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Metric aspect of noncommutative geometry

" ds = D—l "
Distance between states of an algebra A. Not so much studied but many
interesting links with other distances:

- distance on graph (A finite dimensional) (i & ai; Dimakis, Miller-Hosen; lochum, Krajewski, P.M.),
- horizontal distance in subriemannian geometry (A = C§° (M) @ M,(C)) em),
Wasserstein distance in optimal transport theory (commutative A) (o andes, P,

- distance in some model of quantum spacetime (A = K = (S, %)) (cagnache.

D’Andrea, P.M., Wallet),

also yields a metric interpretation of the Higgs field in Connes description of the
standard model wuikenhaar, PM).

Topological aspect mostly studied by Rieffel, Latrémoliere and a recent paper of
Bélissard, Marcolli and Reihani.
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1. Distance in noncommutative geometry

commutative algebra — non-commutative algebra

! !

differential geometry non-commutative geometry

How to define the distance in purely algebraic terms, so that to export this
definition to the noncommutative framework ?



The distance formula

> Let (X, d) be a locally compact complete metric space.

d(x,y) = fESCUE)X){If(X) —f)ls

Fllp < 11

» Gelfand duality: let P(A) denote the pure states of a C*-algebra A
(extremal points of the set of normalized positive linear maps A — C).

P(Co(X) = X : wi(f) = F(x).
> (M, dgeo) with M a Riemannian (spin) manifold:
1Fllip = [[ld + dT, ma (AP, = 5 1A w2(F)] w2l = 112 7 (D2,

dimM
where d + df is the signature operator, A = ddt + dfd, P=—i Zl ~*a,,
I_L:
71, T, T are representations of C§° (M) on L2(M, A), L2(M), L2(M,S).

dgeo(X; y) = d(wx,wy) = sup  {|wx(f) —wy (F)] /[P, ][ < 1}.
FECSS (M)



Spectral triple

An involutive algebra A, a faithful representation 7w on H, an operator D on H
such that [D, (a)] is bounded for any a € A and 7(a)[D — M| ! is compact for
set of necessary and sufficient conditions

any A ¢ Sp D; together with a
guaranteeing that

i. For M a compact Riemannian spin manifold, (C>®(M), L>(M,S),d) is a

spectral triple;

i. (A, H,D) a spectral triple wi
compact spin manifold M such

th A unital commutative, then there exists a

that A = C*°(M).

dp(p1,p2) = su
ac

p{lp1(a) = w2(a)l / I[D, alll < 1}
A

is a distance (possibly infinite) on the state space of A which:

» makes sense whether A is commutative or not;

> is coherent with the commutative case: dp = dgeo between pure states;

» does not involve notion ill-defined at the quantum level, but only spectral

properties of A and D: spectral distance.




2. The commutative case and the Wassertein distance in optimal transport

Transportation map and Wassertein distance

X is a locally compact separable metric space. A state p € S(((X)) is a
probability measure p on X,

<p(f)i/ fdu Vfe A
x

Let c(x,y) be a positive real function — the “cost function” — representing the
work needed to move from x to y.

Minimal work W required to move the configuration (1 to the configuration 5,
W(p1, p2) = inf/ c(x,y) dm (1)
T Jxxx
where the infimum is over all measures m on X' x X with marginals u1, o, i.e.

X¥: AxX - X,

X(va)ixa ( ) M1, *(W):Mz.
Y(x,y) =y,



Finding the optimal transportation plan (i.e. which minimizes W) is a non-trivial
question known as the Monge-Kantorovich problem.

When the cost function ¢ is a distance d,

T

W(p1,¢2) = inf / d(x,y) dn
XXX

is a distance on the space of states (possibly infinite), called the Kantorovich-
Rubinstein distance, or the Wasserstein distance of order 1.



Proposition 1: Rieffel 99, puis D'Andrea, P.M. 2009
Let M be a complete, Riemannian, finite dimensional, connected, without
boundary, spin manifold. For any o1, 92 € S(Co(M)),

W (1, ¢2) = dp(p1, ¢2)

where W is the Wasserstein distance associated to the cost dgeo.

i. Kantorovich duality: W(p1,2) = supye <1 ([y fdpr — [, fduz) . The
ip—
supremum is on all real 1-Lipschitz. functions f on X,

[f(x) — f(¥)| < dgeo(x,y) forallx,y € X.
i D =@, flllop = IfllLip

iii. M is locally compact non compact: get rid of the vanishing at infinity.
For any 1-Lip. f, consider the sequence of functions vanishing at infinity

fo(x) = f(x)e"9CeX)/n e N, xq is any fixed point. (2)

Then lim,_ (1 = @2)(fn) = (b1 — @2)(f) and [[folLip < 1.
> (2) requires M to be (geodesically) complete (Hopf-Rinow theorem).



On the importance of being complete

N compact, M =N\ {xo} = W = dgeo on both M and N.

_ gl _
N2 S0l }WM(X,”:V_H £ Warlx,y) = min{lx = yI,1 — |x — y[}.

M =(0,1)
N =52 M= 5> {x} then Wy = W.

» Removing a point from a complete compact manifold may change or not W
= C(N) has a unit so

» It does not modify the spectral distance: C>°(N)

dp (o1,02) = sup {lea(F) = @aF)l; |IFllLip < 1}
feC(N)
0{Icpl(f) —2O); [IfllLip < 1} = dp* (1, 2)

= sup

feC(N),f(x0)=
since (C(N), vanishing at x¢) = Go(M).
N=S5 M=(0,1):d)" =d) = Wy = ds1 # W.

N:S2,M:52\{X0}Zd£4:d52:WM.



Connected components

Proposition 2: For any x € M and any state ¢ of (§° (M),

do(2.6) = E(d(x.2):1) = [ dyl.y)enly).
In particular for two pure states d, d,,

dp(0x; dy) = dgeo(X; ¥)-

Let S1(C5° (M)) = {¢ such that E(d(x,0); 1) < oo}.

Corollary 3: p € 51(C§° (M)) if and only if ¢ is at finite spectral distance from
any pure state.

Let Con(p) = {¢’ € S(C5° (M)) such that dp(p, ¢') < oo}

Corollary 4: For any ¢ € 51(C§° (M)), Con(p) = S1(C5° (M)).

» Two states not in S;1(C§®° (M)) may be at finite distance from one another.



3. Product of geometries: Higgs, sub-Riemannian distance

Connection

finite projective C*° (M)-module T**(E) — finite projective .A-module £

! !

vector bundle E over M "noncommutative vector bundle

V: [(E) = T=(E) @ (M) — Vi€ —Eoa (A= {ga"[D,b,-]}
! !

connection on E connection on the

"non commutative vector bundle”
Leibniz rule: V(sa) = (Vs)a+s®[D,a] Vae A,seé&

Hermitian connection: (s|Vr) — (Vs|r) = [D, (s|r)] where (.|.): E®E — A.
» traduction of Levi-Civita condition g(VX, Y) + g(X,VY) =d(g(X,Y)).



Covariant Dirac operator

given a spectral triple (A, H, D) and an hermitian connection on a
finite-projective C*-module &, define

A=Enda(§), H=EQ4H, D(s®y)=(Vs)Y+s® Dy

where Enda(€) are the endomorphisms of £ with adjoint (for & € Enda(&), there
exists a* such that (r|as) = (a*r|s)). Then

(A,H, D) is a spectral triple.

Taking £ = A, one builds a new geometry (A, H, Da) where

Da=D+A, A=%a[D,b]= A"




Product of the continuum by the discrete

pure state:(x,w)) <—= A = C®(M)® A
H = LMS)@H = A=H—iyA,
D = ¢, +~+°® D

» H: scalar field on M with value in A, — Higgs.

» A,: 1-form field with value in Lie(U(A;)) — gauge field.



The standard model:

A = CaoHae M;(C)
HI _ C96
D, isa 96 x 96 matrix with the fermions masses, the CKM matrix

and the neutrinos mixing angles.



Fluctuations of the metric

The replacement D — Dj vyields a fluctuation of the metric since

[Da,al = [D+ H — iv"A,,a] # [D, a.

“Fluctuated distance” on the set P(.A) of (pure) states of A,

dp, (w1, w2) = :leizﬂw(a) —w2(a)]; [Da, alll < 1}




Scalar fluctuation: A, =0,H # 0 (Wulkenhaar, P.M. 2001)

A=C*(M)® A with A) =CdH® M3(C) = P(A) is a two-sheet model

.
X2

Y2 »

Proposition 5: The spectral distance dp, coincides with the geodesic
distance in M x [0,1] given by

g 0 where h is the Higgs doublet
0 (|14 M+ |h) m2, hy g8 '

P.M., R. Wulkenhaar 2001




Gauge fluctuation: A, #0,H =0

A = C® (M) @ M,(C). Pure states: P > M with fibre CP"~1.

The distance is fully encoded with the covariant Dirac operator

Da = —in"(8, + A,)

distance spectrale dp, _ g
Au = { horizontal distance dy = dp, = du 7 (Connes 96)

M

R3 with >, Apdxt = (x%dx! — xtdx?) ® 003 = dp(&x, C) = 4

Proposition 6: dp, < dy but no equality except if the holonomy is trivial.
P. M. 2006-08




A= C>(S)) ® My(C).
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On a fiber

The spectral distance sees the disk through the circle, in the same way it sees
between the two sheets of the standard model.

» The pure state space equipped with the spectral distance is not a
path-metric space, i.e. there is no curve s € [0,1] — ¢ such that

dp(s, ¢¢) = |t — s|dp (o, 1)-

Seems to be the case as soon as A is noncommutative.



4. Moyal Plane

a, b Schwartz functions on R?. Star-product:

(axb)(x) = /dzs d?*t a(x + s)b(x + t)e—izseflt

1
(m0)>
where

-1, _ ppo—1uv . _ 0 1
sOT t=5"0,,t" with @M,,_9<1 O)'



Spectral triple for the Moyal plane

2
Ag = (S,%), H=LR)H®C?> D=-i X o"0,.
n=
The left regular representation of a € Ay on H is

7(a) = L(a) ® T : () = ( ax )

a*wg

Defining 0 = %(81 — i), 0= %(61 + id,), the Dirac operator writes

D:—iﬁ(g 2).

» Moyal space is non compact <= Ay has no unit.
Some axioms of spectral triple, e.g. orientation, require a unitization of Ajy.
Not relevant for the distance.



The matrix base

Write z = %(xl —ixp), z = %(xl + ixp). Define

1

=*m *n 1 2 2 —2H/6
a2 o x 2 H =504 +8). foo = 2e7,

2

fmn =

the Wigner transitions eigenfunctions of the harmonic oscillator (f,,: Wigner
function of the m™ energy level of the harmonic oscillator).

» {fn} m nen is an orthonormal basis of L2(R?).

> foon * fpqg = Onpfmg. There is a Frechet algebra isomorphism between 44 and

the algebra of fast decreasing sequences {amn},, ,cn: for any f € S,

a= Z amnfmn  with ap, = / f(x)fm,,(x)dzx.
m,n Rz



Pure states
The evaluation at x is not a state of Ay for (f* * f)(x) may not be positive.

Ay is a reducible representation of the algebra of compact operators K:

Hp = span {fn,, me N}

is invariant for any fixed p.

The set of pure states of Ay is the set of vector states

wy(a) = (¥, L(a)y) =210 D itbnamn

m,neN

where
1

1/} = Z wmfmpa ZW)mF - ﬂ

meN meN

is a unit vector in H,,.




Spectral distance on the Moyal plane

Proposition 7: The spectral distance on the Moyal plane is not bounded,
neither from above nor from below (except by 0).

The eigenstates of the quantum harmonic oscillator,
wro(a) = 2m0amm = wm(a).

form a 1-dimensional lattice with distance

0 <~ 1
dD(wn”wn) = 5 Z ﬁ
1

E. Cagnache, F. D'Andrea, P.M., J.C. Wallet 2009

» Quantum space does not necessarily implies minimum lenght. Compare to
DFR model where the distance is the spectrum of v/ X2 + Y2,



Conclusion

Spectral distance: viewing dgeo(x, ) as dp(dx, dy), i.e. as a supremum instead of
the length of a minimal curve makes sense in a quantum context.

Kantorovich duality: minimizing a cost (Monge problem)

Ww_ (/1,17 /,62) = |mc/ dgeo(Xa)/) d/t
MxM

s

is equivalent to maximizing a profit

W. (i1, i) = sup {/ fdul—/fduz}.
1l <1 L m

Transport consortium, looking for the tight price f(x) at wich buy the bread from
factories and sell it to bakeries, staying competitive: |f(x) — f(y)| < dgeo(X, ).

1 : distribution of bread factories / f duy : total price paid to farmers
M

o : distribution of bakeries / f duy : total money got from bakers
M

W_ : total transportation cost W, : total profit

» What cost does one minimize in a quantum context ? Higgs field as a cost
function c(x, x) # 0 ? Towards a noncommutative economics ?
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