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Metric aspect of noncommutative geometry

′′ ds = D−1 ′′

Distance between states of an algebra A. Not so much studied but many
interesting links with other distances:

- distance on graph (A finite dimensional) (Lizzi & al; Dimakis, Müller-Hosen; Iochum, Krajewski, P.M.),

- horizontal distance in subriemannian geometry (A = C∞0 (M)⊗Mn(C)) (P.M.),

- Wasserstein distance in optimal transport theory (commutative A) (D’Andrea, P.M.),

- distance in some model of quantum spacetime (A = K = (S, ?)) (Cagnache,

D’Andrea, P.M., Wallet);

also yields a metric interpretation of the Higgs field in Connes description of the
standard model (Wulkenhaar, P.M.).

Topological aspect mostly studied by Rieffel, Latrémolière and a recent paper of
Bélissard, Marcolli and Reihani.
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1. Distance in noncommutative geometry

commutative algebra → non-commutative algebra

l ↓
differential geometry non-commutative geometry

How to define the distance in purely algebraic terms, so that to export this
definition to the noncommutative framework ?



The distance formula

I Let (X , d) be a locally compact complete metric space.

d(x , y) = sup
f∈C0(X )

{|f (x)− f (y)| ; ‖f ‖Lip ≤ 1}.

I Gelfand duality: let P(A) denote the pure states of a C∗-algebra A
(extremal points of the set of normalized positive linear maps A → C).

P(C0(X ) ' X : ωx(f ) = f (x).

I (M, dgeo) with M a Riemannian (spin) manifold:

‖f ‖Lip =
∥∥[d + d†, π1(f )]2

∥∥
op

= 1
2 ‖[∆, π2(f )], π2(f )]‖op = ‖[∂/, π(f )]‖2

op

where d + d† is the signature operator, ∆ = dd† + d†d , ∂/ = −i
dimM

Σ
µ=1

γµ∂µ,

π1, π2, π are representations of C∞0 (M) on L2(M,∧), L2(M), L2(M,S).

dgeo(x , y) = d(ωx , ωy ) = sup
f∈C∞0 (M)

{|ωx(f )− ωy (f )| / ‖[∂/, f ]‖ ≤ 1}.



Spectral triple
An involutive algebra A, a faithful representation π on H, an operator D on H
such that [D, π(a)] is bounded for any a ∈ A and π(a)[D − λI]−1 is compact for
any λ /∈ Sp D; together with a set of necessary and sufficient conditions
guaranteeing that

i. For M a compact Riemannian spin manifold, (C∞(M), L2(M,S), ∂/) is a
spectral triple;

ii. (A,H,D) a spectral triple with A unital commutative, then there exists a
compact spin manifold M such that A = C∞(M).

dD(ϕ1, ϕ2)
.

= sup
a∈A
{|ϕ1(a)− ϕ2(a)| / ‖[D, a]‖ ≤ 1}

is a distance (possibly infinite) on the state space of A which:

I makes sense whether A is commutative or not;

I is coherent with the commutative case: dD = dgeo between pure states;

I does not involve notion ill-defined at the quantum level, but only spectral
properties of A and D: spectral distance.



2. The commutative case and the Wassertein distance in optimal transport

Transportation map and Wassertein distance

X is a locally compact separable metric space. A state ϕ ∈ S(C0(X )) is a
probability measure µ on X ,

ϕ(f )
.

=

∫
X

f dµ ∀f ∈ A.

Let c(x , y) be a positive real function — the “cost function” — representing the
work needed to move from x to y .

Minimal work W required to move the configuration ϕ1 to the configuration ϕ2,

W (ϕ1, ϕ2)
.

= inf
π

∫
X×X

c(x , y) dπ (1)

where the infimum is over all measures π on X × X with marginals µ1, µ2, i.e.

X,Y : X × X → X ,
X(x , y)

.
= x ,

Y(x , y)
.

= y ,

X∗(π) = µ1, Y∗(π) = µ2.



Finding the optimal transportation plan (i.e. which minimizes W ) is a non-trivial
question known as the Monge-Kantorovich problem.

When the cost function c is a distance d ,

W (ϕ1, ϕ2)
.

= inf
π

∫
X×X

d(x , y) dπ

is a distance on the space of states (possibly infinite), called the Kantorovich-
Rubinstein distance, or the Wasserstein distance of order 1.



Proposition 1: Rieffel 99, puis D’Andrea, P.M. 2009

Let M be a complete, Riemannian, finite dimensional, connected, without
boundary, spin manifold. For any ϕ1, ϕ2 ∈ S(C0(M)),

W (ϕ1, ϕ2) = dD(ϕ1, ϕ2)

where W is the Wasserstein distance associated to the cost dgeo.

i. Kantorovich duality: W (ϕ1, ϕ2) = sup‖f ‖Lip≤1

(∫
X f dµ1 −

∫
X f dµ2

)
. The

supremum is on all real 1-Lipschitz. functions f on X ,

|f (x)− f (y)| ≤ dgeo(x , y) for all x , y ∈ X .

ii. ||[D = ∂/, f ]||op = ‖f ‖Lip

iii. M is locally compact non compact: get rid of the vanishing at infinity.
For any 1-Lip. f , consider the sequence of functions vanishing at infinity

fn(x)
.

= f (x)e−d(x0,x)/n n ∈ N, x0 is any fixed point. (2)

Then limn→+∞(ϕ1 − ϕ2)(fn) = (ϕ1 − ϕ2)(f ) and ||fn||Lip ≤ 1.

I (2) requires M to be (geodesically) complete (Hopf-Rinow theorem).



On the importance of being complete

N compact, M = N r {x0} =⇒ W = dgeo on both M and N .

N = S1 = [0, 1]
M = (0, 1)

ff
WM(x , y) = |x − y | 6= WN (x , y) = min{|x − y |, 1− |x − y |}.

N = S2, M = S2 r {x0} then WN = WM.

I Removing a point from a complete compact manifold may change or not W .

I It does not modify the spectral distance: C∞(N ) = C (N ) has a unit so

dND (ϕ1, ϕ2) = sup
f∈C(N )

{
|ϕ1(f )− ϕ2(f )|; ||f ||Lip ≤ 1

}
= sup

f∈C(N ),f (x0)=0

{
|ϕ1(f )− ϕ2(f )|; ||f ||Lip ≤ 1

}
= dMD (ϕ1, ϕ2)

since (C (N ), vanishing at x0) = C0(M).

N = S1,M = (0, 1) : dMD = dND = WN = dS1 6= WM.

N = S2,M = S2 r {x0} : dMD = dS2 = WM.



Connected components

Proposition 2: For any x ∈M and any state ϕ of C∞0 (M),

dD(ϕ, δx) = E
(
d(x , ◦);µ

)
=

∫
M

dgeo(x , y)dµ(y) .

In particular for two pure states δx , δy ,

dD(δx , δy ) = dgeo(x , y).

Let S1(C∞0 (M))
.

= {ϕ such that E
(
d(x , ◦);µ

)
<∞}.

Corollary 3: ϕ ∈ S1(C∞0 (M)) if and only if ϕ is at finite spectral distance from
any pure state.

Let Con(ϕ)
.

= {ϕ′ ∈ S(C∞0 (M)) such that dD(ϕ,ϕ′) ≤ ∞}.

Corollary 4: For any ϕ ∈ S1(C∞0 (M)), Con(ϕ) = S1(C∞0 (M)).

I Two states not in S1(C∞0 (M)) may be at finite distance from one another.



3. Product of geometries: Higgs, sub-Riemannian distance

Connection

finite projective C∞ (M)-module Γ∞(E ) → finite projective A-module E
l ↓

vector bundle E over M ”noncommutative vector bundle”

∇: Γ∞(E )→ Γ∞(E )⊗ Ω1(M) → ∇: E → E ⊗A Ω1(A)
.

=
{

Σ
i

ai [D, bi ]
}

l ↓
connection on E connection on the

”non commutative vector bundle”

Leibniz rule: ∇(sa) = (∇s)a + s ⊗ [D, a] ∀a ∈ A, s ∈ E

Hermitian connection: (s|∇r)− (∇s|r) = [D, (s|r)] where (.|.) : E ⊗ E → A.

I traduction of Levi-Civita condition g(∇X ,Y ) + g(X ,∇Y ) = d(g(X ,Y )).



Covariant Dirac operator

given a spectral triple (A,H,D) and an hermitian connection on a
finite-projective C∗-module E , define

Ã .
= EndA(E), H̃ .

= E ⊗A H, D̃(s ⊗ ψ)
.

= (∇s)ψ + s ⊗ Dψ

where EndA(E) are the endomorphisms of E with adjoint (for α ∈ EndA(E), there
exists α∗ such that (r |αs) = (α∗r |s)). Then

(Ã, H̃, D̃) is a spectral triple.

Taking E = A, one builds a new geometry (A,H,DA) where

DA = D + A, A = Σ
i

ai [D, bi ] = A∗.



Product of the continuum by the discrete

pure state:(x , ωI )⇐= A = C∞ (M)⊗AI

H = L2(M,S)⊗HI

D = ∂/⊗ II + γ5 ⊗ DI

=⇒ A = H − iγµAµ

I H: scalar field on M with value in AI → Higgs.

I Aµ: 1-form field with value in Lie(U(AI )) → gauge field.



The standard model:

AI = C⊕H⊕M3(C)

HI = C96

DI is a 96× 96 matrix with the fermions masses, the CKM matrix

and the neutrinos mixing angles.



Fluctuations of the metric

The replacement D → DA yields a fluctuation of the metric since

[DA, a] = [D + H − iγµAµ, a] 6= [D, a].

“Fluctuated distance” on the set P(A) of (pure) states of A,

dDA
(ω1, ω2)

.
= sup

a∈A
{|ω1(a)− ω2(a)| ; ‖[DA, a]‖ ≤ 1}



Scalar fluctuation: Aµ = 0,H 6= 0 (Wulkenhaar, P.M. 2001)

A = C∞ (M)⊗AI with AI = C⊕H⊕M3(C) =⇒ P(A) is a two-sheet model

X2

C

.

Y2

Y1 H
X1.

.
.

.

Proposition 5: The spectral distance dDA
coincides with the geodesic

distance in M× [0, 1] given by(
gµν 0

0
(
|1 + h1|2 + |h2|2

)
m2

top

)
where

(
h1

h2

)
is the Higgs doublet.

P.M., R. Wulkenhaar 2001



Gauge fluctuation: Aµ 6= 0,H = 0

AI = C∞ (M)⊗Mn(C). Pure states: P
π→M with fibre CPn−1.

The distance is fully encoded with the covariant Dirac operator

DA = −iγµ(∂µ + Aµ)

Aµ ⇒
{

distance spectrale dDA

horizontal distance dH
⇒ dDA

= dH ? (Connes 96)

t

M

ξ

ζ

x

x

x

C

R3 with
∑
µ Aµdxµ = (x2dx1 − x1dx2)⊗ θ∂3 =⇒ dH(ξx , ζx) = 4π

Proposition 6: dDA
≤ dH but no equality except if the holonomy is trivial.

P. M. 2006-08



A = C∞(S1)⊗M2(C).{
dH(ξx , ξ

k
x ) = 2kπ

dDA
(ξx , ξ

k
x ) = C sin kπω where C is a constant.
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On a fiber
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The spectral distance sees the disk through the circle, in the same way it sees
between the two sheets of the standard model.

I The pure state space equipped with the spectral distance is not a
path-metric space, i.e. there is no curve s ∈ [0, 1] 7→ ϕs such that

dD(ϕs , ϕt) = |t − s|dD(ϕ0, ϕ1).

Seems to be the case as soon as A is noncommutative.



4. Moyal Plane

a, b Schwartz functions on R2. Star-product:

(a ? b)(x) =
1

(πθ)2

∫
d2s d2t a(x + s)b(x + t)e−i2sΘ−1t

where

sΘ−1t ≡ sµΘ−1
µν tν with Θµν = θ

(
0 1
−1 0

)
.



Spectral triple for the Moyal plane

Aθ = (S, ?), H = L2(R2)⊗ C2, D = −i
2

Σ
µ=1

σµ∂µ.

The left regular representation of a ∈ Aθ on H is

π(a) = L(a)⊗ I2 : π(f )ψ =

(
a ? ψ1

a ? ψ2

)
.

Defining ∂ = 1√
2

(∂1 − i∂2), ∂̄ = 1√
2

(∂1 + i∂2), the Dirac operator writes

D = −i
√

2

(
0 ∂̄
∂ 0

)
.

I Moyal space is non compact ⇐⇒ Aθ has no unit.
Some axioms of spectral triple, e.g. orientation, require a unitization of Aθ.
Not relevant for the distance.



The matrix base

Write z̄ = 1√
2

(x1 − ix2), z = 1√
2

(x1 + ix2). Define

fmn =
1

(θm+nm!n!)1/2
z̄?m ? f00 ? z?n, H =

1

2
(x2

1 + x2
2 ), f00 = 2e−2H/θ,

the Wigner transitions eigenfunctions of the harmonic oscillator (fmm: Wigner
function of the mth energy level of the harmonic oscillator).

I {fmn}m,n∈N is an orthonormal basis of L2(R2).

I fmn ? fpq = δnpfmq. There is a Frechet algebra isomorphism between Aθ and
the algebra of fast decreasing sequences {amn}m,n∈N: for any f ∈ S,

a =
∑
m,n

amnfmn with amn =

∫
R2

f (x)fmn(x)d2x .



Pure states

The evaluation at x is not a state of Aθ for (f ∗ ? f )(x) may not be positive.

Aθ is a reducible representation of the algebra of compact operators K:

Hp
.

= span {fmp, m ∈ N}

is invariant for any fixed p.

The set of pure states of Āθ is the set of vector states

ωψ(a) ≡ 〈ψ, L(a)ψ〉 = 2πθ
∑

m,n∈N
ψ∗mψnamn

where

ψ =
∑
m∈N

ψmfmp,
∑
m∈N
|ψm|2 =

1

2πθ

is a unit vector in Hp.



Spectral distance on the Moyal plane

Proposition 7: The spectral distance on the Moyal plane is not bounded,
neither from above nor from below (except by 0).

The eigenstates of the quantum harmonic oscillator,

ωfm0 (a) = 2πθamm
.

= ωm(a).

form a 1-dimensional lattice with distance

dD(ωm, ωn) =

√
θ

2

n∑
k=m+1

1√
k
.

E. Cagnache, F. D’Andrea, P.M., J.C. Wallet 2009

I Quantum space does not necessarily implies minimum lenght. Compare to
DFR model where the distance is the spectrum of

√
X 2 + Y 2.



Conclusion

Spectral distance: viewing dgeo(x , y) as dD(δx , δy ), i.e. as a supremum instead of
the length of a minimal curve makes sense in a quantum context.

Kantorovich duality: minimizing a cost (Monge problem)

W−(µ1, µ2) = inf
π

∫
M×M

dgeo(x , y) dµ

is equivalent to maximizing a profit

W+(µ1, µ2) = sup
‖f ‖Lip≤1

{∫
M

f dµ1 −
∫

M

f dµ2

}
.

Transport consortium, looking for the tight price f (x) at wich buy the bread from
factories and sell it to bakeries, staying competitive: |f (x)− f (y)| ≤ dgeo(x , y).

µ1 : distribution of bread factories

∫
M

f dµ1 : total price paid to farmers

µ2 : distribution of bakeries

∫
M

f dµ2 : total money got from bakers

W− : total transportation cost W+ : total profit

I What cost does one minimize in a quantum context ? Higgs field as a cost
function c(x , x) 6= 0 ? Towards a noncommutative economics ?
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