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Hamiltonian of the Ising model

H =
∑
j ,k

{Jvσj ,kσj+1,k + Jhσj ,kσj ,k+1}

Jv , Jh: vertical and horizontal coupling constants

The spins take the values σj ,k = ±1.

The partition function: exp(− 1
kbT

H)
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Nature of power series

Algebraic: S(x) ∈ Q(x) root of a polynomial P(t, S(t)) = 0

D-finite: S(x) ∈ Q(x) satisfying a linear differential equation with
polynomial coefficients cr (t)S (t)(t) + s + c0(t)S(t) = 0

Hypergeometric: S(x) =
∑∞

n=0 snx
n s.t. sn+1

sn
∈ Q(n). E.g., the Gauss

hypergeometric function:

2F1([a, b], [c], x) =
∞∑
n=0

(a)n(b)n
(c)n

tn

n!
,

(a)n := a(a + 1) · · · (a + n − 1)

E.g.: 2F1(1, 1; 1; z) = 1
1−z , 2F1(1, 1; 2; z) = − ln(1−z)

z

Partition function 2D square Ising model [Viswanathan, 2014]

4F3([1, 1,
3

2
,

3

2
], [2, 2, 2], 16k2]), k =

tanh(2βJ)

2 cosh(2βJ)
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Magnetic susceptibility of 2D Ising model

Magnetic susceptibility −→ sum
of two point correlation functions

χ := β

∞∑
n=0

χ(2n+1)

ability of a material
to align itself with
an external imposed
magnetic field

χ(2n+1)−→ 2n multiple integrals , e.g. χ(3) is given by the double integral:

χ(3)(s) =
(1− s)1/4

s

1

4π2

∫ 2π

0
dφ1

∫ 2π

0
dφ2y1y2y3

1 + x1x2x3

1− x1x2x3
F

xj =
s

1 + s2 − s cosφj +
√

(1 + s2 − s cosφj)2 − s2

yj =
s√

(1 + s2 − s cosφj)2 − s2
, (j = 1, 2, 3)

φ1 + φ2 + φ3 = 0

and F = f23

(
f31 + f23

2

)
with fij = (sinφi − sinφj)

xixj
1−xixj
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Feynman diagrams are D-finite

Feynman diagrams −→ first order perturbations of n-fold integral of the
operator S (scattering operator) giving the probability of such interactions:

S =
∞∑
n=0

ιn

n!

n times︷ ︸︸ ︷∫
· · ·
∫ n∏

j=1

d4xjT
n∏

j=1

L(xj)

Lv (xj)−→ Lagrangian of interaction, T the time ordered product of
operators, d4xj four-vectors
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Multiple integrals of an algebraic object

Theorem ( Kashiwara )

n times︷ ︸︸ ︷∫
· · ·
∫

D-finite function dx1 · · · dxn → D-finite function

(D-finite = solution of linear ODE with polynomial coefficients)
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Diagonal of a rational function

For a formal power series F given by

F (z1, z2, · · · , zn) =
∞∑

m1=0

· · ·
∞∑

mn=0

Fm1,··· ,mnz
m1
1 · · · z

mn
n ,

the diagonal of F is defined as the single variable series:

Diag(F (z1, z2, · · · , zn)) :=
∞∑

m=0

Fm,··· ,mz
m

Example. One of the many diagonals leading to Apéry numbers:

Diag
1

(1− z1 − z2)(1− z3 − z4)− z1z2z3z4
=
∑
n≥0

n∑
k=0

(
n

k

)2(n + k

k

)2

zn
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2F1, modular forms, and physics

The Gauss hypergeometric function 2F1 → PHYSICS!, e.g. the differential
operator of χ2n+1 factorizes into operators that annihilate 2F1 functions.
[A. Bostan, S. Boukraa, S. Hassani, M. van Hoeij, J.-M. Maillard, J.-A. Weil, N.

Zenine, The Ising model: from elliptic curves to modular forms and Calabi-Yau

equations, 2011]

[M. Assis, S. Boukraa, S. Hassani, M. van Hoeij, J.-M. Maillard, B. M. McCoy,

Diagonal Ising susceptibility: elliptic integrals, modular forms and Calabi-Yau

equations, 2012]

E4(q) = 1 + 240
∞∑
n=0

n3 qn

1− qn

=2 F1

(
[

1

12
,

5

12
], [1],

1728

j(τ)

)4

q = exp(2iπτ), j(τ)→ j-invariant
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Modular forms as pullbacked 2F1 functions

Emergence of modular forms in physics through 2F1 functions

Modular forms emerge through covariance properties of 2F1:

2F1

(
[α, β], [γ], p1(x)

)
= A(x)2F1

(
[α, β], [γ], p2(x)

)
A(x), p1(x) and p2(x) are rational functions. p1(x) and p2(x) are
called pullbacks, the 2F1 is thus called pullbacked. For instance:

2F1

(
[
1

12
,
5

12
], [1],

1728x

(5 + 10x + x2)3

)
=

( 5 + 10x + x2

3125 + 250x + x2

)1/4

2
F1

(
[
1

12
,
5

12
], [1],

1728x5

(3125 + 250x + x2)3

)
.

w.l.o.g we have: A(x)2F1

(
[α, β], [γ], y(x)

)
= 2F1

(
[α, β], [γ], x

)
A(x) and y(x) algebraic functions. Modular equation M(x , y(x)) = 0:

1953125x3y 3 − 187500x2y 2(x + y) + 375xy(16x2 − 4027xy + 16y 2)

−64(x + y)(x2 + 1487xy + y 2) + 110592xy = 0
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Schwarzian condition

Theorem ( Abdelaziz–Maillard, 2016 )

If we have a pullback given by:

A(x)2F1

(
[α, β], [γ], x

)
=2 F1

(
[α, β], [γ], y(x)

)
then we have the following “Schwarzian condition”:

W (x)−W (y(x))y ′(x)2 + {y(x), x} = 0

where W (x) := p′(x) +
p(x)2

2
− 2q(x)

with p(x) =
(α + β + 1)x − γ

x(x − 1)
q(x) =

αβ

x(x − 1)

NB: The Schwarzian derivative is defined by

{y(x), x} :=
y ′′′(x)

y ′(x)
− 3

2

(
y ′′(x)

y ′(x)

)2
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{y(x), x} :=
y ′′′(x)

y ′(x)
− 3

2

(
y ′′(x)

y ′(x)

)2
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Proof of our theorem of the Schwarzian condition

We introduce

the operator L2 := D2
x + p(x)Dx + q(x) annihilating

F (x) := 2F1

(
[α, β], [γ], x

)
the operator L

(c)
2 := 1

v(x)L2v(x), i.e.

L
(c)
2 = D2

x +
(
p(x) + 2

v ′(x)

v(x)

)
Dx + q(x) + p(x)

v ′(x)

v(x)
+

v”(x)

v(x)

NB: L
(c)
2 annihilates A(x)F (x) (with A(x) = 1/v(x)):

L
(c)
2

1
v F (x) = 1

v L2�
�@
@v
1
v F (x) = 0

So, the operator annihilating F (y(x)) is

L
(p)
2 = D2

x +
(
p(y(x))y ′(x)− y”(x)

y ′(x)

)
Dx + q(y(x))y ′(x)2

When does the equality L
(c)
2 = L

(p)
2 hold?
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Proof of our theorem of the Schwarzian condition

Well, identifying L
(c)
2 = L

(p)
2 gives us two conditions:

Condition 1: p(x) + 2
v ′(x)

v(x)
= p(y(x))y ′(x)− y”(x)

y ′(x)

Condition 2: q(x) + p(x)
v ′(x)

v(x)
+

v”(x)

v(x)
= q(y(x))y”(x)2

Introducing w(x) := exp
(
−
∫
p(x)dx

)
, i.e. p(x) = −w ′(x)

w(x) , Condition 1 rewrites

−w ′(x)

w(x)
+ 2

v ′(x)

v(x)
= −y ′′(x)

y ′(x)
+

w ′(y(x))

w(y(x))

Integrating the log-derivative terms we get:

− lnw(x) + 2 ln v(x) = − ln y ′(x)− lnw(y(x))

Taking exponential gives

v(x) =

√
w(x)

w(y(x))y ′(x)

inserting it in Condition 2 gives the Schwarzian condition in the theorem.
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Global nilpotence

Assuming that the operator is globally nilpotent is equivalent to:

p(x) = −w ′(x)

w(x)

The following statements are a consequence of global nilpotence:

The Wronskian is the n-th root of a rational function

The solutions of the differential equation have rational coefficients

The p-curvature is a nilpotent matrix mod prime

Global nilpotence → rational coefficients of solutions →
p(x) = d

dx lnw(x)
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Modular equation M(x,y(x))=0 and modular invariant

The j-invariant of the elliptic curve:

j(k) = 256
(1− k2 + k4)3

k4(1− k2)2

The Landen transformation:

kL =
2
√
k

1 + k

The transform of the elliptic invariant through kL:

j(kL) = 16
(1 + 14k2 + k4)3

k2(1− k2)4

The two corresponding Hauptmoduls (similar to a group generator):

x =
1728

j(k)
y =

1728

j(kL)

are related through the modular equation τ → 2τ :

M(x , y) = 1953125x3y 3 − 187500x2y 2(x + y) + 375xy(16x2 − 4027xy + 16y 2)

−64(x + y)(x2 + 1487xy + y 2) + 110592xy = 0
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Isogeny structure, commutation

For one 2F1

(
[a, b], [1], x

)
with two different pullbacks

αx + · · ·
αx2 + · · ·
αx3 + · · ·

we obtain the isogenies series-solution “structure”

This set of solutions is either:

Algebraic: e.g. 2F1

(
[ 1

12 ,
5

12 ], [1], x
)

, we recover “some” commutation

like in the case of isogenies (as we will see below)

Transcendent
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Schwarzian condition and modular forms: τ → 2τ and
beyond

The modular form:

A(x)2F1

(
[

1

12
,

5

12
], [1], x

)
=2 F1

(
[

1

12
,

5

12
], [1], y(x)

)
(1)

A(x) is an algebraic function

y(x) is an algebraic function corresponding to the modular equation
corresponding to τ → 2τ

y(x) =
1

1728
x2 +

31

62208
x3 +

1337

3359232
x4 +

349115

1088391168
x5 + · · ·

The Schwarzian condition is verified in this case with:

W (x) = −32x2 − 41x + 36

72x2(x − 1)2
, p(x) =

3x − 2

2x(x − 1)
, q(x) =

5

144x(x − 1)

It turns out that one can write, for the modular equations corresponding
to τ → Nτ , the function in the form of (1) above. Thus the equation (1)
above encapsulates all the modular equations corresponding to τ → Nτ .
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Modular equations of higher order

The modular equation of order three τ → 3τ :

262144000000000x3y 3(x + y) + 4096000000x2y 2(27x2 − 45946xy + 27y 2)

+15552000xy(x + y)(x2 + 241433xy + y 2)

+729x4 − 779997924x3y + 1886592284694x2y 2 − 779997924xy 3 + 729y 4

+2811677184xy(x + y)− 2176782336xy = 0

has the series expansion starting in x3 and given by:

y(x) =
x3

2985984
+

31x4

71663616
+

36221x5

82556485632
+

29537101x6

71328803586048
+ . . .

Similarly for τ → 4τ , we get a series starting in x4:

y(x) =
x4

5159780352
+

31x5

92876046336
+

43909x6

106993205379072
+ · · ·
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Modular equations of higher order
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Modular equations of higher order

Except for this last series solution, the solution series corresponding
to the isogenies τ → Nτ have the form axN + · · ·
The series solution corresponding to τ → 3τ and τ → 4τ are solution
of the Schwarzian condition

Generalizing the solution series corresponding to τ → 2τ we seek solution
series of the Schwarzian condition of the form ax2 + · · · :

y2 = ax2 +
31ax3

36
− a(5952a− 9511)

13824
x4 + · · ·

reducing to the solution of τ → 2τ when a = 1/1728
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Modular equations of higher order

A one-parameter family of solution-series bx3 + · · · for the modular
equation corresponding to τ → 3τ :

y3 = bx3 +
31b

24
x4 +

36221b

27648
x5 + · · ·

reduces to a previous series having the form x3 + · · · when b = 1/17282.

Finally the one-parameter series

y4 = cx4 +
31c

18
x5 +

43909c

20736
x6 + · · ·

reduces to a previous series of the form x4 + · · · for
c = 1/5159780352 = 1/17283
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Commuting series

These series do not commute: yi (yj(x)) 6= yj(yi (x)).

Composing the solution series y3 and y2 with d = ab2:

y2(y3(x)) = dx6 +
31dx7

12
+

59285d

13824
x8 + · · ·

y2(y3(x)) = y3(y2(x)) ↔ ?
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Conclusion

The Schwarzian condition encapsulates the infinite number of
modular equations τ → Nτ .

Strong incentive to develop more differentially algebraic tools from an
algorithmic perspective : to test the non-D-finiteness of the Ising
susceptibility for example!

Strong incentive to examine further the occurence of non-linear
symmetries (like the Landen transformation) in physics.
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Questions: non-linear differential Galois group

Built to generalize the differential Galois group to non-linear ODE’s
and non linear functional equations having the form
f (x + 1) = y(f (x)).

Having a finite non-linear differential Galois group guarantees “some
integrability” and this is guaranteed by Casale’s condition:

ν(y)y ′′(x)2 − ν(x) +
y ′′′(x)

y ′(x)
− 3

2

(y ′′(x)

y ′(x)

)2
= 0
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Modular equations: definition through θ functions

With q = exp(iπτ), τ = iK ′/K the θ3 and θ4 functions are defined as
follows:

θ2 = 2q1/4
∏
n≥1

(
1− q4n

1− q4n−2

)
, θ3 =

∞∑
−∞

qn
2
, θ4 =

∞∑
−∞

(−1)nqn
2

where K = (π/2)θ2
3(τ) and K ′(τ) = K (−1τ). We can write the identity:

θ3(τ)2 + θ4(τ)2 = 2θ3(2τ)2 =
2

1 + k ′

with
√
k(τ) = θ2(τ)

θ3(τ) ,
√
k ′(τ) = θ4(τ)

θ3(τ) and l ′(τ) = k ′(pτ) where p is given
by a positive integer, we have:

1

l ′
=

1

2
(
√
k ′ +

1√
k ′

)

giving in the case p = 2 the modular equation that sends τ to 2τ .
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Painlevé equations

The hypergeometric function,the Bessel function, the Airy function,
the Hermite polynomials, are all “special” (appearing in problems
elated to physics) functions solution of linear differential equations.

Elliptic functions are also “special” functions: they appear in physics
as we shall see here, yet they are solution of simple, yet non-linear
differential equations.

Painlevé was set out to find special functions satisfying non-linear
differential equations, yet have nice properties (all their singularities
are poles).

Painlevé wanted to classify all differential equations of order two having
the form:

uxx = R(x , u, ux)

with R being a rational function. Painlevé found 50 equations having this
form, six of these were irreducible to known functions; they are known
today as the six Painlevé equations.
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Magnetic susceptibility = ratio of D-finite functions?

The hypergeometric function:

2F1([1/3, 1/3], [1], 27x)

is D-finite and verifies the following linear differential equation

(27x2 − x)

(
d2

dx2
F (x)

)
+ (45x − 1)

(
d

dx
F (x)

)
+ 3F (x) .

Similarly the hypergeometric function given by

2F1([1/2, 1/2], [1], 16x)

verifies the D-finite equation

(16x2 − x)

(
d2

dx2
F (x)

)
+ (32x − 1)

(
d

dx
F (x) + 4F (x)

)
.

Reminder: A function is D-finite when it is solution of a linear differential
equation and with rational coefficients in x .
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Magnetic susceptibility = ratio of D-finite functions?

The ratio of these two D-finite functions is given by:

2F1([1/3, 1/3], [1], 27x)

2F1([1/2, 1/2], [1], 16x)

While the product of two D-finite functions is always D-finite, the
ratio of two D-finite functions is generally not so (except if the
D-finite function at the denominator is an algebraic function)!

In fact the differential equation that this ratio verifies is non-linear as
we can see in the next slide

26/27 Youssef Abdelaziz, Jean-Marie Maillard Differentially algebraic equations in physics



−2x2(27x − 1)(−1 + 16x)((27x − 1)(−1 + 16x)
d

dx
F (x)

−72xF (x)− F (x))
d3

dx3
F (x)

+3x2(27x − 1)2(−1 + 16x)2

(
d2

dx2
F (x)

)2

−2x(93312
d

dx
F (x)x4 − 7992

d

dx
F (x)x3

−93312x3F (x) + 87
d

dx
F (x)x2 + 168x2F (x)

+3
d

dx
F (x)x + 297xF (x)− 4F (x))

d2

dx2
F (x)

+(−1 + 16x)(1944x3 − 1569x2 + 58x − 1)

(
d

dx
F (x)

)2

+2F (x)(29376x3 + 5580x2 − 221x + 1)
d

dx
F (x)

+(144x2 − 432x + 1)F (x)2 = 0
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