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LECTURE #1

Some wonderful conjectures (but almost no theorems)
at the boundary between
analysis, combinatorics and probability:

The entire function F(x,y) = Z :z:_' y"("_w 2)
n!

n=0

N
N
the polynomials Py(x,w) = Z ( )g;"w"(Nn))

T
n=0

and the generating polynomials of connected graphs



The entire function F(x,y) = Z x—' y”(”_l)/Q
n!

n=0

e Defined for complex x and y satistfying |y| < 1
e Analytic in C x D, continuous in C x D
e F(-,y) is entire for each y € D

e Valiron (1938): “from a certain viewpoint the simplest entire
function after the exponential function”

Applications:
e Statistical mechanics: Partition function of one-site lattice gas

e Combinatorics: Generating function for Tutte polynomials on K,
(also acyclic digraphs, inversions of trees, .. .)

e Functional-differential equation: F'(x) = F(yx) where " = 9/0x

e Complex analysis: Whittaker and Goncharov constants



Application to Tutte polynomials of complete graphs

e Finite graph G = (V, F)

e Multivariate Tutte polynomial Zs(q, v Z q H
ACFE ecA

where k(A) = # connected components in (V, A)

e Connected-spanning-subgraph polynomial C(v) = lin’(l) q_lZ(;(q, V)
q—>

e Write Z;(q,v) and Cg(v) if v, = v for all edges e
[standard Tutte polynomial is Zg(q, v) in different variables]

Specialization to complete graphs K,:

Zn(qav) - Zan,m,kvmqk

m,k
Cn(v) = ch,mvm
m

Exponential generating functions:

N Zug,v) = Fla,1+ )
0 n!
=1

[see Tutte (1967) and Scott—A.D.S., arXiv:0803.1477]

C’n = log F(z,1+ v)

QI&

e Usually considered as formal power series

e But series are convergent if |1 +v| <1
[see also Flajolet—Salvy—Schaeffer (2004 )]
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X

Elementary analytic properties of F'(x,y) = Z — y =1/
n!

n=0

ey=0 F(z,0)=1+x

e 0 < |y| < 1. F(-,y) is a nonpolynomial entire function

of order 0: o
T

i 2k(y)
where > |z (y)| ™ < oo for every av > 0

ey=1 F(x,1)=¢"

e ly| =1 with y # 1: F(-,y) is an entire function of order 1
and type 1:

F(z,y) = exH <1 o )ex/xk;(y) .

i i (y)

where Y |z (y)| ™ < oo for every a > 1

[see also Alander (1914) for y a root of unity; Valiron (1938) and
Eremenko—Ostrovskii (2007) for y not a root of unity]

e |y| > 1: The series F'(-,y) has radius of convergence 0



Consequences for C,(v)

e Make change of variables y = 1 4 v:
Chuly) = Caly — 1)

e Then for |y| < 1 we have

xn

]2

n!
n=1

Culy) = log Fl(z,y) = zk:log@ - :vk(y))

and hence

Culy) = —(n—1)! Zxk(y)_" for all n > 1
k
(also holds for n > 2 when |y| = 1)

e This is a convergent expansion for Un(y)

e In particular, gives large-n asymptotic behavior

Culy) = —(n =10 ao(y) ™" [1 + O(e™)]

whenever F'(-,y) has a unique root zo(y) of minimum modulus

Question: What can we say about the roots zx(y)?



Small-y expansion of roots x(y)

e For small |y|, we have F'(z,y) = 14+ 2 + O(y), so we expect a
convergent expansion

no(y) = =1 = > any"
n=1

(easy proof using Rouché: valid for |y| < 0.441755)
e More generally, for each integer £ > 0, write z = &y~* and
study

5_7: y(n—k)(n—k—l)/Q
n!

WK

F(&y) = y"ERREy™ y) =

i
@)

k + 1; gives root

wily) = —(k+ 1y [1 + f:a,(f)y"]

Sum is dominated by terms n = k£ and n

Rouché argument valid for |y| < 0.207875 uniformly in k:
all roots are simple and given by convergent expansion xy(y)

e Can also use theta function in Rouché (Eremenko)



Might these series converge for all |y| < 17

Two ways that xx(y) could fail to be analytic for |y| < 1:

1. Collision of roots (— branch point)
2. Root escaping to infinity

Theorem (Eremenko): No root can escape to infinity for y in
the open unit disc ID.

In fact, for any compact subset K C ID and any € > 0, there exists
an integer ko such that for all y € K ~ {0} we have:

(a) The function F'( -, y) has exactly kg zeros (counting multiplicity)
in the disc |z| < k0|y\_(k0_%), and

(b) In the region |z| > ko\y|_<k0_%>, the function F(-,y) has a
simple zero within a factor 1+ ¢ of —(k+1)y~* for each k > ky,
and no other zeros.

e Proof is based on comparison with a theta function (whose roots
are known by virtue of Jacobi’s product formula)

e Conjecture that roots cannot escape to infinity even in the closed
unit disc except at y =1

Big Conjecture #1. All roots of F'(-,y) are simple for |y| < 1.
land also for |y| = 1, T suspect]

Consequence of Big Conjecture #1. FEach root xy(y) is
analytic in |y| < 1.



But I conjecture more . ..

Big Conjecture #2. The roots of F(-,y) are non-crossing
in modulus for |y| < 1:

[zo(y)] < lz(y)] < lzaly)] < ...
land also for |y| = 1, I suspect]

Consequence of Big Conjecture #2. The roots are actually
separated in modulus by a factor at least |y|, i.e.

[ze(y)| < |yl lzka(y)|  forallk >0
PROOF. Apply the Schwarz lemma to zx(y)/xr1(y).

Consequence for the zeros of C),(y)

Recall

Culy) = —(n=1)1) xy(y)™"

and use a variant of the Beraha-Kahane-Weiss theorem [A.D.S.,
arXiv:cond-mat /0012369, Theorem 3.2] == the limit points of
zeros of C,, are the values y for which the zero of minimum modulus
of F(-,y) is nonunique.

Soif F'(-,y) has a unique zero of minimum modulus for all y € D
(a weakened form of Big Conjecture #2), then the zeros of C,, do
not accumulate anywhere in the open unit disc.

[ actually conjecture more (based on computations up to n & 80):

Big Conjecture #3. For each n, C,,(y) has no zeros with |y| < 1.
land, T suspect, no zeros with |y| = 1 except the point y = 1]



What is the evidence for these conjectures?

Evidence #1: Behavior at real y.

Theorem (Laguerre): For 0 < y < 1, all the roots of F(-,y)
are simple and negative real.

Corollary: Each root x(y) is analytic in a complex neighborhood
of the interval [0, 1).

[Real-variables methods give further information about the roots
z(y) for 0 <y < 1: see Langley (2000).]

Now combine this with

Evidence #2: From numerical computation of the
series Tx(y) ...



Three methods for computing the series xj(y)

L. Insert xp(y) = —(k+1)y [14—2 ”] and solve term-by-term

2. Use “explicit implicit function theorem” (generalization of
Lagrange inversion formula) given in arXiv:0902.0069:

solve z = G(z,w) with G(0,0) = 0 and |— (0 O)| < 1 by

o 1 .
T ey

and more generally

H(p(w),w) = H(0,w) + Z% m=l aH(if )G(C,w)m

Methods 1 and 2 work symbolically in k.

3. Use
Culy) = —(n=11) ai(y)™
k
together with recursion
n—1 |
Toly) = (” - ) (y) =P 1)/2
j=1 ) =1

cf. Leroux (1988) and Scott-A.D.S.; arXiv:0803.1477]
— can go to very high n, at least for small k



And let MATHEMATICA run for a weekend . ..

4

11,3 11y 4+ 1_76y5 + 1_76y6

—zo(y) = 1+ 5y + 39" + 59 + 5

493 .7 | 163,8 , 323,9 | 1603, 10 57283 11
T 1Y t oY T WY oY T 352109

170921 12 |, 34017113 . 22565 14
+ 14720 T Som0Y T F5206

+ ... 4 terms through order y%%

and all the coefficients (so far) are nonnegative!

Big Conjecture #4. For each k, the series —xi(y) has all
nonnegative coeflicients.

Combine this with the known analyticity for 0 < y < 1, and Vivanti—
Pringsheim gives:

Consequence of Big Conjecture #4. FEach root xy(y) is
analytic in the open unit disc.

NEED TO DO: Extended computations for £ = 1,2, ... and for
symbolic k.

11



But more is true ...

Look at the reciprocal of xy(y):
1

_ _ 1,12 1,3 _ 1,4 1,5 7,6
70(y) =1-3 1Y 1Y 16Y =Y 783Y
1.7 7.8 49 .9 113 .10 17 11
96Y 7689 69129 930409 16089
293 .12 737 .13 3107 14
921609 9764309 1658330

— ... — terms through order y%%

and all the coefficients (so far) beyond the constant term are nonpositive!
Big Conjecture #5. For each k, the series —(k + 1)y~ /z1(y)
has all nonpositive coefficients after the constant term 1.

[This implies the preceding conjecture, but is stronger.|
e Relative simplicity of the coefficients of —1/xy(y) compared to
those of —xg(y) — simpler combinatorial interpretation?
e Note that z(y) — —oo as y T 1 (this is fairly easy to prove).
So 1/xp(y) — 0. Therefore:

Consequence of Big Conjecture #5. For each k, the coeffi-
cients (after the constant term) in the series —(k + 1)y =% /x..(y) are
the probabilities for a positive-integer-valued random variable.

What might such a random variable be???
Could this approach be used to prove Big Conjecture #57

AGAIN NEED TO DO: Extended computations for k = 1,2, ...
and for symbolic k.

12



But I conjecture that even more is true . ..

Define D, (y) = and recall that —zo(y) = lim D, (y) /"

(—1)”_1(n — 1)' n—00

Big Conjecture #6. For each n,
(a) the series D, (y)~"/" has all nonnegative coefficients,
and even more strongly,

(b) the series D, (y)"/" has all nonpositive coefficients after the
constant term 1.

Since D,,(y) > 0 for 0 < y < 1, Vivanti-Pringsheim shows that
Big Conjecture #6a implies Big Conjecture #3:

For each n, C,,(y) has no zeros with |y| < 1.

Moreover, Big Conjecture #6b = for each n, the coefficients
(after the constant term) in the series D,,(y)"/" are the probabilities
for a positive-integer-valued random variable.

Such a random variable would generalize the one for —1/z¢(y) in
roughly the same way that the binomial generalizes the Poisson.

13



Roots z1(y) computed symbolically in k
1
S|

where I have computed up to n = 21:

r(y) = —(k+1y™"

P(k) =1

Py(k) = 2+ 6k + 3k°

Py(k) = 114 29k + 63k* + 65k° + 28k + 4k°
Py(k)

= 22 + 146k + 273k> + 359k> + 355k* + 211k° + 63k° + Tk”

J

Qu(k) = (k+1)" ][k +) L/ (3)]
7=2

e P,(k) has nonnegative coefficients for n < 9 but not for n =
10, 15, 16, 18, 19, 20, 21

e P,(k) > Oforall real k > 0for n < 14 but not forn = 15, 18,19, 21
e But ... P,(k) > 0 for all integer k > 0 at least for n < 21
which gives evidence that Big Conjecture #4 holds for all &:

For each k, the series —xj(y) has all nonnegative coefficients.

14



Reciprocals of roots x(y) computed symbolically in k

—(k+ 1yt [1 I paily y]

where I have computed up to n = 21:

— 1
1 + 6k + 3k°

= 2 — 10k + 33k? + 59k3 + 28k + 4K°

— 3+ 71k + 24k* + 82k% + 236k* + 194k° + 63k° + 7k7

e decieck
~—— 5 ~——
I

and @, (k) are the same as before
° }A)n(k) does not have nonnegative coefficients (except for n =
L,

(
e But ... ﬁn(k) > 0 for all integer k > 0 at least for n < 21

which gives evidence that Big Conjecture #5 holds for all &:

For each k, the series —(k+1)y =" /x4 (y) has all nonpositive
coefficients after the constant term 1.

15



Ratios of roots x(y)/xr11(y)

The series
Toy) _
z1(y)

has nonnegative coefficients at least up to order y'3°

3y + 69 + 729 + 2169 + 12963/ + -

(But its reciprocal does not have any fixed signs.)

Big Conjecture #7. The series z¢(y)/x1(y) has all nonnegative
coefficients.

Consequence of Big Conjecture #7. Since hm zo(y)/x1(y) =

Big Conjecture #7 implies that |xo(y)| < |z1(y )\ for all y € D (a
special case of Big Conjecture #2 on the separation in modulus of
roots).

e But unfortunately ... the series

?_Ey) = W+ Y ooy Y oy

2(y)

has a negative coefficient at order y'*. This doesn’t contradict
the conjecture that |z1(y)/x2(y)| < 1 in the unit disc, but it
does rule out the simplest method of proof.

e Symbolic computation of x4 (y)/xri1(y) shows that, up to order
y*?, the only cases of a negative coefficient for integer k > 0 are
the coefficient of y'? for k = 1,2,3; y'7 for k = 2; and 3", y*!
for k =2, 3, 4.

e The series 4y *2¢(y)/z1(y) has nonnegative coefficients for all
integer k > 0 through at least order y*!

16

J



Asymptotics of roots as y — 1

Write y = e™7 with Rey > 0.
Want to study v — 0 (non-tangentially in the right half-plane).

[ believe I will be able to prove that

1
—zi(e7) ~ 57_1 + cm_l/?’ + ...

for suitable constants ¢y < ¢ < ¢ < ... . But I have not yet
worked out all the details.

Overview of method:

1. Develop an asymptotic expansion for F'(x,e™) when v — 0 and
x is taken to be of order 7!, because this is the regime where
the zeros will be found.

2. Use this expansion for F(x,e™7) to deduce an expansion for
xp(e™).

Sketch of step #1: Insert Gaussian integral representation for
e~3"" to obtain

with

17



Saddle-point equation ¢'(t) = 0 is —ite™" = ~ve?/?x, so it makes

sense to make the change of variables
r = v e we"

which puts the saddle point at ¢y = 7w. (Note that this brings in
the Lambert W function, i.e. the inverse function to w +— we®.) We
then have
7 2
t v
F(yte 7 Pwe”, e = (217y) Y2 / dt exp [—2— + ﬁe”]
& &

—00

Now shift the contour to go through the saddle point (parallel to the
real axis) and make the change of variables t = s + iw: we have

2

F(y e Pwe”, e™) = (2my) 2 exp [;U—Jrgl /ds explh(s)]
T

—00
where

1 : 2
h(s) = _| +w)32 + E<e”—1—i3+8—)
27y v 2

and the integration goes along the real s axis.

These formulae should allow computation of asymptotics
(a) ¥ — 0 (in a suitable way) for (suitable values of) fixed w; and
(b) w — oo (in a suitable direction) for (suitable values of) fixed 7.

Focus for now on (a).

18



Recall that

1 . 2
h(s) = — ( +w)32 + E<e” —1 —i3+8—)
2y v 2
Consider for simplicity v and x real. There seem to be three regimes:

e “High temperature”: w > —1 (i.e. we" > —1/e).
Easiest case: s = 0 saddle point is Gaussian, and can compute
the asymptotics to all orders in terms of 3-associated Stirling

subset numbers {;‘1}>3. [Still need to justify this formal calcula-
tion by showing that only the s = 0 saddle point contributes.]

e “Low temperature”: w = —ncotn+ni with —7 <n <=
(i.e. we®” < —1/e).

Saddle points at s = 0 and s = 2n contribute; I think this is all.

e “Critical regime”: w = —(1 + &y'/?) with ¢ fixed, which
corresponds to

P P

= 5 y
— At the “critical point” & = 0: Dominant behavior at s = 0
saddle point is no longer Gaussian (it vanishes) but rather
the cubic term 7s%/(67y). Can compute the asymptotics to
all orders in terms of 4-associated Stirling subset numbers

{:%}2 , (at least formally).

— In the critical regime (£ arbitrary): Expect to have Airy
asymptotics as in Flajolet—Salvy—Schaeffer (2004). This is
where the roots will lie.

I would appreciate help with the details!!!

19
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The polynomials Py(z,w) = E ( )x”w”(N”)
n
n=0

e Partition function of Ising model on complete graph Ky,

with z = 2" and w = e 2/

e Related to binomial (14 2)" in same way as our F'(z, )
is related to exponential e*
[but we have written w™N=") instead of y""~1)/?]

cwl=N ,
o]\}gnooPN< 7 ,w) = F(z,w *) when |w| > 1

e So results about zeros of Py generalize those about F
(just as results about the binomial generalize those about the
exponential function)

e Lee—Yang theorem: In ferromagnetic case (0 < w < 1), all zeros
are on the unit circle |z| = 1

e Laguerre: In antiferromagnetic case (w > 1), all zeros are real
and negative

e What about “complex antiferromagnetic” case |w| > 177

Big Conjecture #8. For |w| > 1, all zeros of Py(-,w) are
separated in modulus (by at least a factor |w|?).

Taking N — oo, this implies Big Conjecture #2 about the separation
in modulus of the zeros of F(-,y).

20



N
N
Differential-equation approach to Py (z,w) = Z ( )x”w”(N ")
n=0

N
On the space of polynomials Qy(x) = > a,z" of degree N with ag # 0,
define the semigroup n=0

(AtQN Zanxn tn(N—n)

Roots of A;Q) y evolve according to an autonomous differential equation,
which is best expressed in terms of logarithms of roots (; = log x;:

dCZ Z f

J7i

where

f(z) = coth(z/2)

These are first-order (“Aristotelian”) equations of motion for a system
of n “particles” (in R or C) with a translation-invariant “force” f.

Moreover, the specific force f = coth is a Calogero-Moser—Sutherland

system, much studied in the theory of integrable systems.

For polynomials () with real roots and real t > 0, this approach
gives interesting results on separation of zeros. (In particular, it gives
a new proof of Laguerre’s theorem.)

Is this approach useful for complex t with Ret > 0777
Can it be used to prove Big Conjecture #87
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A more general approach to the leading root z((y)
[details to be given in the subsequent lectures!]

e Consider a formal power series

_ Z o, " yn(n—l)/Q
n=0

normalized to oy = a1 = 1, or more generally

= S ey
where
() ag(0) = a1(0) =
(b) (O) =0 for n > 2; and
O(y”

") with lim v, = oco.
n—oo

—~
@
~
/\

<
~—
| |

[t makes sense to study the “leading root” xy(y) in this generality.

e Example: The “partial theta function”

E{xn nnl

beloved of g-series practitioners (going back at least to Ramanujan).

e More generally, consider
o yn(n—l) /2

:C
v9) nz; T+0+q+) - Q+q+...+¢ )

which reduces to ©g when ¢ = 0, and to F’ when ¢q = 1.
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A more general approach, continued . ..

e A power series for the leading root xy(y) can be computed from
the power-series expansion of log f(x,y), generalizing Method 3
above for F(z,y). This is extremely efficient!

e Eixample: For ©p we have

—zoly) = 14y+2y°+49°+9y* +21y° 45245 +133y +-351y°+. . .

with strictly positive coefficients at least through order %%

~

e More generally, for R(z,y, ¢) it can be proven that

_ — - Pn<Q) n
xo(y,q) = 1+ ;Qn@y
where .
Qula) = TJ(1+q+...+q 1G]
fe=2

and P, (q) is a self-inversive polynomial with integer coefficients.

[ have verified for n < 349 that P, (q) has two interesting positivity
properties:

(a) P,(q) has all nonnegative coefficients. Indeed, all the
coefficients are strictly positive except [q'] P5(q) = 0.

(b) P.(q) > 0 for ¢ > —1.

Can any of this be proven???
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YES!! . but please stay tuned for our next installment . ..
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