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Outline

© Commutative case

© Non commutative case
@ Language theory
@ Case of a finite alphabet
@ Case of an infinite alphabet

9 Substitutions, graphs, Faa di Bruno's formula and Bell polynomials

M. Deneufchatel (LIPN - P13) Substitutions 01/2010 2/19



Commutative case

Commutative substitution |

@ Let R be a commutative ring and 2l be a R-associative algebra with
unit. If X = (Xj)ie/ is a set of indeterminates, R [X] denotes the
algebra of polynomials with coefficients in R.

o Let x = (x;)jc/ be a set of pairwise commuting elements of 2. Then
there is only one morphism of AAU ¢ : R[X] — 2 such that
O(Xi) = x;. If ue R[X], we note ¢(u) = u(x) = u((x;)ics)-

o If A: 2 — 2 is a morphism of R-associative algebras with unit, one
has

Au(x)) = u((A(xi))ier) (1)
for Ao ¢ : R[X] — 2 is such that X; — A(x;).

M. Deneufchatel (LIPN - P13) Substitutions 01/2010 3/19



Commutative case

Commutative substitution Il

@ Let Y = (Y])jeys be another set of indeterminates and take
A=RI[Y]. If ue R[X] and (g);¢, € RIY]', let u(g) € R[Y] be the
polynomial obtained by substitution of the gj's in w.

® Lety = (yj)jcs be a set of pairwise commuting elements of A
Applying (1) with

. A=RIY] = A
g —a&ly)
yields
(u(g))(y) = u((si(y))ier)- (2)

o Now if f = (f);c; € (R[(X))jes])’ and & = (&), € (RI(Yi)ker])’?
we denote by f o g the family of polynomials

(fi(&))ier € (RI(Yi)kex])' -

@ Eq. (2) implies that o is associative.
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Commutative case

Lagrange inversion formula

Let f be an analytic complex function such that (0) = 0 and /(0) # 0.

Then there exists an analytic function g such that g(f(z)) = z. If the
Taylor series of f near 0 is

f(z) = iz+ hz®+ ...,

the coefficients of (the Taylor expansion of) g (near 0) are given by

LN 2y
&= [\ 2z f(z)
More generally, if f(w) = z is analytic at the point a with '(a) # 0, and if
w = g(z) with g analytic at the point b = f(a), one has

g(z) = aJri;JJL“a <<%>n—1 (f(mv/v)_jb>n> (2 ;!b)n'
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Commutative case

Substitutions and Hopf algebra 1/4

Gt = {¢(x) =x+ Y opx", ¢y € C}

@ Formal diffeomorphisms (tangent to the unity)
@ Structure of (non—abelian) group for the composition law

BU()) = (x) + 3 da((x))™
n>1
o ld(x) =
@ Inverse of a series can be found by the Lagrange inversion formula.
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Commutative case

Substitutions and Hopf algebra 1/4

Gt = {¢(x) =x+ Y opx", ¢y € C}

@ Formal diffeomorphisms (tangent to the unity)
@ Structure of (non—abelian) group for the composition law

BU()) = (x) + 3 da((x))™
n>1

o ld(x) =

@ Inverse of a series can be found by the Lagrange inversion formula.
C(GI) : functions G4t — C which are in the algebra generated by some
basic elements (i.e. are “polynomial” w.r.t. these elements). For example,
one can choose the functions
1 dn+1 0
an:¢— 4(0)
(n+ 1) dxntl

M. Deneufchatel (LIPN - P13) Substitutions 01/2010 6 /19

:¢nan21



Commutative case

Substitutions and Hopf algebra 2/4

The group structure of GYf induces a Hopf algebra structure on C(G9) :

uni

@ product : (u(an ® am)|P o) = an(¢)am(?) ;
e coproduct : (A%fa, |6 @) = ap(p o) ;

[e.e]

Let A(x Z akx* ! be the generating series of the ay’s (ap =1).

k=0
Then one has

1
dif dif
A" A(x E A“a, x" >A(Z)®7Z—A(X)
where
<z_1>f

denotes the coefficient of z~1 in f.
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Commutative case

Substitutions and Hopf algebra 3/4

Proof

Note first that

oo

(AX)|6) = (an@)x"™" = ¢(x) and (AT (x)[¢) = ¢ (x).

n=0
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Commutative case

Substitutions and Hopf algebra 3/4

Proof

Note first that

(AX)|6) = (an@)x"™" = ¢(x) and (AT (x)[¢) = ¢ (x).
n=0
Then
(APTAM) g @ ¢) = > (APTaslp @) = D " an(pogh)x"!
n=0 n=0
— (71 ¢(z) — (71 2 1
20— ) (I )
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Commutative case

Substitutions and Hopf algebra 3/4

Proof

Note first that

AGE) = 3 {anlg)x™ = 6(x) and (ATGI) = 67 ().
Then ~
(APTA(x)|¢ @ ) = f?AD‘fanw ® ) = f;) an(¢ 0 )X
20— ) (I )
= (=) AR) & T—lo 0 ).
with 1

— - x nz—n—l'
z—Alx) ;A( )
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Commutative case

Substitutions and Hopf algebra 4/4

Link with the Faa di Bruno bi-algebra

C(GY is the co-ordinate ring ([Brouder, Fabretti, Krattenthaler]) of the

group Gfl'fl The Faa di Bruno bi-algebra is the co-ordinate ring of the

semigroup
{<z>(x) = én7. due C}
n=1 ’

with ¢1 not necessarily equal to 1.
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Commutative case

Substitutions and Hopf algebra 4/4

Link with the Faa di Bruno bi-algebra

C(GY is the co-ordinate ring ([Brouder, Fabretti, Krattenthaler]) of the
group Gfl'fl The Faa di Bruno bi-algebra is the co-ordinate ring of the

semigroup
{<z>(x) = én7. due C}
n=1 ’

with ¢1 not necessarily equal to 1.
Using the procedure described for C(Gif), one identifies the Faa di Bruno

uni

bi-algebra with C[uy, uo,...], deg(u,) = n— 1, with coproduct

n! uSt LG
Au, = E U ® E 1 n

| | 1l lan
- arl...apl 1l [ onl
ZI 1 fej=n

and counit €(up) = 0po.
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Non commutative case

Series with coefficient in the Boolean semiring

Let B = {0,1} be the Boolean semiring and let L be a language over the
alphabet A.

Characteristic series of the language L : the sum L = Z w(e€ B((A))).
welL
If S is a series with coefficients «,, € B, S is the characteristic series of

the language £ = Supp(«).
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Non commutative case

Series with coefficient in the Boolean semiring

Let B = {0,1} be the Boolean semiring and let L be a language over the
alphabet A.
Characteristic series of the language L : the sum L = Z w(e€ B((A))).

wel
If S is a series with coefficients «,, € B, S is the characteristic series of

the language £ = Supp(«).
The usual operations on languages are represented on their characteristic
series as follows :
o LUM=L+M;
@ LNM=L®M where ® denotes the Hadamard product of series;
@ L-M = L-M where in the point in the /hs denotes the concatenation
and in the rhs the Cauchy (or concatenation) product of two series.
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Non commutative case

Let A and B be two languages and f : A — B(B*). f is called a
substitution.

f can be extended as a morphism of monoids from (A*, conc) to
(PB(B*),conc) and then as a sum-preserving application from J(A*) to
B(B*) denoted by f :

V(Li)ier € B(A™), FO_ L) =D F(L)

iel iel

These substitutions are composable : if f : A — PB(B*) and
g: B — P(C*), one defines gof : A— P(C*) as the composition

gof:A—PB(B*) — P(CY).
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Non commutative case

Let A be a finite alphabet and R a commutative ring with a unit.

A substitution is a morphism of algebras from R((A)) to R({A)) such that
¢(A) € R>1((A)).

@ Let ¢ : A— R>1((A)) be a substitution.

@ We extend ¢ as a morphism of monoids from (A*, ) to (R>1((A)), X)
where x denotes the Cauchy product : if w = a3 -+ a,,

d(w) = ¢(a1) x -+ x ¢(an).

@ Since A* is a basis of R(A), we can extend ¢ as an application from
R(A) to R>1((A)) by linearity :

#(S)=a( ) (Slww) =Y (Slw)e(w).

wEA* weA*
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Non commutative case

Question : Does the last relation hold for S € R((A)) ?
The family ((S|w)p(w))yeax is summable. Indeed, Vv € A*, the support
of ((S|w)(d(w)|v))weax is finite :

o ¢(a) € R>1((A)). Hence, Yw € A*,

P(w) € R ((A)).

o Therefore, Supp (((S|w)(d(w)|v))wea) € A=Vl which is finite in the
case of a finite alphabet.

If S € R{(A)),

$(S)= D (Slwhg(w)= ) <Z <5|W><¢(W)\V>> v.

WEA* VEA* \weA*
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Non commutative case

Infinite alphabet

@ Let Y be an infinite alphabet (common in Physics and Geometry).
Example : we define ¢ : Y — R>1((Y)) by &(yi) = »1, Vi € N.
@ We extend ¢ to Y* as a morphism of monoids.
@ We extend ¢ by linearity to R(Y).
@ Is it possible to extend it to R((Y))?
One has to be able to substitute the characteristic series of Y, namely
Zyeyy. Hence, (¢(y))ycy has to be summable.

¢ is a substitution < Vw € Y*,

Su YR ‘<
PPy s (o)wy ) 157
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Substitutions, graphs, Faa di Bruno's formula and Bell polynomials

Statistics on graphs

Let € be a class of graphs stable under taking connected components
(VI € &, VT connected component of I',I'; € €). An integer-valued
statistics ¢ is a map ¢ — N¢.
Very often, one represents this statistics by ¢(I') = Li(r)l e Lf/(r)d.
@ n = number of vertices,
o (M) =x"yx; @ k = number of connected
o 2N = ka’lll oo LOn, components,
@ «; = number of j-blocks.
Example :

18386 5

C —y L1L2L3L4
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Substitutions, graphs, Faa di Bruno's formula and Bell polynomials
Exponential formula
How to memorize it ?
EGF(ALL) = exp (EGF(CONNECTED)) .

More formally, if:

@ Cis a class of graphs stable under relabelling and taking connected

components,

@ [ ) denotes the class obtained by renaming the vertices with
integers from 1 to n,

° Q:[Cl..n] the connected graphs of € ),

n n

Sclepn)=en S e(a) 5]

n>0 n>1
where ¢(€) = E c(T).
rec¢
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Substitutions, graphs, Faa di Bruno's formula and Bell polynomials

Substitution of formal power series
z! z
Let f = Z f’F (zero constant term), and g = ZgJT
i>1 J20

gof= Zgj Is there a simple expression of f/ in terms of the f;'s?
j>0 -

EGF(f/) kakl = exp yz i (3)

k>0 i>1

Ideally, we would like something like

V4
F=>" Pi(fi, . h)

m>0

for some polynomials Pk.
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Substitutions, graphs, Faa di Bruno's formula and Bell polynomials

Substitution of formal power series

z! z
Let f = Z f,-F (zero constant term), and g = Zgj_—l.
i>1 >0 7

gof= Zgj Is there a simple expression of f/ in terms of the f;'s?
j>0 -

EGF(f/) kakl = exp yz i (3)

k>0 i>1

Ideally, we would like something like

V4
F=>" Pi(fi, . h)

m>0

for some polynomials Pk.
Idea : Find a class of “good" class of graphs with the statistics c® and
use the exponential formula.
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Substitutions, graphs, Faa di Bruno's formula and Bell polynomials

Equivalence relation graphs |

Interesting properties :
@ Their connected components are complete;
@ There is only one connected graph with n vertices.

Ceq = class of equivalence relation graphs.

Therefore, Z c((’:eq [L. n]) =y Z

n>1 n>1

But

Z;_’; Z Z Zy Znumpart a)L®

n>0 " TeCeq 1.1 n>0 ! l|exll=n
’ |e|=k
with o] =Y a7 and [laf| =) ia;.
i=1 i
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Substitutions, graphs, Faa di Bruno's formula and Bell polynomials

Equivalence relation graphs |l

Z numpart(a)LO‘ = Bn,k(Lb ey Ln—k—i—l)a

exll=n
|a|=k
One has,
[ee] n k n
y z
exp(yf) =1+ Z Bok(fiy -5 faks1) _
n=1 k=1 )
Therefore ,

: z
fl = Z B,w'(f]_, ey fn_j_:,_]_)m.
n>j
Cf. Faa di Bruno's formula :

n o n

n
V4 .
X ) = Z hnm with h, = ngB,,’k(fl, ey fn—k-l—l)
k=0 ’
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