

f0 + 1, 4f0 + 1
)

: f0 ≥ 7
}

exist.

• Let us focus on the set

L =
{

(9, 32); (10, 36); (10, 38); (11, 40); (11, 42); (11, 44); (12, 44); (13, 50); (13, 51);

(14, 52); (15, 56); (15, 58); (16, 62); (18, 70); (19, 72); (20, 76); (21, 82)
}
.

• The only vectors v = (p, q) ∈ L with ε7(v) > 11 are

v = (p, q) = (16, 62); (18, 70); (20, 76); (21, 82); (23, 90); (26, 102); (31, 123).
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• For v = (p, q) = (16, 62); (20, 76); (21, 82); (26, 102); (31, 123), we compute
v ′ = (p − 8, q − p − 20) = (8, 26); (12, 36); (13, 41); (18, 56); (23, 72) ∈ E6.

• Then their exist 6-polytopes Pv′ whose (f0, f1)-pairs are equal to v ′. A pyramid over
them give 7-polytopes having (f0, f1)-pairs equal to
(p − 7, q − 28) = (9, 34); (13, 48); (14, 54); (19, 74); (24, 95).

• In each case we observe that q − 28 < 4(p − 7) which means that each of them has
a simple vertex whose truncation give 7-polytopes with (f0, f1)-pairs equal to
(p − 1, q − 7). As truncations of simple vertices generate simplex facets then
pyramids on these give the result.
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• Consider v = (18, 70). There is a 6-polytope R with (f0, f1) = (10, 35). A pyramid
over R gives a 7-polytope R ′ having (f0, f1)-vector equal to (11, 42). As
42 < 4× 11 then R ′ has a simple vertex whose truncation gives a 7-polytopes R ′′

with (f0(R ′′), f1(R ′′)) = (17, 63).

• The truncation of a simple vertex in R ′′ with generate a simplex facet F and a
pyramid other F gives a 7-polytope with (f0, f1)-vector equal to (18, 70). The same
method works for (23, 90).

• We now turn to the pair v = (f0, f1) with f0 ≥ 8 and f1 ∈] 7
2
f0, 4f0 + 1[. The

condition ε7(v) > 11 implies that f1 ≥ 11
2

+ 7
2
f0 and then we need to discuss two

cases: 11
2

+ 7
2
f0 > 4f0 − 4 and 11

2
+ 7

2
f0 < 4f0 − 4.
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Proof

• If 11
2

+ 7
2
f0 > 4f0 − 4 then there is nothing else to prove as we end up in the

pyramid case. Suppose that 11
2

+ 7
2
f0 < 4f0 − 4 i.e. f0 > 19 and set for k,

X 7
k = {(k, f1); 11

2
+ 7

2
k < f1 < 4k − 4}.

• We can prove by truncation that if X 7
k ⊂ E7>11, then X 7

k+6 ⊂ E7>11. To prove that
each vector (f0, f1) satisfying this condition defines a 7-polytope it is sufficient to
show that X 7

k ⊂ E7>11 for k = 8, · · · , 13. Which have already been solved.

• Finally we conclude that all the pairs (p, q) with p ≥ 8, ε7(v) > 11 and
7
2
p ≤ q ≤

(
p
2

)
, characterize 7-polytopes. In other words the set of (f0, f1)-vectors

pair for 7-polytopes with excess strictly larger than 11 is given by

E7>11 =

{
(f0, f1) :

7

2
f0 +

11

2
< f1 ≤

(
f0
2

)}
.
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Conjecture

Let d ≥ 4 be an integer and Ed be the set of (f0, f1)-pairs of d-polytopes. For v = (p, q)
such that p ≥ d + 1 and d

2
p ≤ q ≤

(
p
2

)
, if v /∈ Ed then 2q − dp ≤ 4d − 10. In other

words the set of (f0, f1)-pairs for d-polytopes; d ≥ 4 with excess strictly larger than
3d − 10 is given by

Ed>3d−10 =

{
(f0, f1) :

d

2
f0 +

3d − 10

2
< f1 ≤

(
f0
2

)}
.
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