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Introduction - QFT

QFT - quantum description of particles and interactions,
compatible with Einstein's special relativity

< elementary particle physics (high energy physics)
(Standard Model of Elementary Particle Physics)

greatest experimental success

QFT formalism applies also to:
statistical mechanics, condensed matter etc.

“QFT has remained throughout the years one of the most
important tools in understanding the microscopic world.”
C. ltzykson and J.-B. Zuber, “QFT"
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Scalar field theory and Feynman graphs

¢ :R* - K - a scalar field
R* - the 4—dimensional space(time), Euclidean metric

the action (functional in the field)

4

2
S[(x)] :/d4x ;Z( 0 ¢(x)) +%m2¢2(x)+3¢4(x)

= 0xy 4]

m - the mass of the particle,
A - the coupling constant
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Scalar field theory and Feynman graphs

¢ :R* - K - a scalar field
R* - the 4—dimensional space(time), Euclidean metric

the action (functional in the field)

1./ 0 2 1 A
_ 4|1 9 102 A b
S[o(x)] _/d . 2; (%cp(x)) + 5 mPO%(x) 4 £ 0%(x)
m - the mass of the particle,
A - the coupling constant
@ quadratic part - propagation - edges
o non-quadratic part - interaction potential V[®(x)] = 2 ®%(x)

- vertices:
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Scalar field theory and Feynman graphs

¢ :R* - K - a scalar field
R* - the 4—dimensional space(time), Euclidean metric

the action (functional in the field)

4

2
S[o(x)] = / d*x %Z (&cp(@) 4 %m2¢2(x) + %CD“(x)

pu=1

m - the mass of the particle,
A - the coupling constant
@ quadratic part - propagation - edges
o non-quadratic part - interaction potential V[®(x)] = 2 ®%(x)

- vertices:

— (Feynman) graphs of valence 4 - perturbation theory (in_\)
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example of a Feynman graph:

fs
f. =2

€4
f, €&

f,
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example of a Feynman graph:

fs
f. =2

€4
f, €&

f,

Fourier transform: position space (x) — momentum space (p)
S[0] = [ d*p [ Zh1(u®)? + 3202 1 Vi

: 1
o propagatlon = m

@ interaction - A d(sum of incoming/outgoing momentae)

— Feynman amplitude (in momentum space)
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Renormalizability

first computations in QFT end in infinite results

a cure for these infinities (such that the theoretical results can be
compared with experiments) - renormalization.

huge experimental success!

renormalizable theories - building block of mathematical physics
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Main ingredients of renormalizability

© power counting theorem: indicates which Feynman graphs are
primitively divergent
superficial degree of divergence w -
should not depend on the internal structure
exemple: the ¢* model

w=N—4.

N - number of external legs of the graph
primitively divergent graphs: 2— and 4—point graphs
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Main ingredients of renormalizability

© power counting theorem: indicates which Feynman graphs are
primitively divergent
superficial degree of divergence w -
should not depend on the internal structure
exemple: the ¢* model

w=N—4.

N - number of external legs of the graph
primitively divergent graphs: 2— and 4—point graphs
@ locality

— Bogoliubov subtraction operator R
(defined as a sum over forests)

subtraction of divergences
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The physical principle of locality (Feynman graph level)

connected graphs can be reduced to points

graph made of internal propagators of
high energy (or short distance) (ultraviolet (UV) regime) - local

example:

subtraction of local counterterms -
i. e. counterterms have the same form as the terms of the action

via Taylor expansion

— renormalized amplitude Ag: finite!
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Connes-Kreimer Hopf algebra

A. Connes and D. Kreimer, Commun. Math. Phys., '00
— definition of a coproduct A

‘H - the algebra generated by Feynman graphs
multiplication: disjoint union of graphs

AH—-HOH, AG)=Ga1+18G6+ > 7®G/y,
v€EG

G — primitively divergent subgraphs of G
renormalization as a factorization issue
e:H—-K, €(1)=1, ¢(G)=0, VG #1,
S:H—-H,

S(x) =1y, G——G— > S(7)G/v.

vEG
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Connes-Kreimer Hopf algebra

A. Connes and D. Kreimer, Commun. Math. Phys., '00
— definition of a coproduct A

‘H - the algebra generated by Feynman graphs
multiplication: disjoint union of graphs

AH—-HOH, AG)=Ga1+18G6+ > 7®G/y,
v€EG

G — primitively divergent subgraphs of G
renormalization as a factorization issue
e:H—-K, €(1)=1, ¢(G)=0, VG #1,
S:H—-H,

S(x) =1y, G——G— > S(7)G/v.

vEG
Theorem: (H, A, ¢, S) is a Hopf algebra.
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Algebraic framework for renormalization

R - the map which given a formal integral returns it evaluated at
the subtraction point
RA(G) - the singular part of the Feynman amplitude A(G)

twisted antipode (recursive definition)

Skf‘(l“rt) = 1,
SK(G) = )= SR(YR(A(G/7))-

veG

the renormalized amplitude of the graph

Ar = S& x A.

Connes-Kreimer Hopf algebra structure -
the combinatorial backbone of renormalization
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NCQFT - glimpse of the mathematical setup

the Moyal space

The Moyal algebra is the linear space of smooth and rapidly
decreasing functions S(RP) equipped with the Moyal product:

D
(Fr)() = [ ord®s flx-+ 30 Kiglx +1)e .

* - Moyal product
(non-local, noncommutative, associative product)

(& 0 (0 -6
e_(0 92>’ @2_<0 0)'
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Field theory on Moyal space

®* model:

1 1 A
S:/d4x[2<9“¢'*8“¢—|—2m2¢*¢+4|¢*¢*¢*¢],
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Field theory on Moyal space

®* model:
. 1 1, A
S = dx[§6“¢*8“¢+§m¢*¢+E¢*<D*d>*d>],

[ d*x (@ x D)(x) = [ d*x d(x) D(x)
(same propagat|on as in the commutative theory)
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Implications of the use of the Moyal product in QFT

4
/d4x¢*4(x) x /H d*x;®(x;)6(x1 — X2 + X3 — xq)
i=1

e2i(X1 7X2)e_1 (X3 7X4)

oscillation o< area of parallelogram

> - H
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Implications of the use of the Moyal product in QFT

4
/d4x¢*4(x) x /H d*x;®(x;)6(x1 — X2 + X3 — xq)
i=1

e2i(X1 7X2)e_1 (X3 7X4)

oscillation o< area of parallelogram

> - H

< non-locality
< restricted invariance: only under cyclic permutation

— ribbon graphs
— clear distinction between planar and non-planar graphs
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Feynman graphs in NCQFT

n - number of vertices,
L - number of internal lignes,
F - number of faces,

2—2g=n—L+F

g € N - genus
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Feynman graphs in NCQFT

n - number of vertices,
L - number of internal lignes,
F - number of faces,

2—2g=n—L+F

g € N - genus
g = 0 - planar graph g > 1 - non-planar graph

example: example:
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Renormalization on the Moyal space

UV/IR mixing (s. Minwalla et. al, JHEP, '00)

B=2

B - number of faces broken by external lignes
B > 1, planar irregular graph
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Renormalization on the Moyal space
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Renormalization on the Moyal space

UV/IR mixing (s. Minwalla et. al, JHEP, '00)

B=2

B - number of faces broken by external lignes
B > 1, planar irregular graph
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Renormalization on the Moyal space

UV/IR mixing (s. Minwalla et. al, JHEP, '00)

B=2

B - number of faces broken by external lignes
B > 1, planar irregular graph

ik ©H py
4, €7 1
)‘/d ka2 lplo 022
same type of behavior at any order in perturbation theory

J. Magnen, V. Rivasseau and A. T., Europhys. Lett. '09
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Renormalization on the Moyal space

UV/IR mixing (s. Minwalla et. al, JHEP, '00)

B=2

B - number of faces broken by external lignes
B > 1, planar irregular graph

ik ©H py
4, €7 1
)‘/d ka2 lplo 022
same type of behavior at any order in perturbation theory

J. Magnen, V. Rivasseau and A. T., Europhys. Lett. '09

— non-renormalizability!
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A first solution to this problem -

the Grosse-Wulkenhaar model

additional harmonic term

(H. Grosse and R. Wulkenhaar, Comm. Math. Phys., '05)

2

Q A
sio(] = [ ' (30,6 % 0% + T (5,0) » (#0) + ron 6w 06,

%, =2(071)x".

modification of the propagator - the model becomes renormalizable
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@ most of the techniques of QFT extend to
Grosse-Wulkenhaar-like models:

e the parametric representation
(R. Gurdu and V. Rivasseau, Commun. Math. Phys., '07, A. T. and V. Rivasseau, Commun.
Math. Phys., '08, A. T., J. Phys. Conf. Series, '08, A. T., solicited by de Modern Encyclopedia
Math. Phys.)
(algebraic geometric properties P. Aluffi and M. Marcolli, 0807.1690[math-ph])

e the Mellin representation
(R. Gurdu, A. Malbouisson, V. Rivasseau and A. T., Lett. Math. Phys., '07)

o dimensional regularization
(R. Gurdu and A. T., Annales H. Poincaré, '08)

@ study of vacuum configurations (a. de Goursac, A. T. and J-C. Wallet, EPJ C,

2008)
@ gauge model propositions
< non-trivial vacuum state

(A. de Goursac, J-C. Wallet and R. Wulkenhaar EPJ C, 2007,2008, H. Grosse and M. Wohelegant EPJ C,

2007 )
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Translation-invariant renormalizable scalar model

(R. Gurdu, J. Magen, V. Rivasseau and A. T., Commun. Math. Phys. 2009)
the Grosse-Wulkenhaar model breaks translation-invariance !
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Translation-invariant renormalizable scalar model

(R. Gurdu, J. Magen, V. Rivasseau and A. T., Commun. Math. Phys. 2009)
the Grosse-Wulkenhaar model breaks translation-invariance !

the complete propagator:

1

C(p,m,0) =
om0 =

arbitrary planar irregular 2-point function: same type of %
behavior !

J. Magnen, V. Rivasseau and A. T., Europhys. Lett. 2009
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Translation-invariant renormalizable scalar model

(R. Gurdu, J. Magen, V. Rivasseau and A. T., Commun. Math. Phys. 2009)
the Grosse-Wulkenhaar model breaks translation-invariance !

the complete propagator:

1

C(p,m,0) =
om0 =

arbitrary planar irregular 2-point function: same type of -
behavior !

J. Magnen, V. Rivasseau and A. T., Europhys. Lett. 2009

— other modification of the action:

5:/d4plipu¢*p ¢+1ag2 % ¢+1m2¢*¢+ Vel (1)

renormalizability at any order in perturbation theory !
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Glimpse of renormalizability proof - BPHZ scheme

power counting theorem:
< 2— and 4—point planar functions (primitively divergent)

@ planar regular 2—point function: wave function and mass
renormalization

@ planar regular 4—point function: coupling constant
renormalization

@ planar irregular 2—point function: finite renormalization of the
constant a

@ planar irregular 4—point function: convergent
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Comparison between noncommutative models

the “naive” model GW model model (1)

2P 4P 2P 4P 2P 4P
planar regular ren. ren. ren. ren. ren. ren.
planar irregular | UV/IR | log UV/IR | conv. | conv. | finite ren. | conv.
non-planar IR div. IR div. conv. | conv. conv. conv.
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Scales - noncommutative renormalization group

definition of the RG scales:
e locus where C~%(p) is big

@ locus where C~%(p) is low

mixing of the UV and IR scales - key of the renormalization
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Other translation-invariant field theoretical techniques

@ parametric representation (A T. J Phys. A 2009)
e power counting dependence on the graph genus
@ relation with Bollobds-Riordan topologic ribbon graph
polynomial
(T. Krajewski, V. Rivasseau, A. T. and Z. Wang, J. Noncomm. Geom. (2010)

trees — x—trees (quasi-trees)

@ renormalization group flow

(J. Ben Geloun and A. T., Lett. Math. Phys. 2008)

B o B2, Ba =0
@ commutative limit
(J. Magnen, V. Rivasseau and A. T., Lett. Math. Phys. 2008)
o field theories with other products
(ex.: the Wick-Voros product)

<> A. T.and P. Vitale, Phys. Rev. D (2010)
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Renormalizability of NCQFT: locality — “Moyality”

QFT  — NCQFT

locality —  “Moyality”

>< —
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The principle of “Moyality” - ribbon Feynman graph level

valid iff the graph is planar

renormalization necessary only for the planar sector !
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Hopf algebra for renormalizable NCQFTs

A. T. and F. Vignes-Tourneret, J. Noncomm. Geom., 2008

A. T. and D. Kreimer, arXiv: 0907.2182, submitted
< definition of a coproduct A

‘H - the algebra generated by Feynman ribbon graphs

AHoHRH, AG)=G6R1+18G6+ > 78 G/,
v€G

e H—-K, g1)=1, ¢(G)=0, VG # 1,
S:H—H, G—»—-G-) S(7)G/y.
v€G

Theorem: (H, A, ¢, S) is a Hopf algebra.
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<+ 2— and 4—point graphs (in commutative ¢*%)
— 2— and 4—point planar regular graph

this Hopf algebra structure - the combinatorial backbone of
noncommutative renormalization

(pre-)Lie algebra structures

Hochschild cohomology - combinatorial Dyson-Schwinger equation
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Perspectives - can things be (even) more complicated?
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Perspectives - can things be ( more complicated?

@ generalization to tensor models (appearing in recent
approaches for a theory of quantum gravity)

123

1 3
s

62 5

various non-trivial combinatorial structures:
o topological graph polynomial (A. T., work in progress)
e combinatorial Hopf algebras
@ applications of these techniques for the renormalizability study
of quantum gravity models (a. T.. Ciass. Quant. Grav. 2010)

RENORMALIZABILITY

Toeality  ————— "Moyaliry"
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Thank you for your attention!
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“The amount of theoretical work one has to cover before being
able to solve

problems of real practical value is rather large, but this
circumstance is [...] likely to become more pronounced in the
theoretical physics of the future.”

P.A.M. Dirac, “The principles of Quantum Mechanics”, 1930

ADRIAN TANASA Renormalizability in (noncommutative) field theories



renormalization conditions

1 0
m2’ 9p?

1

r(0,0,0,0) = —\,, G?(0,0) = G%(p, —p)|p=0 = -— (2

where I and G2 are the connected functions and

0 — pm (the minimum of p? + )
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