Differentially algebraic equations in physics
Youssef Abdelaziz, Jean-Marie Maillard
(Université Paris VI)

Based on “Modular forms, Schwarzian conditions, and symmetries of
differential equations in physics', arXiv 1611.08493
Séminaire CALIN
Univ. Paris Nord, Villetaneuse, 10/01/2017

Youssef Abdelaziz, Jean-Marie Maillard Differentially algebraic equations in physics


https://arxiv.org/abs/1611.08493

Hamiltonian of the Ising model

H= Z{Jvo'j,ko'j+1,k + Jnoj k0j k+1}
Jrk

e J,, Jp: vertical and horizontal coupling constants

@ The spins take the values o}, = %1.

@ The partition function: exp(—kbiTH)
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Nature of power series

@ Algebraic: §(x) € Q(x) root of a polynomial P(t,S(t)) =0
e D-finite: S(x) € Q(x) satisfying a linear differential equation with
polynomial coefficients ¢, (t)S()(t) + s + co(t)S(t) = 0

e Hypergeometric: S(x) = Y77 sax" s.t. s’;—tl € Q(n). E.g., the Gauss
hypergeometric function:

2F1([a7 b]a [C],X) = Z (azn(b)ntn>

n=0

Youssef Abdelaziz, Jean-Marie Maillard Differentially algebraic equations in physics



Nature of power series

@ Algebraic: §(x) € Q(x) root of a polynomial P(t,S(t)) =0
e D-finite: S(x) € Q(x) satisfying a linear differential equation with
polynomial coefficients ¢, (t)S()(t) + s + co(t)S(t) = 0

e Hypergeometric: S(x) = Y77 sax" s.t. s’;—tl € Q(n). E.g., the Gauss
hypergeometric function:

il B[] ) = S el ) et 1) (o 1)

~ (c)n 0

o Eg.: 2F1(]_, 1:1; z) = i, 2[_‘1(17 1:2: Z) _ _In(1-z)

z

e Partition function 2D square Ising model [Viswanathan, 2014]

33 ) _ tanh(23J)
AL 15, 1 2221 16K, k=5 G oah
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Magnetic susceptibility of 2D Ising model

Magnetic susceptibility — sum
of two point correlation functions

X:=p i i

n=0

ability of a material
to align itself with
an external imposed
magnetic field

") — 2n multiple integrals , e.g. x(®) is given by the double integral:
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Magnetic susceptibility of 2D Ising model

Magnetic susceptibility — sum
of two point correlation functions

X:=p i i

n=0

ability of a material
to align itself with
an external imposed
magnetic field

") — 2n multiple integrals , e.g. x(®) is given by the double integral:

1_5 1/4 1 2m 27 1+
o) == [T o / o

1-— X1X2X3

T 1482 —scosdj + +/( 1+52—scos¢j)2—52

s
= y .:1,273
V(1452 —scos ;)2 — 52 U )

$1+ P2+ ¢3=0
and F = f3 (f31 + %) with f;; = (sin ¢; — sin ¢;) o2

1—x;x;

Youssef Abdelaziz, Jean-Marie Maillard Differentially algebraic equations in physics



Feynman diagrams are D-finite

Feynman diagrams — first order perturbations of n-fold integral of the
operator S (scattering operator) giving the probability of such interactions:

n times

L,(x;)— Lagrangian of interaction, 7 the time ordered product of
operators, four-vectors
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Multiple integrals of an algebraic object

n times

/ / D-finite function dxy ---dx, — D-finite function

(D-finite = solution of linear ODE with polynomial coefficients)
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Diagonal of a rational function

For a formal power series F given by
o o
F(Z]_,Z27'-- ,Zn): Z Z le,"',ng{nl"'zg,na
m1=0 mp=0
the diagonal of F is defined as the single variable series:
oo
Diag(F(z1,22, -+ ,2zn)) = Z Froooomz™
m=0
Example. One of the many diagonals leading to Apéry numbers:

o 1 >3 (0) ()
= z
|ag(1 —z21—2)1—z3—2z3) — 1227324 k k

n>0 k=0
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oF1, modular forms, and physics

The Gauss hypergeometric function »F; — PHYSICS!, e.g. the differential
operator of x?"*1 factorizes into operators that annihilate »F; functions.
[A. Bostan, S. Boukraa, S. Hassani, M. van Hoeij, J.-M. Maillard, J.-A. Weil, N.
Zenine, The Ising model: from elliptic curves to modular forms and Calabi-Yau
equations, 2011]

[M. Assis, S. Boukraa, S. Hassani, M. van Hoeij, J.-M. Maillard, B. M. McCoy,

Diagonal Ising susceptibility: elliptic integrals, modular forms and Calabi-Yau
equations, 2012]

9 n
Ex(q)=1+240) n31i7qn
n=0

1 5 1728\ *
— A (g5 1510155 ) L
q = exp(2inT), j(T) — j-invariant @b%mm
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Modular forms as pullbacked ,F; functions

@ Emergence of modular forms in physics through »F; functions
@ Modular forms emerge through covariance properties of »Fi:

2F (o, 81, 1), () = A2 ([ 81, 1], pa()

A(x), pi(x) and pa(x) are functions. p;i(x) and p(x) are
called pullbacks, the »F is thus called . For instance:

1 1728x
F([12 12] 1, (5+ 10x + x?)3 ):

( 5+ 10x + x2 )1/ ([i S 1728x° )
3125 + 250x + x2 /2 12712 (3125 + 250x + x2)3

Youssef Abdelaziz, Jean-Marie Maillard Differentially algebraic equations in physics



Modular forms as pullbacked ,F; functions

@ Emergence of modular forms in physics through »F; functions
@ Modular forms emerge through covariance properties of »Fi:

2F (o, 81, 1), () = A2 ([ 81, 1], pa()

A(x), pi(x) and pa(x) are functions. p;i(x) and p(x) are
called pullbacks, the »F is thus called . For instance:
1 1728x
([12 12] 1, (5+ 10x + x?)3 ) -

( 5+ 10x + x2 )1/ ([i S 1728x° )
3125 + 250x + x2 /2 12712 (3125 + 250x + x2)3

e w.l.o.g we have: oF ([a,ﬁ], [~], ) = 2F1<[CY,5]7 [V],X)

and functions.

Youssef Abdelaziz, Jean-Marie Maillard Differentially algebraic equations in physics



Modular forms as pullbacked ,F; functions

@ Emergence of modular forms in physics through »F; functions
@ Modular forms emerge through covariance properties of »Fi:

2F (o, 81, 1), () = A2 ([ 81, 1], pa()

A(x), pi(x) and pa(x) are functions. p;i(x) and p(x) are
called pullbacks, the »F is thus called . For instance:

1 1728x
F([12 12] 1, (5+ 10x + x?)3 ):

( 5+ 10x + x2 )1/ ([i S 1728x° )
3125 + 250x + x2 /2 12712 (3125 + 250x + x2)3

o w.l.o.gwe have: A()2F ([ B, b1, v()) = 2F1([as B 1] x
and functions. Modular equation M(x, y(x)) = 0:

1953125x°y® — 187500x°y>(x + y) + 375xy(16x”> — 4027xy + 16y°)
—64(x + y)(x* + 1487xy + y?) + 110592xy = 0
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Schwarzian condition

Theorem (

If we have a pullback given by:

A()2F ([e 81 11, x) =2 Fi ([ev 81, 1, ()

then we have the following “Schwarzian condition”:

W)~ Wly()y (7 + =0
where  W(x) = p'(x) + %X)z _ 2g(x)
with  pl) = “EEEEEY g = 20
NB: The derivative is defined by
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Schwarzian condition

Theorem (

If we have a pullback given by:

A()2F ([e 81 11, x) =2 Fi ([ev 81, 1, ()

then we have the following “Schwarzian condition”:

W(x) = W(y(x)y'(x)* + =0
X)2
where W(x) :=p'(x) + % —2q(x)
. _(a+B+1)x—vy _ap
with p(x) = X —1) q(x) = =)
NB: The derivative is defined by
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Proof of our theorem of the Schwarzian condition

We introduce
e the operator Ly := D? + p(x)Dx + g(x) annihilating
F(x) =23 ([ax, B), m,x)

@ the operator Lgc) = V(X) Lyv(x), e

1) = D2+ (p) + 222)) D) 4 () 220 4 O

NB: L( ) annihilates A(x)F ( ) (with A(x) = 1/v(x)):
LY iF = L1, pEF(x)
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Proof of our theorem of the Schwarzian condition

We introduce
e the operator Ly := D? + p(x)Dx + g(x) annihilating
F(x) =23 ([ax, B), m,x)

@ the operator Lgc) = V(X) Lyv(x), e

1) = D2+ (p) + 222)) D) 4 () 220 4 O

NB: L(C) annihilates A(x)F ( ) (with A(x) = 1/v(x)):
LY iF = L1, pEF(x)
@ So, the operator annihilating F(y(x)) is

L9 = 02+ (ply(y' () - L) D+ aly )y (6

@ When does the equality hold?
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Proof of our theorem of the Schwarzian condition

Well, identifying gives us two conditions:

Condition 1: p(x) +2 Y

Condition 2:  q(x) + p(x) L 1+ L) _ o)y (x)?

_w'(x)
w(x) "

wWi(x) V) Y wiv(X)
W) 200 T Ty T W)
Integrating the log-derivative terms we get:
—Inw(x) +2Inv(x) = —Iny'(x) — Inw(y(x))

Taking exponential gives

Introducing w(x) := exp (— [ p(x)dx), i.e. p(x) = Condition 1 rewrites

w(x)
vix) = —————
e ey
inserting it in Condition 2 gives the Schwarzian condition in the theorem. 0
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Global nilpotence

Assuming that the operator is globally nilpotent is equivalent to:

w'(x)

w(x)

p(x) =~

The following statements are a consequence of global nilpotence:

@ The Wronskian is the n-th root of a rational function

@ The solutions of the differential equation have rational coefficients
@ The p-curvature is a nilpotent matrix mod prime
°

Global nilpotence — rational coefficients of solutions —
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Modular equation M(x,y(x))=0 and modular invariant

The j-invariant of the elliptic curve:

, (1— K>+ k*)?
k) =256——
J( ) k4(1 _ k2)2
The Landen transformation:
2Vk
ki = ——
14+ k

The transform of the elliptic invariant through k;:
(1+ 14k + k*)3
k2(1 _ k2)4

J(ke) =16
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Modular equation M(x,y(x))=0 and modular invariant

The j-invariant of the elliptic curve:

, (1— K>+ k*)?
k) =256——
J( ) k4(1 _ k2)2
The Landen transformation:
2Vk
ki = ——
14+ k

The transform of the elliptic invariant through k;:
(1+ 14k + k*)3

(kL) =16
J(ke) K2(1 — k2)*
The two corresponding Hauptmoduls (similar to a group generator):
1728 1728

X =

ik T k)
are related through the modular equation 7 — 27
M(x,y) = 1953125x>y® — 187500x°y°(x + y) + 375xy(16x> — 4027xy + 16y°)
—64(x + y)(x* + 1487xy + y*) + 110592xy = 0
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Isogeny structure, commutation

For one 2F1<[a, b], [1],x) with two different pullbacks

ax 4 -
ax? 4.

ax® -

we obtain the isogenies series-solution
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Isogeny structure, commutation

or one 2F1( [a, b, [1], x ) with two different pullbacks
F F b, [1 ith diffe llback

ax 4 -
ax? 4.

ax3 4
we obtain the isogenies series-solution

This set of solutions is either:
o Algebraic: e.g. 2F; ([%, =1, [1],x>, we recover “some”’ commutation
like in the case of isogenies (as we will see below)

@ Transcendent
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Schwarzian condition and modular forms: 7 — 27 and

beyond

The modular form:

2Fi Iy b l11x) =2 (1550 b 1 7(0) 1)

° is an algebraic function
@ y(x) is an algebraic function corresponding to the modular equation
corresponding to 7 — 27
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Schwarzian condition and modular forms: 7 — 27 and

beyond

The modular form:

2Fi Iy b l11x) =2 (1550 b 1 7(0) 1)

° is an algebraic function
@ y(x) is an algebraic function corresponding to the modular equation
corresponding to 7 — 27
@2 3L s 1337 . 340115
1728 62208 3359232 1088391168
The Schwarzian condition is verified in this case with:
32x* — 41x + 36 3x —2 5
Tl 17 P T 2 T T a1

y(x) =

W(x) = —
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Schwarzian condition and modular forms: 7 — 27 and

beyond

The modular form:

2Fi Iy b l11x) =2 (1550 b 1 7(0) 1)

° is an algebraic function
@ y(x) is an algebraic function corresponding to the modular equation
corresponding to 7 — 27
@2 3L s 1337 . 340115
1728 62208 3359232 1088391168
The Schwarzian condition is verified in this case with:
32x* — 41x + 36 3x —2 5
Tl 17 P T 2 T T a1

y(x) =

W(x) = —

It turns out that one can write, for the modular equations corresponding
to 7 — N, the function in the form of (1) above. Thus the equation (1)
above encapsulates all the modular equations corresponding to 7 — NT.
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Modular equations of higher order

The modular equation of order three 7 — 37

262144000000000x%y>(x + y) 4 4096000000x°y>(27x> — 45946xy + 27y°)
+15552000xy (x + y)(x* + 241433xy + y°)

+729x* — 779997924x°%y + 1886592284694x°y” — 779997924xy> + 729y*
+2811677184xy(x + y) — 2176782336xy = 0

has the series expansion starting in x> and given by:

X N 31x* N 36221x° 29537101x°
2085984 ' 71663616 = 82556485632 = 71328803586048

y(x)
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Modular equations of higher order

The modular equation of order three 7 — 37

262144000000000x%y>(x + y) 4 4096000000x°y>(27x> — 45946xy + 27y°)
+15552000xy (x + y)(x* + 241433xy + y°)

+729x* — 779997924x°%y + 1886592284694x°y” — 779997924xy> + 729y*
+2811677184xy(x + y) — 2176782336xy = 0

has the series expansion starting in x> and given by:

(x) = x* N 31x* N 36221x° 29537101x°
YY) = 2085084 " 71663616 '~ 82556485632 | 71328803586048

Similarly for 7 — 47, we get a series starting in x*:

x4 31x° 43909x°
5159780352 = 92876046336 = 106993205379072
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Modular equations of higher order

@ Except for this last series solution, the solution series corresponding
to the isogenies 7 — N7 have the form axV + - -

@ The series solution corresponding to 7 — 37 and 7 — 47 are solution
of the Schwarzian condition
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Modular equations of higher order

@ Except for this last series solution, the solution series corresponding
to the isogenies 7 — N7 have the form axV + - -

@ The series solution corresponding to 7 — 37 and 7 — 47 are solution
of the Schwarzian condition

Generalizing the solution series corresponding to 7 — 27 we seek solution
series of the Schwarzian condition of the form ax% + - - -:

ol 3lax®  a(5952a — 9511) ,
2= 36 13824

reducing to the solution of 7 — 27 when a = 1/1728
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Modular equations of higher order

A one-parameter family of solution-series bx3 + - - - for the modular
equation corresponding to 7 — 37:

31b 4 | 36221b

—b
s X+24 * 27648 ¢

reduces to a previous series having the form x3 + --- when b = 1/17282.
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Modular equations of higher order

A one-parameter family of solution-series bx3 + - - - for the modular
equation corresponding to 7 — 37:

31b 4 | 36221b

—b
s X+24 * 27648 ¢

reduces to a previous series having the form x3 + --- when b = 1/17282.

Finally the one-parameter series

L 3le 5, 43009 g
ya = 18 20736

reduces to a previous series of the form x* + - .- for
c = 1/5159780352 = 1/17283
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Commuting series

@ These series do not commute: y;(yj(x)) # y;(vi(x)).

e Composing the solution series y3 and y» with d = ab?:

31dx’ N 59285d ¢
12 13824

ya(y3(x)) = dx® +

° ya(y3(x)) = y3(y2(x)) ¢
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Commuting series

@ These series do not commute: y;(y;(x)) # yj(yi(x)).

e Composing the solution series y3 and y» with d = ab?:

31dx7_+ 59285d ¢
12 13824

ya(ya(x)) = dx® +

° y2(y3(x)) = y3(y2(x))
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Conclusion

@ The Schwarzian condition encapsulates the infinite number of
modular equations 7 — NT.

@ Strong incentive to develop more differentially algebraic tools from an
algorithmic perspective : to test the non-D-finiteness of the Ising
susceptibility for example!

@ Strong incentive to examine further the occurence of non-linear
symmetries (like the Landen transformation) in physics.
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Questions: non-linear differential Galois group

@ Built to generalize the differential Galois group to non-linear ODE's
and non linear functional equations having the form
f(x+1) = y(f(x)).

@ Having a finite non-linear differential Galois group guarantees “some
integrability” and this is guaranteed by Casale's condition:
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Modular equations: definition through 6 functions

With g = exp(in7), 7 = iK'/K the 03 and 604 functions are defined as
follows:

1 . (o9} o0
92 - 2q1/4 H < 4qn 2) 03 = Z qn27 64 = z:(_l)nqn2
n>1 —00 —00
where K = (/2)03() and K'(7) = K(—17). We can write the identity:
0372 + Ba(r? = 2032 = 2,

with \/k 3221) VK(T) = 338 and /'(1) = k'(pt) where p is given

by a p05|t|ve integer, we have:

giving in the case p = 2 the modular equation that sends 7 to 27.
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Painlevé equations

@ The hypergeometric function,the Bessel function, the Airy function,
the Hermite polynomials, are all “special” (appearing in problems
elated to physics) functions solution of linear differential equations.

o Elliptic functions are also “special” functions: they appear in physics
as we shall see here, yet they are solution of simple, yet non-linear
differential equations.

@ Painlevé was set out to find special functions satisfying non-linear
differential equations, yet have nice properties (all their singularities
are poles).

Painlevé wanted to classify all differential equations of order two having
the form:

Uxx = R(X7 u, Ux)

with R being a rational function. Painlevé found 50 equations having this
form, six of these were irreducible to known functions; they are known
today as the six Painlevé equations.
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Magnetic susceptibility = ratio of D-finite functions?

The hypergeometric function:
2F1([1/37 1/3]7 [1]7 27X)

is D-finite and verifies the following linear differential equation
2

(27x% — ) (;;F(x)> + (45x — 1) (:F(x)) +3F(x).

X

Similarly the hypergeometric function given by
2F1([]'/27 1/2]7 [1]7 16X)

verifies the D-finite equation

2

(16x* — x) (;;F(x)) +(32x — 1) (:F(X) - 4F(x)> .

X

Reminder: A function is D-finite when it is solution of a linear differential
equation and with rational coefficients in x.
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Magnetic susceptibility = ratio of D-finite functions?

The ratio of these two D-finite functions is given by:

oF1([1/3,1/3],[1],27x)
2F1([1/2,1/2],[1], 16x)

@ While the product of two D-finite functions is always D-finite, the
ratio of two D-finite functions is generally not so (except if the
D-finite function at the denominator is an algebraic function)!

@ In fact the differential equation that this ratio verifies is non-linear as
we can see in the next slide
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—2x2(27x — 1)(—1 + 16x)((27x — 1)(—1 + 16x)%F(x)

3

d
—T72xF(x) — F(X))RF(X)
2 2 2 d2 ?
+3x°(27x — 1)7(—1 + 16x) <dX2F(X)>
f2x(93312iF(x)x4 - 7992iF( )x3
dx dx X
—93312x3F(x) + 87di F(x)x? + 168x*F(x)
X
+3iF( )x + 297xF (x) — 4F( ))d—zF( )
C/X X)X X\ X X dX2 X

2
+(—1 + 16x)(1944x3 — 1569x> + 58x — 1) (j F(X))
X

d
aF(X)

+(144x% — 432x + 1)F(x)*> =0

+2F(x)(29376x> + 5580x% — 221x + 1)
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