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Abstract. Symanzik polynomials are defined on Feynman graphs. They are used in quan-
tum field theory to compute Feynman amplitudes. But they also appear in mathematics in
various domains. For example, in article [3], first Symanzik is obtained in a dual theorem of
the well-known Kirchhoff’s matrix tree theorem. This article use the result, see [12] and [11],
stating that Symanzik polynomials compute the volume of the tropical Jacobian of a metric
graph. Another important example is article [1], where Theorem 1.1 studies the variation of
the ratio of two Symanzik polynomials, and this theorem has consequences studied in [2].

In this paper, we generalize Symanzik polynomials to simplicial complexes and study their
basic properties and applications. For example, we obtain some geometric invariants which
compute interesting data on triangulable surfaces. These invariants do not depend on the
chosen triangulation.

Actually, the Symanzik polynomials can even be defined for any matrices on a PID, for
different ranks and with more parameters. The duality relation with what we call Kirchhoff
polynomials, as well as Theorem 1.1 of [1], extend to this more general case. In order to show
that theorem, we will make great use of oriented matroids. We give a complete classification
of the connected component of the exchange graph of a matroid, and use that to prove a
boundedness of variation result for Symanzik rational fractions, extending Theorem 1.1 of [1]
to our setting.

1. Introduction

Symanzik polynomials appear naturally in quantum fields theory for computing Feynman
amplitudes. They are defined on Feynman graphs. Let G = (V,E) be a graph with vertex set
V and edge set R. Let p = (pv)v∈V ∈ Rn such that each pv, called the external momentum of
v ∈ V , is an element of RD, for some positive integer D. RD is endowed with a Minkowski
bilinear form. We suppose that

∑
v∈V pv = 0. Such a pair (G, p) is called a Feynman graph.

In this paper we will only consider the case D = 1, but the results can be extended to the
more general setting as in [2].

The first Symanzik polynomial, denoted ψG is defined as

(1) ψG(x) :=
∑
T∈T

∏
e 6∈T

xe,

where T denoted the set of spanning subtrees of G, where the product is on all edges of G
which are not in T , and where x = (xe)e∈E is a collection of variables.

The second Symanzik polynomial, denoted φG, is defined as

(2) φG(p, x) :=
∑

F∈SF2

q(F )
∏
e6∈F

xe,
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where SF2 denoted the set of spanning forests G which have two connected components, and,
if F ∈ SF2, q(F ) := −〈pF1 , pF2〉, where F1 and F2 are the two connected components of F ,
and where, for i ∈ {1, 2}, pFi is the sum of the momenta of vertices in Fi. Then, the Feynman
amplitude can be computed as an integral of exp(−iφG/ψG).

In this paper, we are interested in Symanzik polynomials because they naturally appear
in several other works and the question of generalizing them has been in the air ans should
have connections to other branches of mathematics, e.g. asymptotic Hodge theory. Thus, we
have tried to gather the different known results, to find new ones, and to generalize them to
a bigger set of polynomial that we will naturally call Symanzik polynomials. The idea of the
generalization comes from the well-known Kirchhoff’s matrix-tree theorem (see [10]).

We hope that the reader will not meet any problem in following our notations in this
introduction. In any case, all notations are defined in Subsection 2.1.

Let G = (V,E) be an oriented simple connected graph with vertex set V , of size p, and
edge set E, of size n. The incident matrix of G is the matrix Q = (qv,e)v∈V,e∈E of dimensions
p× n over Z defined as

qv,e =


1 if v is the head of e,
−1 if v is the tail of e,
0 otherwise.

Let v be any vertex of G and let Q̃ be the matrix where we delete the column corresponding
to v. We have the following well-known theorem.

Theorem 1.1 (Weighted Kirchhoff’s theorem). With the above notations,

Q̃XQ̃
ᵀ =

∑
T∈T

∏
e∈T

xe,

where X = (xe,e′)e∈E,e′∈E is the diagonal matrix defined by

xe,e′ =
{
xe if e = e′,
0 otherwise.

A possible demonstration of this theorem uses the Cauchy-Binet formula:

Q̃XQ̃
ᵀ =

∑
H⊂E

|H|=|V |−1

det((Q̃ᵀ)H)2 ∏
e∈H

xe,

where (Q̃ᵀ)H is the square matrix obtained restricting columns of Q̃ᵀ to those whose index is
an edge of H. The end of the demonstration consists in showing that det(Q̃ᵀ

H)2 equals 1 if H
is a subtree of G, and 0 otherwise.

Notice that the formula in the above theorem is very similar to the definition of the first
Symanzik polynomial, except that the product is on T instead of T c. Thus, the idea to
generalize Symanzik polynomials to any matrix is to use the Cauchy-Binet formula. However,
we will choose another method different to deleting some row of Q.

Let A be a PID, n and p be two positive integers, R ∈Mn,p(A) be a matrix, r be its rank
and f be a free family of size r in Ap such that Im(Rᵀ) is included into the A-submodule
generated by f . Let F ∈ Mp,r(A) be the matrix associated to the family f . There exists a
unique matrix R̃ ∈ Mn,r(A) such that FR̃ᵀ = R

ᵀ . If I is a subset of [1 . .n] := {1, . . . , n},
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then R̃I denotes the matrix R̃ restricted to columns whose index is in i. Then, we define the
Symanzik polynomial of R with basis f and order k by

Symk(R, f ;x) :=
∑

I⊂[1 . .n]
|I|=r

(
σ(I) det(R̃I)

)k
xI

c
,

where xJ :=
∏
j∈J xj , and where σ(I) :=

∏
i∈I(−1)i (see Definition 2.10). The first Symanzik

polynomial is only defined for the order 2. Actually, in this paper, most of the results only
stand for even positive k. Studying the other orders will be useful, but the Symanzik polyno-
mial of odd order are less natural objects: for example, we have to add arbitrary signs σ(I)
is their definition.

The fact that our definition generalizes first Symanzik polynomials is not obvious. We will
see it in Example 2.14. Actually, if R is the transpose of the incident matrix of a graph, one
can choose f such that R̃ corresponds to the above Q̃.

We will also define Kirchhoff polynomials in Section 2. All polynomials which can be
obtained by the weighted Kirchhoff’s theorem are Kirchhoff polynomials. Symanzik and
Kirchhoff polynomials are dual, as we will see in Theorem 2.15. Article [3] speaks about
“a dual version of Kirchhoff’s celebrated Matrix-Tree Theorem”. Actually, without that the
name “Symanzik” appears in the article, this dual version provides Symanzik polynomials
instead of Kirchhoff ones. With above notations, suppose that f is a basis of Im(Rᵀ). Let q
be a positive integer, let S ∈Mn,q(A) be a matrix of rank s := n− r such that Rᵀ

S = 0, and
let g be a basis of Im(Sᵀ). Then, there exists an a ∈ A∗ such that

Symk(R, f ;x) = ak Kirk(S, g;x).
This duality is deeply linked to an important property of Kirchhoff and Symanzik polyno-

mials. They respect similar determinantal formulæ. The determinantal formula for Kirchhoff
polynomials is natural because of the statement of the Kirchhoff’s theorem. But the existence
of a formula for Symanzik polynomials is not obvious. It has been enlighten in Subsection
1.1 of [1] and un [2]. Namely, if Q, seen as a matrix over A, is an incident matrix of some
Feynman graph (G, p), and if H is a matrix whose columns, seen as elements of An, form a
basis of ker(Q), then there exists an a ∈ A∗ such that

ψG(x) = a2H
ᵀ
XH,

In this paper, a similar statement will be obtained (see Proposition 2.21) replacing ψG by
any Symanzik polynomial. Actually, the determinantal formulæ only hold for the order 2.
Since this formulæ will be important for the last theorems of this paper, we generalize it to
all positive even order. This is possible thanks to multidimensional matrices we define in the
Appendix. These objects were already studied by Arthur Cayley in 1843 (see [5]).

But we have not yet generalized the second Symanzik polynomials (2). In [1] and in
[2], the authors state a second determinantal formula which computes the second Symanzik
polynomials. The hypothesis that the total external momenta is 0, i.e.,∑

v∈V
pv = 0.

This hypothesis implies that there exists a column matrix v such that Qv = p. The determi-
nantal formula states that there exists an a ∈ A∗ such that

φG(p, x) = a2(H ? v)ᵀX(H ? v),
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where H ? v is the matrix H where we add the column v on the right.
This time, we will use the idea of the determinantal formula to define Symanzik polynomials

with parameters (actually, one can add more than one parameter). With the notations of
the paragraph about duality, suppose that q = s (i.e., columns of S are free), that g is the
standard basis on As, and that

Symk(R, f ;x) = Kirk(S, g;x).

One can always find such a matrix S. Thus, if l is a positive integer and if u1, . . . , ul ∈ Im(Rᵀ),
then the Symanzik polynomials of R of order k with parameters u1, . . . , ul is defined as

Symk(R, f, u1, . . . , ul;x) := Kirk(S ? v1 ? . . . ? vn, g;x),

where, for i ∈ [1 . . l], vi is such that Rᵀvi = ui, with ui the column matrix associated to ui.

Until now, we have already used graphs and linear algebra. The intersection, or maybe the
union, of this two theories contains the theory of matroids. A subsection will be devoted to
defining Symanzik polynomials of a matroid. An interesting question, about covering finite
linear spaces with some specific hyperplanes, will arises. But, more importantly, matroids are
a powerful tool which we will use in every sections. Finally, the matroid point of view will
be useful to have another understanding of Symanzik polynomials on simplicial complexes in
Section 3.

Symanzik polynomials compute important data on graphs, as one can see in the important
Example 3.14 about the volume of the Jacobian torus of a metric graph (this example comes
from [12] and [11], and [3] uses it). Moreover, Theorem 1.1 of article [1], which we will
generalize in Section 5, states an interesting property of the ratio of two polynomials, and so
of the geometry of metric graphs. Thus, it is natural to try to generalize that example and
this theorem to greater dimensions.

Moreover, many recent articles (see [6], [9]) deal with forests on simplicial complexes (one
could see simplicial complexes as a generalization of graphs). Since original Symanzik poly-
nomials are defined thanks to forests, it is natural to extend the definition of Symanzik
polynomials to simplicial complexes. We will do it taking the Symanzik polynomial of the
transpose of the d-th incident matrix of a simplicial complex of dimension d. Here, the l-th
incident matrix is the matrix associated to the l-th reduced boundary map, choosing some
standard bases on l-chains and on (l − 1)-chains. The important Examples 3.19 and 3.44
confirm that a such extension is interesting.

Let us quickly speak of these two examples. Take S a compact orientable surface endowed
with a finite measure π. It is well-known that S is triangulable, i.e., that one can find
a simplicial complex homeomorphic to S. Thus, we will be able to associate a Symanzik
polynomial to S. It happens that, under some good conditions, the Symanzik polynomial
computes the total measure π(S). Notice that this value does not depend on the chosen
triangulation. This fact is more general: Proposition 3.18 states that Symanzik polynomials
of a simplicial complex are invariant (in some way we will precise) under subdivisions. By the
way, modulo this kind of invariance, Example 3.20 explains that for all matrix R over Z, one
can find a simplicial complex whose Symanzik polynomial equals the Symanzik polynomial
of R.

The second example explains what happens when we add a parameter which is a simple
boundary. For example, a simple closed loop which is a boundary is a simple boundary.
Adding such a parameter is equivalent to contract the loop into a point. On S, a simple
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boundary cuts S into two surfaces. Then, the Symanzik polynomial will compute the product
of the measure of both surfaces.

Moreover, we will introduce orientations of the bases of a matroid, known in the literature
as chirotopes. They will naturally appear in Theorem 3.32 and in Corollary 3.37, and so in the
computation of the Symanzik polynomials. These results are needed in order to understand
why Symanzik polynomials with parameters generalize the second Symanzik polynomials.

Section 4 studies the connected components of the exchange graph of a matroid. Corollary
4.13 generalizes Theorem 2.12 of [1]. In order to give an idea of what the exchange graph
is, we will explain a well-known property of the set of the spanning subtrees of a graph. We
say that two spanning subtrees are linked if they differ only by one edge (all subtrees have
the same number of edges). It happens that, from any spanning subtree, we can obtain any
other spanning subtree by a path of linked subtrees. The exchange graph is constructed with
the same idea, but replacing spanning subtrees with ordered pairs of forests (or more exactly
with ordered pairs of independents; see Definition 4.1).

The last section generalizes Theorem 1.1 of [1]. The variation of the ratio of two Symanzik
polynomials are bounded, independently of the value of the variables, under bounded per-
turbations. It has some important consequences: see Theorem 1.2 of [1] and [2] for more
details.

2. Kirchhoff and Symanzik polynomials and duality

2.1. Notations. We begin this section with few notations that will be useful all along the
article.

In the whole article, A will always be a PID. Moreover, k will always be any nonnegative
integer.

If p, q are integers with p 6 q, then the set {p, p + 1, . . . , q} will be written [p . . q]. The
function sign will be useful: for p in Z or R,

sgn(p) :=


−1 if p < 0,
0 if p = 0,
1 if p > 0.

Let I be a finite set. Then |I| is its cardinality and P(I) is its power set. If J ∈ P(I) is a
subset of I and if there is no ambiguity, then Jc := I \ J denotes the complementary of J .
Moreover, if I is a finite set of integers, the signature of I denoted by σ(I) is defined by

σ(I) :=
∏
i∈I

(−1)i.

If i ∈ Ic, then I + i := I ∪ {i}, and if i ∈ I, then I − i := I \ {i} (using these notations means
respectively that i ∈ Ic or that i ∈ I).

In the whole article, if n is a positive integer, (x1, . . . , xn) will be a family of variables. We
will often use the notation x to denotes this family. A[x] is the set of polynomials over A with
variables x1, . . . , xn. Following a usual notation, if I ⊂ [1 . .n],

xI :=
∏
i∈I

xi.

We will use permutations. Sn will be the set of permutations of [1 . .n]. If τ is such a
permutation, then sgn(τ) will be its signature.
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If U is a set, A〈U〉 is the free A-module on U . The set of units of A is denoted by A∗, and
we set

A∗k := {ak
∣∣a ∈ A∗}.

By convention, if a ∈ A, then

a0 =
{

0 if a = 0,
1 otherwise.

Let n, p, q be positive integers. Mp,q(A) will denote the set of matrices with p rows and
q columns over A and Mn(A) := Mn,n(A). If u is an element of An, u will denote the
column matrix in Mn,1(A) associated to u for the standard basis of An. Reciprocally, to
u ∈ Mn,1(A) one can naturally associate u ∈ An. If P ∈ Mn,p(A), then P

ᵀ ∈ Mp,n(A)
denotes the transpose of P . Let I be a subset of [1 . .n] and J be a subset of [1 . . p]. Then
PI,J ∈M|I|,|J |(A) denotes the submatrix of P restricted to entries whose indices are in I×J .
In order to simplify notations, we set P∗,J := P[1 . .n],J and PI := PI,[1 . . p].

Let Q ∈ Mn,q(A) a second matrix. The horizontal concatenation operator ? is such that
P ? Q is the only matrix R ∈Mn,p+q(A) with R∗,[1 . . p] = P and R∗,[p+1 . . p+q] = Q.

If p is a positive integer and f := (f1, . . . , fp) is a family of elements of An, then the same
letter in uppercase will always denote the associated matrix

F := f1 ? f2 ? · · · ? fp ∈Mn,p(A).

If U is an A-submodule of An, then we say that f overgenerates U if U is included in the
A-submodule generated by the elements of f .

Let (u1, . . . , up) be the family of elements of An associated to columns of P (such that
P = u1 ? · · · ? up). Then Im(P ) is the A-submodule of An generated by u1, . . . , up, ker(P ) is
the A-submodule of v ∈ Ap such that Pv = 0, and rk(P ) = rk(Im(P )) is the rank of P and
of Im(P ). We also define

Im(P ) = {v ∈ An
∣∣∃a ∈ A, av ∈ Im(P )}.

Let R ∈Mp,q(A) be of rank q. Let f be a free family of size q in Ap overgenerating Im(R).
Then there exists a unique matrix R̃ ∈Mq(A) such that R = FR̃.

Definition 2.1. With the above notations, we define the determinant of R relative to f
denotes by detf (R) as the determinant of R̃.

This definition verifies the following useful lemmas.

Lemma 2.2. Let A be the field of fraction of A. Let R ∈ Mp,q(A) be of rank q. Let f and
f ′ be two bases of Im(R)⊗A A. Then,

detf ′(R) = detf ′(F ) detf (R).

Proof. As f and f ′ are bases of the same subspace of Aq, there exists P ∈ Mq(A) such that
F = F ′P . Let R̃ ∈Mq(A) be such that R = FR̃. We have R = F ′PR̃. All this shows that

detf (R) = det(R̃),

detf ′(R) = det(PR̃) and
detf ′(F ) = det(P ).

Combining these three equations gives us the lemma. �
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Lemma 2.3. If f and f ′ are free families of size p in Aq and if f overgenerates Im(F ′) ⊂ Aq,
then

detf (F ′) = | Im(F )
/

Im(F ′)| (mod A∗).

Proof. This is a consequence of the stacked bases theorem. The theorem gives the existence
of a basis f̃ = (f̃1, . . . , f̃p) of Im(F ) and of invariant factors (d1, . . . , dp) such that

(3) f̃ ′ := (d1f̃1, . . . , dpf̃p)

is a basis of Im(F ′). Clearly, detf (F̃ ) and det
f̃ ′

(F ′) are invertible elements of A. Thus, using
Lemma 2.2,

detf (F ′) = detf (F̃ ) det
f̃
(F̃ ′) det

f̃ ′
(F ′)

= det
f̃
(F̃ ′) (mod A∗)

= det(diag(d1, . . . , dp)) (mod A∗)
= d1 · · · dp (mod A∗).

But Equation (3) implies
Im(F )

/
Im(F ′) ' A

/
d1A× · · · ×A

/
dpA.

Finally,
detf (F ′) = d1 · · · dp (mod A∗)

= | Im(F )
/

Im(F ′)| (mod A∗).
�

Some specific notations will be introduced later but we can already deal with the heart of
the subject.

2.2. Kirchhoff and Symanzik polynomials. In this article, Kirchhoff polynomials are
a generalization of polynomials appearing in the weighted Kirchhoff’s matrix tree theo-
rem whereas Symanzik polynomials generalize first and second Symanzik polynomials better
known in physics (look at Examples 2.9, 2.14, 3.38, at Theorem 3.9 and at the introduction
for more details). They are dual in a way we will see at the end of this subsection (Theorem
2.15).

We will fix some objects for the rest of the section. Let p, n be two positive integers,
R ∈Mn,p(A) be a matrix, r := rk(R) its rank and s := n− r.

Definition 2.4. Let f be a family of size r in Ap overgenerating Im(Rᵀ). The Kirchhoff
polynomial of order k of R associated to f denoted by Kirk(R, f ;x) is defined as

Kirk(R, f ;x) :=
∑

I⊂[1 . .n]
|I|=r

detf (Rᵀ

I )kxI .

Remark 2.5. It would be useful to notice that if R′ is another matrix and f ′ is a free family
of size rk(R′) overgenerating Im(R′ᵀ), and if for some nonnegative integer k

Kirk(R, f ;x) = Kirk(R′, f ′;x),
then this equation holds for any order which is a multiple of k. The same will be true for
Symanzik polynomials below.
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Kirchhoff polynomials of order 2 have a more computable definition under some conditions.
It is not difficult to obtain a case verifying these conditions, as we will see in many proofs.

Proposition 2.6. If columns of R are free (or equivalently if rk(R) = p), and if e is the
standard basis of Ap, then

Kir2(R, e;x) = det
(
R

ᵀ
XR

)
where X ∈Mn(A[x]) is the diagonal matrix diag(x1, x2, . . . , xn).

Proof. This is essentially the Cauchy-Binet formula:

det(Rᵀ
XR) =

∑
I⊂[1 . .n]
|I|=r

det(Rᵀ

∗,I) det((XR)I)

=
∑

I⊂[1 . .n]
|I|=r

det(RI) det(XIR)

=
∑

I⊂[1 . .n]
|I|=r

det(RI)
∑

J⊂[1 . .n]
|J |=r

det(XI,J) det(RJ).

But, as X is a diagonal matrix,

det(XI,J) =
{
xI if I = J ,
0 otherwise,

thus,

det(Rᵀ
XR) =

∑
I⊂[1 . .n]
|I|=r

det(RI)2xI

= Kir2(R, e;x).

�

For orders other than 2, one can obtain similar formulæ using matrices of any dimension
which can be easily defined, as the determinant can. These definitions and some basic proper-
ties are detailed in the Appendix. The results and the notations of the appendix are only used
in the following Proposition, the corresponding Proposition 2.22 for Symanzik polynomials,
and Theorem 5.2 which generalizes Theorem 5.1.

Proposition 2.7. If columns of R are free (or equivalently rk(R) = p), if e is the standard
basis of Ap, and if k is an even positive integer, then

Kirk(R, e;x) = det
(
X ·1 R ·2 · · · ·k R

)
,

where X ∈ Ckn(A[x]) is equal to diagk(x1, . . . , xn) defined by, for every k-tuple [u] 6 [n, . . . , n],

diagk(x1, . . . , xn)[u] =
{
xl if u1 = · · · = uk = l,
0 otherwise.

Proof. Once again, this is essentially the generalized Cauchy-Binet formula (Proposition A.5).

det
(
X ·1 R ·2 · · · ·k R

)
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=
∑

Ik⊂[1 . .n]
|Ik|=r

det
((
X ·1 R ·2 · · · ·k−1 R

)
k:Ik

)
det(RIk),

=
∑

Ik,Ik−1⊂[1 . .n]
|Ik|=|Ik−1|=r

det
((
X ·1 R ·2 · · · ·k−2 R

)
k−1:Ik−1,k:Ik

)
det(RIk−1) det(RIk),

...

=
∑

Ik,...,I1⊂[1 . .n]
|Ik|=···=|I1|=r

det
(
X1:I1,...,k:Ik) det(RI1) · · · det(RIk).

Yet,

det
(
X1:I1,...,k:Ik) =

{
xI if I1 = · · · = Ik = I,
0 otherwise.

Thus,

det
(
X ·1 R ·2 R · · · ·k R

)
=

∑
I⊂[1 . .n]
|I|=r

det(RI)kxI

= Kirk(R, e;x).

�

Example 2.8. Let us study what happens if k = 0. Let f be a family of size r in Ap

overgenerating Im(Rᵀ). We have

Kir0(R, f ;x) =
∑

I⊂[1 . .n]
|I|=r

detf (Rᵀ

I )0xI .

We have to know when detf (Rᵀ

I ) is nonzero. It is clearly when RI is of maximal rank, i.e.,
when rk(RI) = r. Thus,

Kir0(R, f ;x) =
∑

I⊂[1 . .n]
|I|=r, rk(RI)=r

xI .

Previous example implies that Kir0 does not depend on the choice of the basis. Thus, from
now we will not precise the basis in this case writing Kir0(R;x).

Example 2.9. Now let us explain more precisely the link between Kirchhoff as mathematician
and Kirchhoff polynomials. Let G be a graph with vertex set V of size p and edge set E of
size n. Let Q = (qv,e) ∈ Mp,n(Z) be an incidence matrix of G, i.e., suppose that elements of
V and of E are enumerated from 1 to, respectively, p and n, put an orientation on edges of
G and set, for all v ∈ [1 . . p] and all e ∈ [1 . .n],

qv,e :=


0 if e is a loop,
1 if the vertex numbered v is the head of the edge numbered e,
−1 if the vertex numbered v is the tail of the edge numbered e,
0 if the vertex numbered v and the edge numbered e are not incident.
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Let J ⊂ [1 . .n] be a subset of size n−1 and R := Q
ᵀ

J . The well-known Kirchhoff’s matrix-tree
theorem (the simple form is proven in [10]), in its weighted form, states that

det(Rᵀ
XR) =

∑
I∈T

xI ,

where J ⊂ [1 . .n] is any subset of size n− 1, X = diag(x1, . . . , xn) and T ⊂ P([1 . .n]) is the
family of all subsets I ∈ T which verify that the subgraph of G with vertex set V and edges
whose number is in I is a subtree of G (T = ∅ if G is not connected). Then Proposition 2.6
implies that

Kir2(R, e;x) =
∑
I∈T

xI .

We even have in this very special case that Kir2k(R, e;x) does not depend on k.
In fact, there are other formulæ which do not require to delete a column which gives the

same sum. We will see them in Theroem 3.9 which generalizes Kirchhoff’s theorem to the
case of finite simplicial complexes.

Symanzik polynomials have a similar, but little more complicated, definition.

Definition 2.10. Let f be a family of size r in Ap overgenerating Im(Rᵀ). The Symanzik
polynomial of order k of R associated to f denoted by Symk(R, f ;x) is defined as

Symk(R, f ;x) :=
∑

I⊂[1 . .n]
|I|=r

(
σ(I) detf (Rᵀ

I )
)k
xI

c
.

Notice that signatures of sets disappear when the order is even. Actually, signatures are
in the definition in order to make the duality true for odd orders. But one can equally define
Kirchhoff polynomials with the signatures instead of Symanzik ones. Moreover, most of our
results will only be true for even order, beginning with determinantal formulæ (Proposition
2.7).

Example 2.11. When k = 0, Symanzik polynomials behave exactly as Kirchhoff ones (see
Example 2.8) except that the exponents are the complementaries:

Sym0(R, f ;x) :=
∑

I⊂[1 . .n]
|I|=r, rk(RI)=r

xI
c
.

Following lemma explains how a change of basis affects Kirchhoff and Symanzik polynomi-
als.

Lemma 2.12. If f and f ′ are two families of size r in Ap overgenerating Im(Rᵀ), then, in
the field of fractions of A,

Kirk(R, f ′;x) = detf ′(F )k Kirk(R, f ;x) and
Symk(R, f ′;x) = detf ′(F )k Kirk(R, f ;x).

Proof. This is a direct consequence of Lemma 2.2 about changes of basis:

Kirk(R, f ′;x) :=
∑

I⊂[1 . .n]
|I|=r

detf ′(R
ᵀ

I )kxI
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=
∑

I⊂[1 . .n]
|I|=r

(detf ′(F ) detf (Rᵀ

I ))kxI

= detf ′(F )k Kirk(R, f ;x).
The case of Symanzik polynomials is similar. �

Remark 2.13. Kirchhoff and Symanzik polynomials are very similar. In fact, one can define
ones from the others thanks to following formulæ.

Symk(R, f ;x) = x1 · · ·xn Kirk(R, f ; (−1)kx−1
1 , (−1)2kx−1

2 , . . . , (−1)nkx−1
n ),

Kirk(R, f ;x) = (−1)
kn(n+1)

2 x1 · · ·xn Symk(R, f ; (−1)kx−1
1 , (−1)2kx−1

2 , . . . , (−1)nkx−1
n ).

Proof. Developing the first right hand-side member we obtain
x1 · · ·xn Kirk(R, f ; (−1)kx−1

1 , (−1)2kx−1
2 , . . . , (−1)knx−1

n )

=
∑

I⊂[1 . .n]
|I|=r

detf (Rᵀ

I )k
(∏
i∈I

(−1)ik
)
x[1 . .n]/xI ,

=
∑

I⊂[1 . .n]
|I|=r

detf (Rᵀ

I )k σ(I)kxIc ,

= Symk(R, f ;x),
and, using the first formula,

(−1)
kn(n+1)

2 x1 · · ·xn Symk(R, f ; (−1)kx−1
1 , (−1)2kx−1

2 , . . . , (−1)knx−1
n )

= (−1)
kn(n+1)

2 x1 · · ·xn(−1)kx−1
1 · · · (−1)knx−1

n ×

Kirk(R, f ; (−1)k((−1)kx−1
1 )−1, . . . , (−1)kn((−1)knx−1

n )−1),
= Kirk(R, f ;x).

�

Example 2.14. What is the link between Symanzik polynomials defined in Definition 2.10
and the first Symanzik polynomial of the introduction (1)? Let G be a graph as defined in
Example 2.9. Set k = 2. We have seen in Example 2.9 that, using the same notations,

Kir2(R, e;x) =
∑
I∈T

xI .

Using Remark 2.13, we obtain
Sym2(R, e;x) = x1 · · ·xn Kir2(R, f ;x−1

1 , x−1
2 , . . . , x−1

n )

= x1 · · ·xn
∑
I∈T

(xI)−1

=
∑
I∈T

xI
c
.

which exactly is the first Symanzik polynomial. Notice that, once more, in this very special
case, Sym2k(R, e;x) does not depend on k.
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Now we can state the duality theorem. Roughly speaking, take a matrix S whose columns
span the kernel of Rᵀ if A was a field. Then the Kirchhoff polynomial of S is almost the
Symanzik polynomial of R (up to a factor in A∗k).

Theorem 2.15 (Duality). Let q be a positive integer and S ∈ Mn,q(A) be a matrix of rank
s = n− r such that Rᵀ

S = 0. Let f be a basis of Im(Rᵀ) and g be a basis of Im(Sᵀ). Then
there exists an a ∈ A∗ such that, for all nonnegative integers k,

Kirk(S, g;x) = ak Symk(R, f ;x).

Proof. Using notations of the proposition, set R̃ ∈ Mn,r(A) and S̃ ∈ Mn,s(A) the only
matrices such that Rᵀ = FR̃

ᵀ and S
ᵀ = GS̃

ᵀ . Using the fact that all elements of f are in
Im(Rᵀ), we know there exists R′ ∈ Mn,r(A) such that Rᵀ

R′ = F , thus FR̃ᵀ
R′ = F and

finally R̃ᵀ
R′ = Idr because columns of F form a free family. With the same argument, let

S′ ∈Mn,s(A) be such that S̃ᵀ
S′ = Ids. The equality of the proposition is, by definition,∑

I⊂[1 . .n]
|I|=s

detg(S
ᵀ

I )kxI = ak
∑

I⊂[1 . .n]
|I|=s

(σ(I) detf (Rᵀ

I ))kxI
c
.

Comparing coefficients of the polynomials, it suffices to show that there exists an a ∈ A∗ such
that, for all I ⊂ [1 . .n] of size s,

detg(S
ᵀ

I ) = a σ(I) detf (Rᵀ

Ic),
which is exactly (removing the transposition)
(4) det(S̃I) = a σ(I) det(R̃Ic).

The next step will be to explain the presence of σ(I).

Lemma 2.16. Set

a := σ([1 . . s]) det

 S̃
ᵀ

R′
ᵀ


and, if I ⊂ [1 . .n] and |I| = s,

aI := det

 S̃
ᵀ

I S̃
ᵀ

Ic

R′
ᵀ

I R′
ᵀ

Ic

 .
Then aI = σ(I)a.

Proof of the lemma. Let I = {i1, . . . , is} ⊂ [1 . .n] such that |I| = s and i1 < · · · < is and let
a and aI be as in the lemma. Let τ ∈ Sn be the only permutation which is increasing from
I to [1 . . s] and from Ic to [s + 1 . .n]. In order to compute σ(τ), we will count the number
of inversions of the permutation. Clearly such an inversion can only be between an element
of I and an element of Ic. The set of elements of Ic inverting with i1 is [1 . . i1 − 1], with i2
is [1 . . i2 − 1]− i1, etc., with is is [1 . . is − 1] \ {i1, . . . , is}. Thus, the number of inversions is

i1 − 1 + i2 − 2 + · · ·+ is − s = (i1 + · · ·+ is) + (1 + · · ·+ s)
and

σ(τ) = (−1)(i1+···+is)+(1+···+s),

(5) σ(τ) = σ(I)σ([1 . . s]).
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Let T ∈ Mn(A) be the permutation matrix associated to τ , i.e., the only matrix such that,
for some positive q and for all u1, . . . , un ∈ Aq,

(u1 ? · · · ? un)T = uτ−1(1) ? · · · ? uτ−1(n).

Then,  S̃
ᵀ

R′
ᵀ

T =

 S̃
ᵀ

I S̃
ᵀ

Ic

R′
ᵀ

I R′
ᵀ

Ic

 ,
det

 S̃
ᵀ

R′
ᵀ

det(T ) = det

 S̃
ᵀ

I S̃
ᵀ

Ic

R′
ᵀ

I R′
ᵀ

Ic

 ,
σ([1 . . s])a σ(τ) = aI .

Finally, Equation (5) proofs the lemma. �

Now we finish the proof of the proposition. From S̃
ᵀ

I S̃
ᵀ

Ic

R′
ᵀ

I R′
ᵀ

Ic


 Ids R̃I

0 R̃Ic

 =

 S̃
ᵀ

I 0

∗ Idr


and from  S′

ᵀ

I S′
ᵀ

Ic

R̃
ᵀ

I R̃
ᵀ

Ic


 S̃I 0

S̃Ic Idr

 =

 Ids ∗

0 R̃
ᵀ

Ic


we deduce

(6) aI det(R̃Ic) = det(S̃I)

and

(7) bI det(S̃I) = det(R̃Ic),

where aI is defined as in Lemma 2.16 and

bI := det

 S′
ᵀ

I S′
ᵀ

Ic

R̃
ᵀ

I R̃
ᵀ

Ic

 .
Suppose that I verifies det(R̃Ic) 6= 0 (such an I always exists: take a maximal free family of
rows of R̃ and choose I such that R̃Ic is a restriction to these rows). Then, by (7), bI 6= 0 and
det(S̃I) 6= 0. Multiplying (6) and (7), we set aIbI = 1. Thus, aI ∈ A∗, and so the element a
defined in Lemma 2.16belongs to A∗. Finally, using the lemma and (6), we obtain Equation
(4) which ends the proof of the proposition. �

It could be more interesting to see Theorem 2.15 as follows. In particular, if R and S
have independent columns, and if f̃ and g̃ are the standard bases, then relative determinants
become usual ones (except the two denominators).
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Corollary 2.17. Let q be a positive integer and S ∈Mn,q(A) be a matrix of rank s such that
R

ᵀ
S = 0. Let f̃ be a basis of Im(Rᵀ) and g̃ be a basis of Im(Sᵀ). Let f be a basis of Im(Rᵀ)

and g be a basis of Im(Sᵀ). Then, there exists an a ∈ A∗ such that, for all nonnegative integer
k, both sides of the following equation are polynomials over A and

1
detg̃(G)k Kirk(S, g̃;x) = ak

1
det

f̃
(F )k Symk(R, f̃ ;x).

Moreover one can choose nonzero invariant factors of An
/

Im(Sᵀ) (resp. of An
/

Im(Rᵀ)) such
that the product of these factors is equal to detg̃(G)k (respectively det

f̃
(F )k).

Proof of the equivalence between Theorem 2.15 and Corollary 2.17. The end of the corollary
comes from the stacked bases theorem as in Lemma 2.3.

The equivalence between Corollary 2.17 and Theorem 2.15 comes from Lemma 2.12 about
change of basis which shows that the stated equations are the same. �

Remark 2.18. There exists a direct proof of the corollary by proving that
Im(Sᵀ)

/
Im(Sᵀ

I ) ' Im(Rᵀ)
/

Im(Rᵀ

Ic),
for all subsets I ⊂ [1 . .n] of size s, then by proving that a ∈ A∗ does not change when one
changes one element of I.
Remark 2.19. In Theorem 2.15, any a ∈ A∗ can appear by choosing a different S or a
different g. More precisely, multiplying an element of g by b ∈ A∗ or a column of S by b−1

will change a into ab. Even inverting two rows of R, and the corresponding two rows of S,
will change the sign of a (one can see the value of a in Lemma 2.16 to be convinced).
Definition 2.20. In Theorem 2.15 if elements of An corresponding to columns of S form
a basis of Im(S) (i.e., of ker(Rᵀ)), if g is the standard basis of As, and if a = 1 (i.e.,
Kirk(S, e;x) = Symk(R, f ;x) for e the standard basis), then S will be called a normal kernel
matrix of R with basis f .

Looking at Remark 2.19, it is easy to see that one can always find a normal kernel matrix.
Let us now extend determinantal formulæ to Symanzik polynomials.

Proposition 2.21. If f is a basis of Im(Rᵀ), if e is the standard basis of As, and if S is a
normal kernel matrix of R with basis f , then

Sym2(R, f ;x) = det
(
S

ᵀ
XS

)
,

where X ∈Mn(A[x]) is the diagonal matrix diag(x1, x2, . . . , xn).
Proposition 2.22. If f is a basis of Im(Rᵀ), if e is the standard basis of As, if S is a normal
kernel matrix of R with basis f , and if k is an even positive integer, then

Symk(R, f ;x) = det
(
X ·1 S ·2 · · · ·k S

)
,

where X := diagk(x1, . . . , xn) defined in Proposition 2.7.
Proof of both claims. It suffices to apply the Definition 2.20 about normal kernel matrix to
obtain

Symk(R, f ;x) = Kirk(S, e;x),
then to apply determinantal formulæ (Propositions 2.6 and 2.7). �

Remark 2.23. We enlighten that, with the notations of Theorem 2.15, detf (Rᵀ

I ) is nonzero
if and only if detg(S

ᵀ

Ic) is nonzero.
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2.3. Symanzik polynomials with parameters. Now we want to generalize the second
Symanzik polynomials defined in the introduction (2). In fact, one can naturally add more
than one parameter. Examples 3.42 and 3.44 will justify the usefulness of doing so.

Definition 2.24. Let l be a nonnegative integer, f be a family of size r in Ap overgenerating
Im(Rᵀ) and u1, . . . , ul be elements of Im(Rᵀ). The Symanzik polynomial of order k of R
associated to f with parameters u1, . . . , ul denoted by Symk(R, f, u1, . . . , ul;x) is defined as

Symk(R, f, u1, . . . , ul;x) :=
{ 0 if the family (u1, . . . , ul) is not free,

1
det

f̃
(F )k Kirk(S ? v1 ? · · · ? vl, e;x) otherwise,

where f̃ is any basis of Im(Rᵀ), S is a normal kernel matrix of R with basis f̃ , e is the standard
basis of As+l and vi ∈ An verifies Rᵀvi = ui for all i ∈ [1 . . l].

Remark 2.25. Reader might notice that the previous definition is consistent with Definition
2.10, about Symanzik polynomials, in the case l = 0 because of the definition of a normal
kernel matrix (Definition 2.20) and of Lemma 2.12 about change of basis.

It is not obvious that this definition generalizes second Symanzik polynomials as defined
in the introduction. We will see it further, in Example 3.38.

There are some simple properties about those parameters resulting from properties of the
determinant.

Claim 2.26. The Symanzik polynomial of order k is well-defined (i.e., it does not depend on
the choice of f̃ , of S and of the vis). Moreover, it is an alternating k-homogeneous map in
its parameters (with the same notations as the previous definition):

• alternance: for all i ∈ [1 . . l − 1],

Symk(R, f, u1, . . . , ui, ui+1, . . . , ul;x) = Symk(R, f, u1, . . . ,−ui+1, ui, . . . , ul;x),

• k-homogeneity: if a ∈ A, then, for all i ∈ [1 . . l − 1],

Symk(R, f, u1, . . . , aui, . . . , ul;x) = ak Symk(R, f, u1, . . . , ui, . . . , ul;x).

In particular, if the order is even, the Symanzik polynomial is symetric in its parameters.

Proof. The claim is obvious if the family (u1, . . . , ul) is not free. Suppose now that this family
is free. With the notations of the definition, let f̃ ′ be another basis of Im(Rᵀ), S′ be a normal
kernel matrix of R with basis f̃ ′ and v′1, . . . , v′l be other elements of An such that Rᵀv′i = ui
for i ∈ [1 . . l]. Then there exists an invertible matrix P ∈Ms(A) such that S′ = SP . Taking
a subset I ⊂ [1 . .n] of size s such that RIc 6= 0, because S and S′ are normal kernel matrices,
one can write, using Lemma 2.2 about change of basis,

det(Sᵀ

I ) = det
f̃
(Rᵀ

Ic)

= det
f̃
(F̃ ′) det

f̃ ′
(Rᵀ

Ic)

= det
f̃
(F̃ ′) det(S′ᵀI ).

Yet,
det(S′I) = det(SIP ) = det(SI) det(P ).
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Thus, once more using Lemma 2.2,

(8) det(P ) = det(S′ᵀI )
det(Sᵀ

I ) = 1
det

f̃
(F̃ ′)

=
det

f̃ ′
(F )

det
f̃
(F ) .

Moreover, for any i ∈ [1 . . l], Rᵀ(v′i − vi) = 0. Thus, v′i − vi is in ker(Rᵀ), i.e., in Im(S). We
deduce that there exists w1, . . . , wl ∈ As such that Swi = v′i − vi for all i ∈ [1 . . l]. Then one
can write

S′ ? v′1 ? · · · ? v′l = (S ? v1 ? · · · ? vl)

 P w1· · ·wl

0 Idl

 .
But the matrix between brackets has determinant det(P ). Then, for all I ⊂ [1 . .n] of size
s+ l,

det
(
(S′ ? v′1 ? · · · ? v′l)I

)
= det

(
(S ? v1 ? · · · ? vl)I

)
det(P )

and, using (8),

Kirk(S′ ? v′1 ? · · · ? v′l, e;x) = Kirk(S ? v1 ? · · · ? vl, e;x)
det

f̃ ′
(F )k

det
f̃
(F )k ,

which concludes the well-definiteness.
The alternance and the k-homogeneity are very easy to see: transposing two uis will

transpose the corresponding columns in all S̃I , for all I ⊂ [1 . .n] of size s+ l where S̃ denoted
S ?v1 ? · · ·?vl, thus it will change the sign of det(S̃I). Multiplying a ui by a ∈ A will multiply
the corresponding columns in all S̃I , thus it will multiply det(S̃I)k by ak. �

Thus, far, our definitions of polynomials always depended on a basis. That is annoying
because we have to make a choice. Remark 2.19 shows that polynomials really depend on the
chosen bases and there is no canonical choice of basis possible in general (that will be even
more true in Section 3). But the following proposition claims that the ratio of two Symanzik
polynomials with parameters of the same order and of the same matrix does not depend on
those choices.

Proposition 2.27. Let f be a family of size r in Ap overgenerating Im(Rᵀ), l be a nonnegative
integer and u1, . . . , ul be l elements of Im(Rᵀ). Then the ratio

Symk(R, f, u1, . . . , ul;x)
Symk(R, f ;x)

only depends on Im(R) and on uis. Moreover it is equal to
Kirk(S ? v1 ? . . . ? vl, h;x)

Kirk(S, g;x)
where S ∈ Mn,q(A) is a matrix of rank s, for q an arbitrary positive integer, such that
R

ᵀ
S = 0, v1, . . . , vl ∈ An are any elements verifying Rᵀvi = ui, for all i ∈ [1 . . l], g is any

family of size s in Aq overgenerating Im(Sᵀ) and h is a family of size s+ l in Aq+l which is
the standard completion of g:

H =

 G 0

0 Idl

 .
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Proof. There is no difficulty in the proof, one only has to make some changes of bases and use
Lemma 2.12 in order to be able to use the definition of Symanzik polynomials with parameters
(Definition 2.24). Let us take some variables as in the statement of the proposition. Let g̃ be
a basis of Im(Sᵀ), h̃ be such that

H̃ =

 G̃ 0

0 Idl

 ,
S̃ ∈ Mn,s(A) be such that Sᵀ = G̃S̃

ᵀ and es and es+l be the standard bases of As and on
As+l respectively. First, notice that if K ∈ Mq(A) is the only matrix such that G̃ = GK,
then

H̃ = H

 K 0

0 Idl

 ,
thus,
(9) deth(H̃)k = detg(G̃)k.
Next,

detg̃(S
ᵀ) = det(S̃ᵀ)

induces that
(10) Kirk(S, g̃;x) = Kirk(S̃, es;x).
In the same way, as

(S ? v1 ? . . . ? vl)
ᵀ = H̃(S̃ ? v1 ? . . . ? vl)

ᵀ
,

we have
(11) Kirk(S ? v1 ? . . . ? vl, h̃;x) = Kirk(S̃ ? v1 ? . . . ? vl, es+l;x).

Yet, es is a basis of Im(S̃ᵀ); indeed, it suffices to show that elements of es are in Im(S̃ᵀ) but,
if es1 and g̃s1 denote the first elements of es and g̃s respectively, as g̃ is in Im(Sᵀ), there exists
w1 ∈Mq,1(A) such that Sᵀw1 = g̃s1, and thus G̃S̃ᵀw1 = g̃s1. We conclude, using the fact that
columns of G̃ are free, that S̃ᵀw1 = es1. The fact that es is a basis of Im(S̃ᵀ) implies that

Im(S̃ᵀ) = Im(S̃ᵀ) = As.

If f̃ is a basis of Im(Rᵀ), using that es is a basis of Im(S̃ᵀ), we can use the duality (Theorem
2.15):

Kirk(S̃, es;x) = ak Symk(R, f̃ ;x)
for some a ∈ A∗. Let S̃a−1 be the matrix S̃ where we multiply the first column by a−1. Thus,
we have
(12) Kirk(S̃a−1 , es;x) = Symk(R, f̃ ;x),
and
(13) S̃a−1 is a normal kernel matrix of R with basis f̃ .

We now have all the elements to make final computations:
Kirk(S, g;x) = detg(G̃)k Kirk(S, g̃;x) (Lemma 2.12)

= detg(G̃)k Kirk(S̃, es;x) (10)
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= detg(G̃)kak Kirk(S̃a−1 , es;x)

= detg(G̃)k Symk(R, f̃ ;x) (12)

= detg(G̃)k

detf (F̃ )k
Symk(R, f ;x), (Lemma 2.12)

and

Kirk(S ? v1 ? · · · ? vl, h;x) = deth(H̃)k Kirk(S ? v1 ? · · · ? vl, h̃;x) (Lemma 2.12)

= detg(G̃)k Kirk(S ? v1 ? · · · ? vl, h̃;x) (9)

= detg(G̃)k Kirk(S̃ ? v1 ? · · · ? vl, es+l;x) (11)

= detg(G̃)kak Kirk(S̃a−1 ? v1 ? · · · ? vl, es+l;x)

= detg(G̃)k

detf (F̃ )k
Symk(R, f, u1, . . . , ul;x). ((13), Definition 2.24)

Now we can conclude that

(14) Kirk(S ? v1 ? · · · ? vl, h;x)
Kirk(S, g;x) = Symk(R, f, u1, . . . , ul;x)

Symk(R, f ;x)

and, as one can choose the same S (and the same uis, vis and g) for two different matrices
R and R′ verifying Im(R) = Im(R′), and since the left hand-side member of (14) does not
depend on R, the ratio only depends on Im(R). �

Definition 2.28. Let l be a nonnegative integer and u1, . . . , ul be elements of Im(Rᵀ). The
(normalized) Symanzik rational fraction of order k of R with parameters u1, . . . , ul denoted
by S̃ymk(R, u1, . . . , ul;x) is defined as

S̃ymk(R, u1, . . . , ul;x) := Symk(R, f, u1, . . . , ul;x)
Symk(R, f ;x)

where f is any family of size r of Ap overgenerating Im(Rᵀ).

We end this section with this question:

Question 2.29. In the same way, is there an interesting way of adding parameters to Kirch-
hoff polynomials?

2.4. The matroids case. We begin with recalling basic definitions and properties about
matroids without any proof. We refer readers wanting more information to [8], [13].

A matroid can have many equivalent definitions. We will mainly use the following one.

Definition 2.30. A matroid M is a pair which consists of a ground set E, which is any finite
set, and a set of independent sets I, which is a subset of P(E). We write M = (E, I). A
matroid has to verify three axioms:

(1) ∅ ∈ I,
(2) (hereditary property) I is stable by inclusion (J ⊂ I ∈ I ⇒ J ∈ I),
(3) (augmentation property) if I, J ∈ I and if |J | < |I|, then there exists i ∈ I \ J such

that J + i ∈ I.
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In this paper, the ground set will always be a set of integers.

Matroids encode all the combinatorial information about independency of subfamilies of a
family of vectors in a linear space. More precisely, if l is a nonnegative integer and (u1, . . . , ul)
is a family of vectors in some linear space, the matroid representing the family u is Mu =
(Eu = [1 . .n], Iu) where, for all nonnegative integerm, I = {i1, . . . , im}, with ij 6= ij′ if j 6= j′,
is in Iu if ui1 , . . . , uim are independent. Similarly, if S is a matrix with l rows, the matroid
MS(ES , IS) representing the matrix S is equal to the matroid Mu where u = (u1, . . . , ul)
is such that Sᵀ = u1 ? . . . ? ul. However, some matroids are not representable (i.e., do not
represent any family of vectors) in any linear space.

Let M = (E, I) be a matroid. If I ⊂ E, we call the rank of I

rk(I) := max
J∈P(I)∩I

|J |.

We call the closure of I the set

cl(I) := {i ∈ E
∣∣ rk(I + i) = rk(I)} ⊂ E.

Notice that if I ∈ I, then rk(I) = |I|. In a linear vector space, the closure operator corre-
sponds to take the generated vector space. The closure operator has some properties enumer-
ated below.

Claim 2.31. If I, J ∈ I, then
(1) if I ∈ I, then cl(I) := I ∪ {i ∈ E \ I|(I + i) 6∈ I},
(2) I ⊂ cl(I),
(3) I ⊂ J ⇒ cl(I) ⊂ cl(J),
(4) cl(I) = cl(cl(I)),
(5) rk(cl(I)) = rk(I).

The rank of a matroid is rk(M) := rk(E). A basis is an independent set maximal for the
inclusion. The set of all bases is denoted by B(M). If l is a nonnegative integer, the set of all
independents of rank l is denoted by Il. Some properties of bases are enumerated below.

Claim 2.32. Let M = (E, I) be a matroid. Its bases have the following properties:
(1) I is a basis if and only if I ∈ I and cl(I) = E,
(2) I is a basis if and only if I ∈ I and rk(I) = rk(M),
(3) M is entirely characterized by its bases and E,
(4) (exchange property) if I1, I2 are two different bases, then there exist i ∈ I1 \ I2 and

j ∈ I2 \ I1 such that I1 − i+ j is a basis.

A matroid M′ = (E′, I ′) is a submatroid of M if E′ ⊂ E and I ′ ⊂ I. Moreover, if E′ = E,
thenM′ is a spanning submatroid of M. Finally, the dual of the matroid M is the only matroid
M̂ = (E, Î) where

B(M̂) = {Ic
∣∣I ∈ B(M)}.

An example of duality for matroids in this article is given by Remark 2.23 which directly
leads to following claim.

Claim 2.33. If, for some positive integer q, S ∈ Mn,q(A) is a matrix of rank s verifying
R

ᵀ
S = 0, then MS = M̂R.
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Proof. Remark 2.23 states that, for any basis g of Im(Sᵀ), with the notation of the claim,
if I ⊂ [1 . .n] has size r, then detf (Rᵀ

I ) 6= 0 if and only if detg(S
ᵀ

Ic) 6= 0. But detf (Rᵀ

I ) 6= 0
if and only if rk(RI) = rk(R) = r, i.e., if I ∈ B(MR). Similarly, detg(S

ᵀ

Ic) 6= 0 if and only
if Ic ∈ B(MS). Thus, I ∈ B(MR) if and only if Ic ∈ B(MS). That matches the definition:
MS = M̂R. �

Before continuing, we want to talk about an important type of matroid: graphic matroids.

Example 2.34. Matroids are powerful tools because they generalize at the same time inde-
pendency in linear spaces, as we have already seen, and some properties of graphs, as we will
see now.

Let G be a graph with the vertex set V and edge set E. One can associate to G a matroidMG
with ground set E and independent sets I such that, for all subset I ⊂ E , I is independent
if and only if the spanning subgraph of G with the edge set I does not contain cycle.

Some basic properties of MG are:
• bases of MG correspond to maximal forests of G (to trees if G is connected),
• MG represents the incidence matrix of G (see Example 2.9 for the definition of the
incidence matrix),
• circuits, i.e., minimal dependent sets, of MG correspond to cycles of G.

We have seen that matroids encode bases, which are maximal independent sets, but Ex-
amples 2.8 and 2.11, about the case k = 0, show that Kirchhoff and Symanzik polynomials
encode these too. That is why it should be possible to define these polynomials for a matroid.
Indeed, here is such a definition for the order 0.

Definition 2.35. Let m be a positive integer and M = (E = [1 . .m], I) be a matroid. The
Kirchhoff polynomial (of order 0) of the matroid M with variables x1, . . . , xn is defined by

Kir0(M;x) =
∑

I∈B(M)
xI .

And the Symanzik polynomial (of order 0) of the matroid M with variables x1, . . . , xn is
defined by

Sym0(M;x) =
∑

I∈B(M̂)

xI .

These definitions are natural because of the following claim.

Claim 2.36. Let MR be the matroid which R is a representation of. Then
Kir0(R;x) = Kir0(MR;x),

Sym0(R;x) = Sym0(MR;x).

Proof. Clearly, rk(MR) = rk(R) = r, and I ∈ B(MR) if and only if |I| = r = rk(RI). Using
Example 2.8 we have

Kir0(R;x) =
∑

I⊂[1 . .n]
|I|=rk(I)=r

xI .

Looking at the definition of Kir0(MR;x), we exactly have
Kir0(R;x) = Kir0(MR;x).
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Using Example 2.11, Symanzik polynomials go the same way because I ∈ B(M̂R) if and
only if Ic ∈ B(MR);, thus

Sym0(MR;x) =
∑

I∈B(M̂)

xI .

�

Remark 2.37. Let q be an arbitrary positive integer and S ∈ Mn,q(A) be a matrix of rank
s such that Rᵀ

S = 0. Then, Theorem 2.15 gives

Sym0(R;x) = Kir0(S;x).

By Claim 2.36 and Definition 2.35, this is equivalent to

M̂R = MS .

This was already stated in Claim 2.33. Thus, matroid duality naturally appears when we
applied duality theorem to matroids.

Now, one can wonder what corresponds to Symanzik polynomials with parameters for
matroids. Adding one parameter decrease the degree of the polynomial by one. Thus, it is
natural to think that adding a parameter will lead to take a submatroid of rank decreased by
one. We will now answer the following question.

What is the set of matroidsM of ground set ER such that there exists a nonzero u ∈ Im(Rᵀ)
verifying

Sym0(R, u;x) = Sym0(M;x)?

Proposition 2.38. A matroid M of ground set ER verifies that there exists a nonzero u ∈
Im(Rᵀ) such that

Sym0(R, u;x) = Sym0(M;x)
if and only if:

• M is a spanning submatroid of MR of rank r − 1 and

•
( ⋂
I∈(IR)r−1\B(M)

ker(Rᵀ) +HI
)
\
( ⋃
I∈B(M)

ker(Rᵀ) +HI
)
6= ∅

where, for I ⊂ [1 . .n], HI is the A-submodule of An generated by the family (ei)i∈I
with (e1, . . . , en) the standard basis.

Proof. We will need the following claim in the proof:

(15) if I ⊂ [1 . .n], columns of SI are free iff Ic ∈ IR.

Indeed this is true because a subset I ⊂ [1 . .n] verifies that columns of SI are free iff there
exists J ⊂ I such that |J | = rk(SJ) = rk(SI) = s, iff there exists J ∈ B(MS) such that J ⊂ I,
iff Ic ∈ IR (MS = M̂R by Claim 2.33).

Similarly, one can prove that

(16) if I ⊂ [1 . .n], columns of (S ? v)I are free iff Ic ∈ ÎS?v.

Let M = (ER, I ′) be a matroid and u be a nonzero element in Im(Rᵀ) such that

(17) Sym0(R, u;x) = Sym0(M;x).
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Let S ∈ Mn,s(A) be a matrix of rank s such that Rᵀ
S = 0 and v ∈ An such that Rv = u.

Equation (17) is equivalent to

Kir0(S ? v;x) = Kir0(M̂;x),
i.e., to
(18) M̂S?v = M.

In order to prove the proposition, we have to characterize M̂S?v for each possible v.
As u 6= 0, v 6∈ Im(S) and so rk(S ? v) = s+ 1. Then

(19) rk(M̂S?v) = r − 1.

Now we have to characterize bases of M̂S?v. By Equations (16) and (19), I ⊂ [1 . .n] is in
B(M̂S?v) iff |I| = r − 1 and columns of (S ? v)Ic are free, i.e., iff

• |I| = r − 1, and
• columns of SIc are free, and
• vIc is independent of columns of SIc , i.e., vIc 6∈ Im(SIc).

By (15), the second point is equivalent to I ∈ IR (thus, the first two points give us the first
point of the proposition). Now we focus on the third point. Let πIc be the projection along
HI onto HIc (it is well-defined). The second point is equivalent to πIc(v) 6∈ πIc(Im(S)), i.e.,
to v 6∈ Im(S) +HI . Moreover, Im(S) = ker(Rᵀ). To summarize,

(20) I ∈ B(M̂S?v) iff
{
I ∈ (IR)r−1 and
v 6∈ ker(Rᵀ) +HI .

Let M = (E, I ′) be a matroid. Then
∃u ∈ Im(Rᵀ), u 6= 0 and Sym0(R, u;x) = Sym0(M;x)

(18)
⇐⇒ ∃v ∈ Ap \ ker(Rᵀ), M̂S?v = M,

2.32
⇐⇒ ∃v ∈ Ap \ ker(Rᵀ),B(M̂S?v) = B(M),
(20)
⇐⇒ ∃v ∈ Ap \ ker(Rᵀ), ∀I ⊂ [1 . .n], I ∈ B(M) iff

{
I ∈ (IR)r−1,
v 6∈ ker(Rᵀ) +HI ,

⇐⇒ ∃v ∈ Ap \ ker(Rᵀ),
{
∀I ∈ B(M), I ∈ (IR)r−1 and v 6∈ ker(Rᵀ) +HI ,
∀I 6∈ B(M), I 6∈ (IR)r−1 or v ∈ ker(Rᵀ) +HI ,

⇐⇒ ∃v ∈ Ap \ ker(Rᵀ),


B(M) ⊂ (IR)r−1,
∀I ∈ B(M), v 6∈ ker(Rᵀ) +HI ,
∀I ∈ (IR)r−1 \ B(M), v ∈ ker(Rᵀ) +HI ,

⇐⇒ ∃v ∈ Ap \ ker(Rᵀ),



B(M) ⊂ (IR)r−1,

v 6∈
⋃

I∈B(M)
ker(Rᵀ) +HI ,

v ∈
⋂

I∈(IR)r−1\B(M)
ker(Rᵀ) +HI ,

⇐⇒


M is a spanning submatroid of MR of rank r − 1,( ⋂
I∈(IR)r−1\B(M)

ker(Rᵀ) +HI
)
\
( ⋃
I∈B(M)

ker(Rᵀ) +HI
)
6= ∅.
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x

y

z

ker(R
ᵀ )

v = (1, 0, 0)

v = (0, 0, 1)
v = (1, 0, 1)

Figure 1. Illustration of the Example 2.39.

That concludes the proof. �

In general, not all spanning submatroids of rank r − 1 of MR can verify the equation in
the previous proposition, i.e., not all are of the form M

Ŝ?v.

Example 2.39. Set A = R, n = 3, p = 2, R =
( 1 1

1 1
1 0

)
. Then r = 2, s = 1, ker(Rᵀ) is generated

by (1,−1, 0) ∈ R3 and (IR)r−1 = {{1}, {2}, {3}}. Now, v ∈ ker(Rᵀ) +H{1} is equivalent to
v ∈ ker(Rᵀ) +H{2} (see Figure 1, both H{1} and H{2} are one of the blue lines and the sums
are the only blue hyperplane). Thus, only submatroids containing both bases {1} and {2}
or none of them can be obtain. In fact, the three such matroids with nonzero rank can be
obtained:

v B(M
Ŝ?v)

(1, 0, 0) {{3}}
(0, 0, 1) {{1}, {2}}
(1, 0, 1) {{1}, {2}, {3}}

However, the maximal submatroid of rank r− 1, whose bases are (IR) r−1, is always of the
form M̂S+v.

Corollary 2.40. If |A| is infinite, then there exists u ∈ Ap such that
Sym0(R, u;x) = Sym0(M r−1

R ;x),

where M r−1
R = (ER, I r−1

R ) is the matroid of bases (IR)r−1.

Proof. By Proposition 2.38, we only have to prove that⋃
I∈(IR)r−1

ker(Rᵀ) +HI 6= An.

As
rk(ker(Rᵀ) +HI) 6 rk(ker(Rᵀ)) + rk(HI) = s+ r − 1 < n,
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this is a corollary of the following more general result.

Lemma 2.41. If A is infinite, then, for any positive integer l, a finite union of affine A-
submodules of positive corank in Al is never equal to the entire space Al where we call an
affine A-submodule any subset of the form

H+ u := {h+ u
∣∣h ∈ H}

where H is any A-submodule and u is any element of A and the corank of H+u is l−rk(H+u)
where rk(H+ u) := rk(H).

There are some clashes of notations: in the following proof, H+u will never denote H∪{u},
and rk(H+ u) will denote the affine rank.

Proof. This lemma can easily be proven by induction on l.
If l = 1, Al is infinite but an affine A-submodule of positive corank is just a point, thus the

lemma is true.
If l > 1, suppose that the lemma is true at order l. Let U1, . . . , Um bym affine A-submodules

of positive coranks in Al+1. Let H be any linear A-submodule of Al+1 of corank 1 and let
u be an element which is not in H. Necessarily, if there exist i ∈ [1 . .m] and j0 ∈ Z such
that rk((H + j0u) ∩ Ui) = l (where we take the affine rank), then (H + ju) ∩ Ui = ∅ for any
j ∈ (Z \ {j0}). Thus, there exists j0 ∈ Z such that rk((H + j0u) ∩ Ui) < l for all i ∈ [1 . .m].
By induction,

m⋃
i=1

(H+ j0u) ∩ Ui 6= H+ j0u.

Thus,

H+ j0 6⊂
m⋃
i=1

Ui,

so the lemma is true for the order l + 1.
We can conclude the proof of the lemma by induction. �

By the lemma, ⋃
I∈(IR)r−1

ker(Rᵀ) +HI 6= An,

thus, using Proposition 2.38, the corollary is true. �

To prove the corollary, we strongly use the fact that A is infinite. Indeed, the corollary is
no more true is A is not infinite, i.e., when A is a finite field.

Example 2.42. Set A = Z/2Z, n = 3, R =
( 1 1

1 0
0 1

)
. Then r = 2, s = 1, S =

( 1
1
1

)
and

(IR)r−1 = {{1}, {2}, {3}}. Whatever v ∈ A3 one chooses, S ? v will have two identical rows,
thus B(M̂S?v) can’t be equal to (IR)r−1. One can see it in another way, using Proposition
2.38:

3⋃
i=1

ker(Rᵀ) +H{i} = A3.

Remark 2.43. A rough counting shows that if |A| >
( n
r−1
)
, then the corollary is still true.
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Proof. If
( n
r−1
)

= 1, then r − 1 = 0 and the corollary is obvious. Else, if |A| >
( n
r−1
)
, then,

as a hyperplane (i.e., a maximal proper submodule) of An has cardinality |A|n−1 and two
hyperplanes are never disjoint,

|
⋃

I∈(IR)r−1

ker(Rᵀ) +HI | < |(IR)r−1| · |A|n−1,

and

|(IR)r−1| · |A|n−1 6

(
n

r − 1

)
|A|n−1,

6 |An|.
Thus, ⋃

I∈(IR)r−1

ker(Rᵀ) +HI 6= An

and the corollary is true in this case. �

We end this section with the question: “under which conditions is Corollary 2.40 true for
a finite A?” It can be reformulated in the following terms.

Question 2.44. What are the finite fields A, the positive integers n and r and the subspaces
V of An of rank n− r such that ⋃

I⊂[1 . .n]
|I|=r−1

V +HI 6= An ?

Here HI denotes the subspace generated by the elements of the standard basis whose indices
are in I.

3. Symanzik polynomials on simplicial complexes

Every results in this section can be extended to CW-complexes.
Before defining Symanzik polynomials, we will generalize the notion of forests on graph

theory to the case of simplicial complexes. Generalized forests will reveal interesting properties
of those polynomials.

3.1. Simplicial complexes and forests. Let V be a finite set of vertices. An abstract
simplicial complex on V is a nonempty set ∆ of subsets of V called faces such that ∆ is
stable by inclusion: if δ is a face and if γ ⊂ δ, then γ is also a face. A simplicial complex
Γ is a subcomplex of ∆ if Γ ⊂ ∆. If δ is a face, its dimension is dim(δ) := |δ| − 1. Notice
that ∆ has always a unique face of dimension −1: the empty set. The dimension of ∆ is the
maximal dimension of its faces. We call it d. The d-dimensional faces are called facets. If l is
an integer, l > −1, then ∆l is the set of faces of ∆ of dimension l. The l-skeleton ∆(l) of ∆
is the subcomplex of all faces of dimension at most l of ∆:

∆(l) :=
l⋃

i=−1
∆i.

In this article, we will suppose that a complex ∆ is always endowed with an enumeration
on each set of faces ∆l, l ∈ [−1 . . d], by numbers from 1 to |∆l|.
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Let ∂∆ be the d-th boundary operator of the augmented simplicial chain complex asso-
ciated to ∆ relative to A for the standard orientation of the faces associated to the chosen
enumeration of vertices: endowing V with an order < corresponding to the enumeration on
∆0, one has

(21) ∂∆ : A〈∆d〉 −→ A〈∆d−1〉,
{i0, . . . , id} with i0 < · · · < id 7−→

∑d
j=0(−1)j{i0, . . . , ij−1, ij+1, . . . , id}.

If δi denotes the i-th facet for the chosen enumeration, then (δ1, . . . , δ|∆d|) is a basis of A〈∆d〉.
We obtain in the same way a basis of A〈∆d−1〉. Now we can represent ∂∆ by a matrix in
M|∆d−1|,|∆d|(A) which we will call the d-th incidence matrix of ∆. The kernel of ∂∆ is denoted
by Zd(∆) and its elements are called d-cycles. The image of ∂∆ is denoted by Bd−1(∆) and
its elements are called (d− 1)-boundaries.

Example 3.1. Figure 2 is an example of a 2-dimensional simplicial complex ∆ called the
bipyramide. The enumeration of the vertices is indicated, as well as the standard orientation
of facets and edges for this enumeration: arrows of the figure are such that the border of
an edge is its head minus its tail and the border of a facet is equal to the sum of its edges
with a sign −1 if the edge is not oriented with respect to the indicated direction on the facet.
Edges are enumerated in the list on the left of the matrix, from top to bottom, and facets
are enumerated in the list above the matrix, from left to right. Then, this matrix is the d-th
incidence matrix of ∆. Moreover, one can see on the bipyramide:

• a 1-boundary in red, with the orientation indicated by arrows on the end of edges
(i.e., if the orientation indicated for a face is the opposite of the standard orientation,
then the face is counted negatively):

{2, 3} − {2, 5}+ {4, 5}+ {3, 4} = ∂∆
(
{2, 3, 5}+ {3, 4, 5}

)
,

• a 2-cycle in blue, with the non-indicated outer orientation (i.e., for each facet of the
cycle, the outer orientation is the counterclockwise direction if one looks at the facet
from the exterior of the cycle):

∂∆
(
{1, 2, 3}+ {1, 3, 4} − {1, 2, 4} − {2, 3, 4}

)
= 0.

For the rest of this section, we fix V a finite set, ∆ an abstract simplicial complex on V ,
d := dim(∆), n := |∆d|, p := |∆d−1|. We fix R ∈ Mn,p(A) being the transpose of the d-th
incidence matrix of ∆. Let M = (E, I) := MR be the matroid representing R. As in the
previous section, we set r the rank of R and s := n− r.

Now we define (simplicial) κ-forests of ∆ following the idea of article [4]. This definition
is one possibility to generalize the notion of forests in graphs to higher dimension. Indeed,
in dimension one, our definition will coincide with the usual one if one sees graphs as 1-
dimensional simplicial complexes.

Definition 3.2. Let Γ ⊂ ∆ be a simplicial subcomplex of ∆ such that Γ(d−1) = ∆(d−1). Let
κ be a nonnegative integer. Then Γ is a κ-forest of the simplicial complex ∆ if it verifies the
following three properties.

(1) acyclicity: Γ has no nonzero d-cycle,
(2) rk(∂∆)− rk(∂Γ) = κ,
(3) |Γd| = |∆d| − rk

(
Zd(∆)

)
− κ.
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{1,2,3}
→
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,4}
→

{1
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,4}
→

{2
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,4}
→

{2
,3
,5}
→

{2
,4
,5}
→

{3
,4
,5}
→

{1, 2} →
{1, 3} →
{1, 4} →
{2, 3} →
{2, 4} →
{2, 5} →
{3, 4} →
{3, 5} →
{4, 5} →



1 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 −1 −1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 −1 0 1 0
0 0 0 0 −1 −1 0
0 0 1 1 0 0 1
0 0 0 0 1 0 −1
0 0 0 0 0 1 1



Figure 2. A bipyramide and its d-th incidence matrix.

Example 3.3. Figure 3 is an example of a 0-forest, called Γ, on the bipyramide, called ∆
(using the same enumeration on faces of ∆ as in Example 3.1). Γ is obtained from ∆ by
removing the two crossed facets. To check that it is a 0-forest, look at the d-th incidence
matrix DΓ of ∂Γ which is on the right (columns of the d-th incidence matrix of ∆ which are
not anymore in DΓ are still indicated in bright gray). Clearly Γ(1) = ∆(1). Moreover, the
three conditions are verified:

(1) the kernel of DΓ is trivial. Thus, Γ is acyclic.
(2) Im(DΓ) = Im(D∆). Thus, rk(∂∆)− rk(∂Γ) = 0.
(3) |Γ2| = 5, |∆2| = 7 and rk Z2(∆) = rk ker(∂∆) = 2. Thus,

|Γ2| = |∆2| − rk Z2(∆)− 0.
Finally, Γ is a 0-forest of ∆.

We will see easier ways to check if a subcomplex is or is not a κ-forest in this section. But
before, let us motivate the name of forest.

Example 3.4. If ∆ is a 1-dimensional simplicial complex, then it can be seen as a simple
graph G with set of vertices V and set of edges ∆1. Put the same orientation of edges and
same numerations of edges and of vertices on ∆ and on G (therefore edges in G are oriented
from the vertex of lower number to the other one). Then, the 1st incidence matrix of ∆ is
exactly the incidence matrix of G (which has been defined in Example 2.9). To an oriented
cycle (or circuit) of G one can associate the oriented sum of the edges in this cycle. This
gives an element of Z1(∆). Moreover, if g is the genus of G, which is equal to the number of
edges minus the number of vertices plus the number of connected components, then one can
find a g-tuple of oriented cycles of G such that the associated elements in Z1(∆) form a basis
(see Figure 5 further: (c1, c2, c3) is a possible choice). In particular, g = rk(Z1(∆)). If v, v′
are two vertices, {v} − {v′} is a 0-boundary of ∆ if and only if {v} and {v′} are in the same
connected component of G (indeed, it is the boundary of any oriented path going from v′ to
v). More generally, a 0-boundary of ∆ is any linear combination of such a difference of two
vertices.
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0 0 1 1 0 0 1
0 0 0 0 1 0 −1
0 0 0 0 0 1 1



Figure 3. A 0-forest of the bipyramide.

A 0-forest Γ of ∆ can be associated to a subgraph H of G and verifies:
(1) Γ is acyclic, i.e., H is acyclic,
(2) rk(Γ) = rk(∆), i.e., two vertices which are in a same connected component of G are

in the same connected component of H,
(3) |Γ1| = |∆1| − rk(Z1). We have seen that rk(Z1) is equal to the number of edges minus

the number vertices plus the number of connected components. Thus, last formula
said that the number of edges of Γ is equal to its number of vertices minus its number
of connected components.

In the case G is connected, we recognize the conditions for H to be a subtree of G. In
the general case, these three conditions characterize maximal forests on G, i.e., a union of a
spanning subtree for each connected component of G.

As we will see later, removing κ more edges will give a κ-forest. If G is connected, a κ-forest
is a subforest of G with κ+ 1 connected components (thus, (κ+ 1)-forest should be a better
name but the definition of κ-forest would be less natural).

It is well-known that, in graphs, only two out of the three conditions enumerated in previous
example are needed to be a κ-forest. This is still true in simplicial complexes.

Proposition 3.5. A subcomplex Γ of ∆ such that Γ(d−1) = ∆(d−1) is a κ-forest for a non-
negative integer κ if and only if it verifies two out of the three conditions of the Definition
3.2.

Proof. By the rank-nullity theorem, acyclicity (i.e., triviality of ker(∂Γ)) is equivalent to
rk(∂Γ) = |Γd|. The same theorem implies that rk(Zd(∆)) = |∆d| − rk(∂∆). Thus, the three
conditions can be rewritten as:

(1) rk(∂Γ) = |Γd|,
(2) rk(∂∆)− rk(∂Γ) = κ,
(3) |Γd| = |∆d| − (|∆d| − rk(∂∆))− κ.

Now, the proposition is clear. �
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If Γ is a subcomplex of ∆, Fac(Γ) will be the subset of [1 . .n] consisting of the numbers
of the facets of ∆ present in Γ. Reciprocally, if I ⊂ [1 . .n], Sub∆(I) will be the simplical
subcomplex Γ of ∆ verifying Γ(d−1) = ∆(d−1) and Fac(Γ) = I. For any nonnegative integer
κ, we set

Fκ(∆) :=
{
Fac(Γ)

∣∣Γ is a κ-forest of ∆
}
.

With these notations, it can be useful to see κ-forests in the following way. We recall that,
if l ∈ [1 . . r], (IR)l is the set of independents of rank l in MR.

Proposition 3.6. Let κ be a nonnegative integer. Then
Fκ(∆) = (IR)r−κ.

Proof. Let Γ be a subcomplex of ∆ with the same (d− 1)-skeleton. The first condition for Γ
to be a κ-forest, for some nonnegative κ, is that ker(∂Γ) is trivial, i.e., that rows of R whose
index is in Fac(Γ) form a free family, that is
(22) Fac(Γ) ∈ IR.
The second condition is rk(∂Γ) = rk(∂∆)− κ, i.e., rows of R whose index is in Fac(Γ) form a
family of rank r − κ. In other words, seeing Fac(Γ) as a subset of ER,
(23) rk(Fac(Γ)) = r − κ.
Finally, as the third condition is unnecessary by Proposition 3.5, Equations (22) and (23)
imply the claim. �

Before concluding this subsection, we want to deal with a practical way of finding κ-forests.
First we begin with κ = 0.

If one remove a facet δ of ∆, obtaining some subcomplex Γ, two cases can happen.
• Either ∂∆(δ) is in Bd−1(Γ), then Bd−1(Γ) = Bd−1(∆). Using the rank-nullity theorem,
as |Γd| = |∆d| − 1, we deduce

rk(Zd(Γ)) = rk(Zd(∆))− 1.
• Or, ∂∆(δ) 6∈ Bd−1(Γ). Thus, we have

rk(Bd−1(Γ)) < rk(Bd−1(∆)).
Now suppose that the second case happens. The above strict inegality will clearly remained
true after removing other facets of Γ. Thus, one cannot obtain anymore 0-forest of ∆ taking
a subcomplex of Γ because of the second condition in the definition of forests (the boundary
of a 0-forest has to be of rank r).

But suppose that one makes rk(Zd(∆)) times the choice of facets of ∆ such that in each
step the first case happens (i.e., that each time we remove a facet which still is in a cycle).
Thus, we finally obtain a subcomplex Γ′ of ∆ such that

rk(∂Γ′) = rk(∂∆)
and

|Γ′d| = |∆′d| − rk(Zd(δ)).
Therefore, in this way we obtain a 0-forest Γ′ of ∆. Now, by Proposition 3.6, removing κ
more facets will lead to a κ-forest.

To summarize, one can, and necessarily will, obtain a 0-forest removing facets which are
in a cycle until it is no more possible. In fact, what we truly do is choosing a basis of M̂R

consisting of the removed facets. Then one can remove any κ more facets to obtain κ-forests.
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Now we have enough results on forests to understand the combinatorics behind Kirchhoff
and Symanzik polynomials on simplicial complexes.

3.2. Kirchhoff and Symanzik polynomials for simplicial complexes.
Definition 3.7. The Kirchhoff polynomial class of order k of ∆ is an element of A[x]

/
A∗k

denoted by Kirk(∆;x) which is defined as
Kirk(∆;x) := Kirk(R, f ;x) (mod A∗k),

where f is any basis of Im(Rᵀ).
Remark 3.8. In this remark, we will see what happens if one chooses another enumeration
or another orientation on the faces of ∆. Another choice of the enumeration of facets of ∆
and of their orientation induces a permutation of rows of R or a change in their sign. Thus,
that can change the order of variables and their sign.

Moreover, one has to choose the enumeration on (d− 1)-dimensional faces of ∆ and their
orientation. But changing it will only change the sign of Kirk(R, f ;x), which will disappear
modulo A∗k.

Finally, changing the basis f will only multiply Kirk(R, f ;x) by an element of A∗k (see
Lemma 2.12).
Theorem 3.9 (Kirchhoff’s theorem for simplicial complexes). If A = Z and k is a nonnegative
even integer, then A∗k = {1} and

Kirk(∆;x) =
∑

Γ 0-forest of ∆
|Hd−1(Γ)

/
Hd−1(∆)|kxFac(Γ),

where Hd−1(∆), resp. Hd−1(Γ), are the (d − 1)-th reduced homology group of ∆, resp. of Γ:
in this case

Hd−1(Γ)
/
Hd−1(∆) ' Bd−1(∆)

/
Bd−1(Γ).

Proof. Let f be a basis of Im(Rᵀ). We recall the Definition 2.4 about Kirchhoff polynomials:

Kirk(R, f ;x) :=
∑

I⊂[1 . .n]
|I|=r

detf (Rᵀ

I )kxI .

As the subsets I ⊂ [1 . .n] of size r such that detf (Rᵀ

I ) 6= 0 are exactly those which are in
B(MR) and as Proposition 3.6 states that F0(∆) = B(MR), we get the following equation.∑

I∈F0(∆)
detf (Rᵀ

I )kxI =
∑

I⊂[1 . .n]
|I|=r

detf (Rᵀ

I )kxI .

It remains to show that, if I ∈ F0(∆), then
(24) | detf (Rᵀ

I )| = |Bd−1(∆)
/

Bd−1(Sub∆(I))|.
As columns of Rᵀ

I are free and f overgenerates Im(Rᵀ

I ), one can use Lemma 2.3 to obtain
detf (Rᵀ

I ) = | Im(F )
/

Im(Rᵀ

I )|.
But Im(F ) = Im(Rᵀ) and R

ᵀ

I is the d-th incidence matrix of Sub∆(I) with respect to the
same basis of Ap as Rᵀ , the d-th incidence matrix of ∆. Thus,

Im(Rᵀ)
/

Im(Rᵀ

I ) ' Bd−1(∆)
/

Bd−1(Sub∆(I)),
which concludes the proof. �
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Figure 4. Decomposition of RP2.

Remark 3.10. The statement of the previous theorem could appear difficult to use for
practical computations. The same theorem can be found in the article [4] under a form closer
to the usual theorem: for any nonnegative even integer k (actually in the article k = 2),

Kirk(R̃, e;x) = |Tor(Hd−1(∆))|k
∑

Γ 0-forest of ∆
|Hd−1(Γ)

/
Hd−1(∆)|kxFac(Γ),

where R̃ = (Rᵀ)ᵀJ for any J ⊂ [1 . .n] of size r such that rk(Rᵀ

J) = r, e is the standard basis
of Zr and Tor(Hd−1(∆)) denotes the torsion part of Hd−1(∆).

Example 3.11. The previous theorem cannot be used, a priori, in order to count the number
of 0-forests. Indeed, the coefficients are not all equal to 1, unlike the case of a graph (d = 1)
we have already seen (Example 2.9). Of course, if we get the entire polynomial, then it
suffices to count the number of coefficients. Moreover, if k = 0, then all coefficients are equal
to 1 but it is often easier to only compute Kirk(∆; 1, . . . , 1) using determinantal formulæ (see
Propositions 2.6 and 2.7) and such formulæ do not exist for k = 0. Knowing Kirk(∆; 1, . . . , 1)
for all even positive k would suffice to retrieve the number of 0-forests, but this method seems
hard to apply.

Nevertheless, not all simplicial complexes have coefficient different from 1. Let us make
the example of the real projective plane RP2 which is one such case.

In order to make computations easier, we will study the real projective plane as a ∆-
complex (or a CW-complex) and not as a simplicial one. But it is easy to find a simplicial
decomposition of the real projective plane and the results are the same. Let us take the
decomposition of Figure 4.

We have to take some basis of Im(Rᵀ), for example f = (
( 1

1
1

)
,
( 0

0
2

)
). Then R̃ =

(
−1 1
−1 0

)
verifies Rᵀ = FR̃

ᵀ . We have det(R̃) = −1. Now we can calculate the Symanzik polynomial
in Z for an even order k

Kirk(RP2;x1, x2) = x1x2.

Thus, RP2 is a 0-forest of itself.
However, one can notice that | Im(F )

/
Im(F )| = 2. Then the theorem of article [4] (Remark

3.10) would give the polynomial 2kx1x2. The difference comes from that we choose to take
a basis of Im(Rᵀ) instead of Im(Rᵀ) in order to make the formula of generalized Kirchhoff’s
Theorem 3.9 simpler.

If the reader is interested in an example where all the coefficients are not equal to 1, it
could look at Example 3.20.
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Figure 5. Divisors and rational functions.

To conclude this example, even if the Kirchhoff polynomials do not count directly the num-
ber of 0-forests, in the article [4] the authors explain that |Tor(Hd−1(∆))|2 Kir2(∆; 1, . . . , 1)
counts the number of 0-forests of ∆ taking into account a fitted orientation.

Now we focus only on Symanzik polynomials.

Definition 3.12. The Symanzik polynomial class of order k of ∆ is an element of A[x]
/
A∗k

denoted by Symk(∆;x) which is defined as
Symk(∆;x) := Symk(R, f ;x) (mod A∗k),

where f is any basis of Im(Rᵀ).

A direct corollary of Theorem 3.9 follows.

Corollary 3.13. If A = Z and k is a nonnegative even integer, then A∗k = {1} and

Symk(∆;x) =
∑

Γ 0-forest of ∆
|Hd−1(Γ)

/
Hd−1(∆)|kxFac(Γ)c ,

where Hd−1(∆), resp. Hd−1(Γ), is the (d− 1)-th reduced homology group of ∆, resp. of Γ: in
this case

Hd−1(Γ)
/
Hd−1(∆) ' Bd−1(∆)

/
Bd−1(Γ).

Next example is the first important example: Symanzik polynomials compute interesting
data about metric graphs.

Example 3.14. The Kirchhoff’s weighted theorem has a dual which could compute the
volume of an important torus associated to a metric graphs: the tropical Jacobian of that
graph. We will now summarize how this torus is defined and the Symanzik polynomials of
even order compute its volume. All the details can be found in [12], [11], or [3].

A metric graph can be seen as a disjoint union of a finite number of closed bounded real
intervals where some endpoints has been glued. There is a natural metric on it. Let n be a
positive integer and G be a connected metric graph composed of intervals I1, . . . , In. One can
associate to G a graph G, whose edges correspond to the intervals. If G is simple, then one can
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associate to G a 1-dimensional simplicial complex Γ whose facets are enumerated following
the enumeration of the intervals (if G was not simple, Γ would be a ∆-complex). Let g be the
genus of G (see Example 3.4). Then g is the rank of Z1(Γ). Let c1, . . . , cg be a bases of Z1(Γ)
(see an example on Figure 5 in green).

We set A = Z. A divisor of G is a finite abstract linear combination of points of G over Z.
For example, on Figure 5 in bold red there is the following linear combination

D0 = −2(v1) + 4(v2)− (v3)− 2(v4) + (v5).
The degree deg(D) of a divisor D is the sum of its coefficient. For example,

deg(D0) = −2 + 4− 1− 2 + 1 = 0.
The set of divisors of degree l, for some integer l, is denoted by Divl(G).

At each point p of G we associate the directions from this point denoted ~p1, . . . , ~pl where
l is the degree deg(p) of p; for example, in Figure 5 in blue, w1 has three directions whereas
w2 only has one. Most of the points (i.e., all but a finite number) have degree two. Note that
we use deg for both divisors and vertices with different meanings.

Let f be a continuous piecewise linear real-valued function on G, i.e., a real-valued function
such that, for each i ∈ [1 . .n], the induced function on the interval Ii is piecewise linear. The
function f is called rational if all the slopes are in Z. Such a function can be seen on the
Figure 5 where the slopes (in red, next to double arrows; double arrows follow the increasing
direction), the value of the function on some points (in cyan), and the length of the slopes
(in orange: l1, l2, l3) are indicated. One can naturally define the derivative of f on one point
p along one direction ~pi denoted by dpif(p), for i ∈ [1 . . deg(p)]. We define the following
function, which is zero for almost every p,

ordp(f) =
deg(p)∑
i=1

dpif(p).

For example, if f is the function of the figure,
ordv2(f) = 1 + 2 + 1 = −4.

A divisor is principal if it is of the form∑
p∈G

ordp(f) · (p),

for some rational function f on the metric graph. The set of principal divisors is denoted
by Prin(G) ⊂ Div0(G). For example, the red divisor of Figure 5 is the principal divisor
associated to the rational function of the figure. Two divisors are calledequivalent if their
difference is in Prin(G). The Picard group is by definition

Pic(G) := Div(G)
/

Prin(G),
and, if l is any integer, we define the set

Picl(G) := Divl(G)
/

Prin(G).
If ` is a path on G, i.e., a locally isometric function from a closed bounded real interval

to G, (red, blue and purple paths are some examples on Figure 6), its boundary ∂(`) is the
divisor (`+)− (`−) where `+ denoted the endpoint of ` and `− its beginning point. Figure 6
presents three paths with the same boundary: (v2) − (v2). We call multipath the Z-module
of finite abstract linear combination of paths over Z quotiented by concatenation; Path(G)
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Figure 6. Paths and bounds on metric graphs.
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Figure 7. Bijection between the set of break divisors and the tropical Jacobian.

will denote the Z-module of multipaths. The map ∂ can naturally be extended to Path(G).
We have the following claim. Any divisor of degree 0 has a nonempty preimage by ∂ and the
kernel of ∂ is generated by c1, . . . , cg where ci, i ∈ [1 . . g], is any path making one turn along
ci following its orientation. For example, in Figure 6, the red path has the same boundary
as the blue one and can be obtaines from the blue one making two more turns along c3.
Similarly, in term of multipaths, the violet path can be obtained from the blue one adding
one counter-turn along c1.

If ` is a path, one can define the intersection product of ` with a cycle ci, i ∈ [1 . . g], denoted
by 〈`, ci〉, to be the oriented length, in R, traveled by ` through ci. For example, in Figure 6,
the intersection product of the blue path with c3 is equal to −l1 and the intersection product
of the violet one with c3 is equal to l2− l1. The intersection product can be extended linearly
to Path(G)× Z(Γ). We define the map

φ : Path(G) −→ Rg,
L 7−→ (〈L, c1〉, . . . , 〈L, cg〉).
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Figure 8. A break divisor and the corresponding tree.

For example the violet dot in the right of Figure 7 represents the image φ(`2), `2 being the
violet path represented on the left of length 1.2. By the universal property of quotient we
can naturally define

φ̃ : Path(G)
/

ker(∂) −→ Jac(G),
where

Jac(G) := Rg
/
φ(ker(∂))

is (isometric to) the tropical Jacobian of G. As ker(∂) ' Z(Γ) and as φ(ker(∂)) is a Z-
submodule of rank g in Rg (black dots in the right of Figure 7 is this Z-module), Jac(G) is a
torus of dimension g.

Now fix a divisorD0 of degree g (in Figure 7, D0 = 2·(v)). For another divisorD ∈ Divg(G),
the preimage ∂−1(D−D0) is an element of Path(G)

/
ker(∂). Thus, one can define the Abel-

Jacobi map
µ : Divg(G) → Jac(G),

D 7→ φ̃(∂−1(D −D0)).
For example, in Figure 7, the red dots are equal to the image of ∂−1((v1) + (v2)) by φ.
Actually, the kernel of µ is exactly the set of divisors which are equivalent to D0. Thus, µ
can be factorized by

ψ : Picg(G) ∼−−→ Jac(G).
Now we want to calculate the volume of Jac(G). A generic break divisor is any divisor in

Divg(G) of the form (p1) + · · · + (pg) for different points pi ∈ G, i ∈ [1 . . g], which are all in
the interior of an edge such that G \ {p1, . . . , pg} is connected (or equivalently has no cycle).
On Figure 8, the red divisor is a generic break divisor. It is easy to see that a divisor is a
generic break divisor if and only if there is one point of the divisor in the interior of each
edge which is in the complement of some spanning subtree of G (see Figure 8: there are a
subtree of G in blue and a generic break divisor on its complementary in red). Thus, the set
of generic breaks divisors are naturally in bijection with the disjoint union

Υ := tT∈T (G) ×
e 6∈E(T )

◦
Ie,
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where T (G) is the set of spanning subtrees of G and if T is a subtree, then E(T ) denoted the
set of edges of T (if e is the i-th edge of G,

◦
Ie :=

◦
Ii is the interior of the interval associated

to e). Let Υ be the topological adherence of Υ. Elements of Υ are called break divisor. The
volume of Υ for the flat metric induced by the intersection pairing on Jac(G) is∑

J∈F0(Γ)

∏
i∈Jc
|Ii|,

where |Ie| is the length of the interval Ie and ei, i ∈ [1 . .n], denotes the i-th edge of G. But we
have seen in Example 2.14 that, if k is a positive even integer, as Γ corresponds to a graph,
A∗k = {1}, and so

Symk(Γ;x) =
∑

J∈F0(Γ)
xJ

c
.

Thus,
Vol(Υ) = Symk(Γ; |I1|, . . . , |In|).

The following result, from [12] and [3], will be assumed. Each equivalence class of Picg(G)
contains exactly one break divisor. Thus, there exist a bijection Φ from Υ to Jac(G). In fact,
the images of×e 6∈E(T ) Ie, for T ∈ T , form a quasi-partition of Jac(G) into parallelotopes. Let
us make an example.

On Figure 7, G is represented on the left. The three edges are called, from left to right,
e1, e2 and e3 which are respectively of length l1 = 1, l2 = 2 and l3 = 3, the cycles c1 and
c2 are indicated. G has three trees T1, T2 and T3, each one being reduced to an only edge,
respectively e1, e2 and e3. A break divisor associated to T1 is, for example, (v1)+(v2). Taking
D0 := 2 · (v), on the right of the figure many informations are represented.

• Black dots are the image of ker(∂) by φ. To compute it, let c1, resp. c2, be the path
going from (v) to itself making one turn of c1, resp. c2. We have

φ(`1) = (〈`1, c1〉, 〈`1, c2〉)
= (l1 + l2,−l2)
= (3,−2) and

φ(`2) = (〈`2, c1〉, 〈`2, c2〉)
= (−l2, l2 + l3)
= (−3, 5).

Thus, φ(ker(∂)) is the lattice generated by (3,−2) and (−3, 5).
• The parallelogram is a fundamental domain of Jac(G).
• The thick purple lines are the image by φ (for all choose of multipaths at the same
time) of ((v) + (v2)) as (v2) travels along (e2). Similarly, the red ones correspond to
φ((v) + (v1)) and the brown one to φ((v) + (v3)).
• The thin purple lines are the image by φ of ((w) + (v2)) as (v2) travels along (e2).
Red and brown thin lines are defined similarly.
• Yellow domain corresponds to the parallelotope associated to the tree T1 in Jac(G),
the green one to T2 and the blue one to T3. An interesting thing is that, for example,
the volume of the blue domain is equal to the product of the length of the edges in
T1: 6 = l2 × l3.
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Actually, the bijection Φ from Υ to Jac(G) is an isometry. As Φ is an isometry, we finally
have

Vol(Jac(G)) = Vol(Υ) = Symk(Γ; |I1|, . . . , |Iq|).

In the previous example, the value of the Symanzik polynomial obtained at the end will
not change if one adds or deletes some vertices inside an edge of the metric graph. We will
see in the next subsection that this result is more general.

3.3. Stability of the Symanzik polynomial by subdivision. We will define here abstract
oriented non degenerate subdivisions of an abstract simplicial complex, which we will simply
call a subdivision. Let us give a geometrical intuition: a subdivision is obtained cutting some
faces in smaller faces of the same dimension. We will need boundary maps of every dimension.
Let ∆ be the simplicial complex already fixed above. For all l ∈ [0 . . d], one can define the
l-th (reduced) boundary map on ∆ denoted by ∂∆,l as

∂∆,l : A〈∆l〉 → A〈∆l−1〉,
ζ 7→ ∂∆(l)(ζ),

where ∂∆(l) is defined as in the last subsection (Equation (21)) for the induced enumeration
of vertices on the l-dimensional skeleton of ∆.

Until now, we only used the standard orientation relative to an arbitrary enumeration of
the vertices. One can define an orientation relative to this standard orientation as a function
from the set of faces to {−1, 1}.

Let Γ be a simplicial complex and let µ : Γ→ ∆ be a map from the set of faces of Γ to the
set of faces of ∆. Let εl : Γl → {−1, 1}, l ∈ [−1 . . d], be an orientation of faces of Γ relative
to the standard orientation. For all l ∈ [−1 . . d], we define the linear map

ϕl : A〈Γl〉 → A〈∆l〉,

γ 7→
{
ε(γ)µ(γ) if dim(γ) = dim(µ(γ)),
0 otherwise.

Its adjoint, denoted by ϕ∗l , verifies that, for all δ ∈ ∆l,

ϕ∗l (δ) =
∑

γ∈µ−1(δ)
dim(γ)=l

ε(γ)γ.

Definition 3.15. With the above notations, (Γ, µ) is a subdivision of ∆ for the orientation
ε if it verifies the following four conditions.

(1) µ is increasing for the inclusion, i.e., if γ1 ⊂ γ2, then µ(γ1) ⊂ µ(γ2).
(2) dim(µ(γ)) > dim(γ) for all γ ∈ Γ.
(3) For all l ∈ [0 . . d] and for all δ ∈ ∆l,

∂Γ,l(ϕ∗l (δ)) = ϕ∗l−1(∂∆,l(δ)).
(4) For all face δ ∈ ∆l of dimension l ∈ [−1 . . d], there is no nontrivial cycle of Zl(∂Γ,l) in

the A-submodule of A〈Γl〉 generated by the set
{γ ∈ µ−1(δ)

∣∣ dim(γ) = dim(δ)}.

For an Example of such subdivision, see Example 3.19.
If (Γ, µ) is a subdivision of ∆ for an orientation ε, one can roughly summarize the four

conditions as follows: each face of Γ has a non degenerate image included in a face of ∆, with
the induced orientation if the dimension of the image is the same, these images make a kind
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of partition for each face of ∆, and a cycle of Γ cannot be mapped into a face of ∆ of the
same dimension. For example, because of the fourth condition, a subdivision of a triangle
cannot contain a sphere. Actually, one would expect something stronger: a subdivision of a
part of a surface which does not contain any sphere should not contain any sphere. This idea
corresponds to the following lemma.

If l ∈ [−1 . . d], let
Γ̃l := {γ ∈ Γl

∣∣ dim(µ(γ)) = l},

and let ∂̃l be the restriction of ∂Γ,l to A〈Γ̃l〉.

Lemma 3.16. With the above notations, if (Γ, µ) is a subdivision of ∆ for some orientation,
then

ker(∂̃d) ⊂ Im(ϕ∗d).

Before proving this lemma, we need to state another lemma.

Lemma 3.17. With the notations of Definition 3.15, one has the following results.
• µ is surjective.
• For all l ∈ [−1 . .n], ϕl is surjective.
• For all l ∈ [−1 . .n], ϕ∗l is injective.

Proof of Lemma 3.17. Let us proof the third point by induction on l. If l = −1, ϕ∗−1(∅) =
±∅ 6= 0, thus ϕ∗−1 is injective. Let l ∈ [0 . . d] be an integer, and suppose that ϕ∗l−1 is injective.
Let δ ∈ ∆l. Clearly, ∂∆,l(δ) 6= 0. Thus, by the induction hypothesis, ϕ∗l−1(∂∆,l(δ)) 6= 0.
Therefore, the third condition of Definition 3.15 implies that ϕ∗l (δ) 6= 0. Now let ζ ∈ A〈∆l〉
be an arbitrary nonzero element. Let δ be an element of ∆l such that δ has a nonzero
coefficient in ζ. As ϕ∗l (δ) 6= 0, there exists γ ∈ Γl such that γ has a nonzero coefficient in
ϕ∗l (δ), i.e., such that µ(γ) = δ. As µ(γ) = δ, γ could not have a nonzero coefficient in ϕ∗l (δ′)
if δ′ ∈ ∆l − δ. Thus, γ has a nonzero coefficient in ϕ∗l (ζ). Finally ϕ∗l (ζ) 6= 0 and so ker(ϕ∗l ) is
trivial, which is the induction hypothesis for order l.

We conclude by induction that the third point is true. The second point comes automat-
ically from the third one: the adjoint of an injective map is surjective. If δ ∈ ∆ for some
l ∈ [−1 . . d], ϕ∗l (δ) 6= 0 implies that µ−1(δ) 6= ∅. Thus the third point implies the first one,
which finishes the proof. �

Proof of Lemma 3.16. First, notice that, for all l ∈ [1 . . d],
(25) ∂Γ,l−1 ◦ ∂Γ,l = ∂∆,l−1 ◦ ∂∆,l = 0.
This can easily be proven using the definition (cf Equation (21)). Let us show by induction
on l that
(26) ker(∂̃l) ⊂ Im(ϕ∗l ).

Suppose that l = 0. Let us prove that µ is a bijection between Γ̃0 and ∆0. By Lemma 3.17,
µ is surjective. Suppose that µ(γ1) = µ(γ2) where γ1, γ2 ∈ Γ̃0. Then, γ1 − γ2 is in the kernel
of ∂̃0. Thus, because of the fourth condition of Definition 3.15, γ1− γ2 = 0. That implies the
injectivity. As µ is a bijection, Im(ϕ∗0) = A〈Γ̃0〉. Thus, the induction property (26) is true for
l = 0.

Let l ∈ [1 . . d] be an integer, and suppose that the induction property is true for l− 1. Let
ζ =

∑
i∈I αiγi be an element of ker(∂̃l) where γi is the i-th face of Γl, I is a subset of [1 . . |Γl|]
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and αis are elements of A. Let δ be a face of ∆l and K be the set of integers i such that
γi ∈ µ−1(δ) ∩ Γ̃l. Let J = I ∩K. Suppose that J is nonempty. Let ζδ =

∑
i∈J αiγi. One has

ζ =
∑
δ′∈∆l

ζ ′δ.

Thus,

(27)
∑
δ′∈∆l

∂̃l(ζδ′) = 0.

We will show that the boundary of ζδ is in Im(ϕ∗l−1).
First, let us prove by contradiction that ∂̃l(ζδ) is in A〈Γ̃l−1〉. Suppose that there is a face

γ′ ∈ Γl−1 \ Γ̃l−1 such that the coefficient of γ′ in ∂̃l(ζδ) is nonzero. Then there exists i′ ∈ J
such that the coefficient of γ′ in ∂̃l(γi′) is nonzero. Thus, γ′ is a face of γi′ , i.e., γ′ ⊂ γi′ .
Moreover, by condition (1), µ(γ′) ⊂ µ(γi′) = δ. But we supposed that γ′ 6∈ Γ̃l−1, i.e., that
dim(µ(γ′)) > l− 1. The only possibility is that µ(γ′) = δ. Now looking at Equation (27), we
obtain that γ′ must have a nonzero coefficient in ∂̃l(ζδ′) for some δ′ ∈ ∆l − δ. But the same
argument implies µ(γ′) = δ′. Thus, δ = δ′ which is absurd. Finally,

∂̃l(ζδ) ∈ A〈Γ̃l−1〉.

Last equation implies that, if γ′ has a nonzero coefficient in ∂̃l(ζδ), then γ′ ∈ Γ̃l−1, thus
dim(µ(γ′)) = l − 1. But we also have that µ(γ′) ⊂ δ. Thus,

(28) µ(γ′) is a subset of δ of dimension l − 1.

We have seen (Equation (25)) that ∂̃l−1 ◦ ∂̃l(ζδ) = 0. Thus, ∂̃l(ζδ) ∈ ker(∂̃l−1). The induction
hypothesis (26) implies that ∂̃l(ζδ) ∈ Im(ϕ∗l−1). Let ξδ be such that

(29) ϕ∗l−1(ξδ) = ∂̃l(ζδ).

Let δ′ ∈ ∆l−1 having a nonzero coefficient in ξδ. Let γ′ ∈ Γl−1 having a nonzero coefficient
in ϕ∗l−1(δ′), i.e., such that µ(γ′) = δ′. Then γ′ has a nonzero coefficient in ϕ∗l−1(ξδ) (because
it could not have a nonzero coefficient in ϕ∗l−1(δ′′) if δ′′ 6= δ′, else µ(γ′) = δ′′). Thus, by (28),
δ′ ⊂ δ. Let ∆δ,l−1 be the subcomplex of ∆ composed of all proper faces of δ:

∆δ,l−1 := {δ′′$δ}.

It is easy to see that Zl−1(∆δ,l−1) is generated by ∂∆,l(δ). Notice that Equation (28) implies
ξδ ∈ A〈(∆δ,l−1)l−1〉. Let us show that ξδ is in Zl−1(∆δ,l−1). By Equation (25),

∂̃l−1 ◦ ϕ∗l−1(ξδ) = ∂̃l−1 ◦ ∂̃l(ζδ) = 0.

If we use the third condition of Definition 3.15, we obtain

∂̃l−1 ◦ ϕ∗l−1(ξδ) = ϕ∗l−2 ◦ ∂̃l−1(ξδ) = 0.

We have already seen in Lemma 3.17 that the kernel of ϕ∗l−2 is trivial. Thus,

∂̃l−1(ξδ) = 0.

Then ξδ ∈ Zl−1(∆δ,l−1) and so there exists an a ∈ A such that

(30) ξδ = a∂∆,l(δ).
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Finally,

∂̃l(ζδ) = ϕ∗l−1(ξδ) (Equation (29))
= ϕ∗l−1(a∂∆,l(δ)) (Equation (30))
= ∂Γ,l ◦ ϕ∗l (aδ). (third condition)

As ϕ∗l (aδ) is an element of Γ̃l, one can replace ∂Γ,l by ∂̃l and obtain

0 = ∂̃l(ζδ − ϕ∗l (aδ)).

But by definition of ζδ and of ϕ∗l , ζδ−ϕ∗l (aδ) is in the A-submodule generated by the elements
in

{γ ∈ µ−1(δ)
∣∣ dim(γ) = dim(δ)}.

We can conclude, using the fourth condition of Definition 3.15, that ζδ = ϕ∗l (aδ). Thus,
ζδ ∈ Im(ϕ∗l ) and

ζ =
∑
δ′∈∆l

ζδ′ ∈ Im(ϕ∗l ).

That implies the induction hypothesis (Equation (26)).

We conclude the lemma by induction: setting l = d, the induction hypothesis is

ker(∂̃d) ⊂ Im(ϕ∗d).

�

In our case, subdivision is interesting because of the following proposition.

Proposition 3.18. Suppose (Γ, µ) is a subdivision of ∆ for some orientation ε of the faces
of Γ, and denote by m the number of facets of Γ. Then dim(Γ) = dim(∆) and, modulo A∗k,
for any even positive integer k, we have

Symk(Γ;x) = Symk(∆; y)

for any even positive integer k, where, for i ∈ [1 . .n],

yi =
∑

j∈[1 . .m]
µ(γj)=δi

xj

with δi being the i-th facet of ∆ and γj the j-th facet of Γ.

This proposition is really important because it means that one can define Symanzik poly-
nomials of a topological triangulable space endowed with a measure. If the measure of any
simple path is 0, and if the triangulation of the space is unique up to subdivision, then the
Symanzik polynomial does not depend on the chosen triangulation. One can see that on
Example 3.19 below.

Proof of the proposition. First, Lemma 3.17 implies that any facet of ∆ has a nonempty
preimage. Moreover, the second condition of Definition 3.15 implies that this preimage only
contains d-dimensional faces of Γ. This condition also implies that Γ has no faces of dimension
greater than d. Thus, dim(Γ) = dim(∆).

Next, let T be the transpose of the d-th incidence matrix of Γ. We want to rewrite the third
condition for facets in term of matrices. Let P = (pi,j) ∈Mn,m(A) be the matrix associated
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to ϕd (for the standard bases corresponding to the enumerations of facets and of (d−1)-faces
of ∆). It verifies

(31) pi,j =
{
ε(γj) if µ(γj) = δi,
0 otherwise.

Let Q ∈ Mp,q(A), where p and q are the number of (d − 1)-dimensional faces of ∆ and Γ
respectively, be the matrix associated to ϕd−1. Thus, the third equation of Definition 3.15
for l = d is

∂Γ,d ◦ ϕ∗d = ϕ∗d−1 ◦ ∂∆,d,

which is clearly equivalent to
(32) T

ᵀ
P

ᵀ = Q
ᵀ
R

ᵀ
.

Now let f̃ be a basis of ker(Rᵀ) and let S := F̃ . Let g̃ be a family of Am such that G̃ = P
ᵀ
S.

We want to show that g̃ forms a basis of ker(T ᵀ). By Equation (32),
T

ᵀ
P

ᵀ
S = Q

ᵀ
R

ᵀ
S = 0.

Thus, g̃ is included in ker(T ᵀ). In order to show that g̃ is free, it suffices to prove that columns
of S are free, which is clearly true, and that columns of P ᵀ are free, i.e., that ϕ∗d is injective.
But this is stated by Lemma 3.17.

It remains to show that g̃ generates ker(Rᵀ). Lemma 3.16 implies that ker(T ᵀ) ⊂ Im(P ᵀ).
Thus, if u ∈ ker(T ᵀ), then there exists v ∈ An such that u = P

ᵀv. One has
T

ᵀu = 0,
T

ᵀ
P

ᵀv = 0,
Q

ᵀ
R

ᵀv = 0.

As Lemma 3.17 implies that ker(Qᵀ) is trivial, we deduce from the last equation that
R

ᵀv = 0.
Thus, v ∈ ker(Rᵀ), i.e., v ∈ Im(S), and so u ∈ Im(G̃). Finally, ker(T ᵀ) ⊂ Im(G̃) and so g̃ is
a basis of ker(T ᵀ).

Now one can use the determinantal formula for Symanzik polynomials for k = 2 (Proposi-
tion 2.21). If g is a basis of Im(T ᵀ), multiplying an element of g̃ by a unit of A if necessary,
one can assume that G̃ is a normal kernel matrix of T with basis g (see Definition 2.20 about
normal kernel matrices). Setting Y = PXP

ᵀ , where X = diag(x1, . . . , xm), one has, modulo
A∗2,

Sym2(Γ;x) = Sym2(T, g;x) (Definition 3.12)

= det(G̃ᵀ
XG̃) (Proposition 2.21)

= det(Sᵀ
PXP

ᵀ
S)

= det(Sᵀ
Y S).

Let us compute Y . Looking at the definition of P (Equation (31)), columns of P have at most
one nonzero entry. Thus, rows of P are orthogonal for the standard inner product. Therefore,
Y is a diagonal matrix. The i-th diagonal entry of Y is equal to

m∑
j=0

p2
i,jxj ,
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i.e., to ∑
j∈[1 . .m]
µ(γj)=δi

xj ,

where γj is the j-th facet of Γ and δi is the i-th facets of ∆. But last equation is exactly the
definition of yi in the statement of the proposition. Thus, Y = diag(y1, . . . , yn). Then, using
Proposition 2.21 as above, modulo A∗2,

Sym2(Γ;x) = det(Sᵀ
Y S)

= Sym2(∆; y).
Finally, the proposition is true for k = 2 and so it is true for all even order (see Remark

2.5). �

Here is the second important example.

Example 3.19. For this example we set A = Z. Let S be a compact orientable surface. Let
∆ be a 2-dimensional simplicial complex and V be its set of vertices. Set a map ν : V → U
in some real vector space U . Set

ν̃ : ∆ → P(U),
{i0, . . . , il} 7→ conv(ν(i0), . . . , ν(il)),

where conv(v0, . . . , vl) is the convex hull of {v0, . . . , vl} in U for any l ∈ [0 . . d] and any points
v0, . . . , vl ∈ U . Suppose that ν̃ verifies that, for all ordered pair of faces (γ, δ) of ∆,

dim(ν̃(γ)) = dim(γ),
where dim(ν̃(γ)) denotes the affine dimension, and that

ν̃(γ ∩ δ) = ν̃(γ) ∩ ν̃(δ).
In this case, the union

|∆|ν :=
⋃
δ∈∆

ν̃(δ)

is called a geometric realization of ∆ (actually, we have already seen geometric realizations
of the abstract bipyramide in Figures 2 and 3). Now, if there exists a homeomorphism
Φ : |∆|ν

∼−→ S, then (∆, ν,Φ) will be called an abstract triangulation of S (in Figure 9 the
blues lines form a triangulation of the disk). If such a triangulation of S exists, S is said
triangulable. It is known that all compact surfaces are triangulable.

In this paper we will said that a triangulation (Γ, υ,Φ′) is a subtriangulation of (∆, ν,Φ)
if |Γ|υ = |∆|ν , if Φ′ = Φ, and if, for any γ ∈ Γ, there exists δ ∈ ∆ such that υ̃(γ) ⊂ ν(δ).
Therefore, Γ is a subdivision of ∆ for the map µ such that µ(γ) is the minimal δ for inclusion
such that υ(γ) ⊂ ν(δ). For example, in Figure 9 there are two triangulations of the disk, one
in blue and one in red, and adding the thin arcs to red and blue ones we obtain a common
subtriangulation (i.e., a subtriangulation of the blue triangulation by some simplicial complex
and another subtriangulation of the red triangulation by the same simplicial complex). If we
said that two triangulations of the same compact surface are equivalent if they have a common
subtriangulation, and if we extend this relation in order to have an equivalence relation, then
all triangulations of a compact surface are equivalent.

Let (∆, ν,Φ) be a triangulation of the compact orientable surface S, let (Γ, µ) be a subdi-
vision of ∆ for some orientation, and let (Γ, υ,Φ) be a subtriangulation of ∆ with respect to
µ. Suppose now there is some finite measure π on S such that the measure of simple path on
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Figure 9. Two triangulations of the disk and a common triangulation.

S (i.e., of any part homeomorphic to a bounded real interval) is zero. We extend π to facets
of ∆ by

π(δ) := π(Φ(ν̃(∆))),
for any facet δ of ∆. Extend π to facets of Γ in the same way. Notice that the extension
verifies the following property:

π(δ) =
∑
γ∈Γ2
µ(γ)=δ

π(γ).

Then, if k is even, Proposition 3.18 affirms that
(33) Symk(∆;π(δ1), . . . , π(δn)) = Symk(Γ;π(γ1), . . . , π(γm)),
where m is the number of facets of Γ, δi, i ∈ [1 . .n], is the i-th facet of ∆, and γi, i ∈ [1 . .m],
is the i-th facet of Γ. Thus, the value (33) does not depend on the choice of the triangulation.

Let us compute this value. One has the following intuitive property. Zd(∆) has rank 1 and
is generated by the sum of facets of ∆, with a good sign for each facet corresponding to an
orientation of the facets with respect to an orientation of S. Thus, one can obtain a 0-forest
of ∆ removing any facet of ∆. But we know by Corollary 3.13 that

Symk(∆;x) =
∑

Γ 0-forest of ∆
|Hd−1(∆)

/
Hd−1(Γ)|kxFac(Γ)c

Here, |Hd−1(∆)
/
Hd−1(Γ)| is always equal to 1. Thus,

Symk(∆;x) = x1 + · · ·+ xn,

and finally
Symk(∆;π(δ1), . . . , π(δn)) = π(δ1) + · · ·+ π(δn)

= π(S).
Thus, the Symanzik polynomial with variables assigned with the measure of corresponding
facets is equal to the total measure of S.

We end this subsection with an interesting example about the Symanzik polynomials which
can be obtained from a simplicial complex.
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Figure 10. A simplicial complex linked to
(

2 0
3 2

)
.

Example 3.20. In this example A = Z. Let ∆ be the simplicial complex on Figure 10 where
all edges with the same label are glued together. We allow to put a nonstandard orientation
on facets of ∆. Suppose that all facets have a counterclockwise orientation on the figure. The
d-cycles of ∆ are generated by the following two cycles:

2γ1 + 3γ2 +
∑
γ∈Ξ

γ and(34)

2γ2 +
∑
γ∈χ

γ,(35)

where sums are over all facets of the parts of the complex denoted by Ξ and χ, respectively.
If we enumerate faces of ∆ beginning with γ1, then γ2, then facets of Ξ and finally facets of
χ, the following matrix S ∈ Mn,2(Z) is a normal kernel matrix of R for a well chosen basis
of Im(Rᵀ)

S :=
(

2 3 1 · · · 1 0 · · · 0
0 2 0 · · · 0 1 · · · 1

)ᵀ

.

Proposition 2.21, about determinantal formula for Symanzik p olynomials for k = 2, states
that

Sym2(∆;x) = det(Sᵀ
XS),
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with X = diag(x1, . . . , xn). Now set x3 = · · · = xn = 0. Thus, we obtain

Sym2(∆;x1, x2, 0, . . . , 0) = det
( 2 3

0 2 ∗


x1 0
0 x2 0

0 0




2 0
3 2

∗


)

= det
((

2 3
0 2

)(
x1 0
0 x2

)(
2 0
3 2

))
= Kir2(

(
2 0
3 2

)
, e;x),

where e is the standard basis of Z2.
This example obviously generalizes in order to obtain any matrix instead of ( 2 0

3 2 ). Thus,
just putting some variables to zero allows us to create a simplicial complex whose Symanzik
polynomial is equal to the Symanzik polynomial (or, equivalently, Kirchhoff polynomial) of
any integer matrix.

In the next subsection, we will add parameters. It turns out that orientations play an
essential role in this case.

3.4. Symanzik rational fractions, orientations and oriented matroid. If l ∈ [−1 . . d],
we will denote be λl the natural isomorphism from A〈∆l〉 to A|∆l|, or, more simply, λ if there
is no ambiguity on l. The reader would not be surprised by the two following definitions.

Definition 3.21. Let l be a nonnegative integer and let u1, . . . , ul be elements of Bd−1(∆).
The Symanzik polynomial class of order k of ∆ with parameters u1, . . . , ul is an element of
A[x]

/
A∗k denoted by Symk(∆, u1, . . . , ul;x) defined as

Symk(∆, u1, . . . , ul;x) := Symk(R, f, λ(u1), . . . , λ(ul);x) (mod A∗k)
where f is any basis of Im(Rᵀ).

Definition 3.22. Let l be a nonnegative integer and let u1, . . . , ul be elements of Bd−1(∆).
The (normalized) Symanzik rational fraction of order k of ∆ with parameters u1, . . . , ul de-
noted by S̃ymk(∆, u1, . . . , ul;x) is defined as

S̃ymk(∆, u1, . . . , ul;x) := S̃ymk(R, λ(u1), . . . , λ(ul);x).

Notice that S̃ymk(∆, u1, . . . , ul;x) is an element of A and not of A[x]
/
A∗k.

From now on, we take A a PID which is a subring of R.
We want to deal with orientations because they will naturally appear in Symanzik poly-

nomials with parameters. To do so, we will extend M to an oriented matroid. We do not
want to define precisely oriented matroids, but we will use specific ones: the ones representing
family of vectors in An or matrices over A. Readers interested in more details could check
[7], [8].

Before stating the definition, we need few more notations. If l is a nonnegative integer and
I = {i1, . . . , il} ⊂ Z, we write −I := {−i1, . . . ,−il}. If we use the notation ~I for some subset
{i1, . . . , il} of Z, then it means that −~I ∩ ~I = ∅ and that I will denote the set {|i1|, . . . , |il|}.
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If we use the notation I for a tuple (i1, . . . , il), then it means that the ijs, j ∈ [1 . .n], are all
different and that I will denote the set of elements of I: I := {i1, . . . , il}.

If n, p are positive integers and if u = (u1, . . . , un) is a family of elements of Ap, then the
oriented matroid representing u is denoted by ~Mu and is the matroid ~Mu = ( ~Eu, ~Iu) where
~Eu = −Eu t+Eu, Eu := [1 . .n], and ~Iu ⊂ P( ~Eu) contains all subsets I ∈ ~Iu such that there
is no nontrivial nonnegative linear combination of elements in (ui)i∈I equal to zero, where
u−i := −ui, for i ∈ [1 . .n].

If n, p are positive integers, and if R ∈ Mn,p(A) is a matrix, then the oriented matroid
representing R is denoted by ~MR = ( ~ER, ~IR) and is equal to ~Mu where u = (u1, . . . , un) and
R

ᵀ = u1 ? · · · ? un.
To an oriented matroid ~M = ( ~E = [−n . . −1] t [1 . .n], ~I) one can naturally associate the

nonoriented matroid M := (E = [1 . .n], I) where I is the maximal subset of P(E) verifying
∀ ~I 6∈ ~I, I 6∈ I.

In this paper, we call basis of the oriented matroid ~M any tuple ~I of elements of ~E such that
I ∈ B(M). The set of all bases of ~M is denoted by B( ~M). The rank of ~M is rk( ~M) := rk(M).

Now we can set ~M = ( ~E, ~I) := ~MR the oriented matroid representing R.
An orientation of the bases of a matroid is a map from the bases to the set {−1,+1}.

Definition 3.23. An orientation of the bases of a matroid is said canonical if it verifies the
three following conditions for any basis (i1, . . . , ir).

(1) It is an alternating map: for all permutation τ ∈ Sr,
ε(iτ(1), . . . , iτ(r)) = σ(τ)ε(i1, . . . , ir).

(2) It is homogeneous: for every j ∈ [1 . . r],
ε(i1, . . . , ij−1,−ij , ij+1, . . . , ir) = −ε(i1, . . . , ir).

(3) If (i1, . . . , ir−1, i
′
r) is a second basis, then, for any ζ1, . . . , ζr, ζ

′
r ∈ {−1,+1} such that

{ζ1i1, . . . , ζrir, ζ
′
ri
′
r} ⊂ P( ~E) is dependent,
ε(i1, . . . , ir−1, i

′
r) = −ζrζ ′rε(i1, . . . , ir).

This orientation are called chirotopes in the theory of oriented matroid.

Remark 3.24. In the previous definition, Conditions (1) and (3) implies Condition (2).
Indeed, in Condition (3) one can take i′r = −ir and ζ ′r = ζr obtaining

ε(i1, . . . , ir−1,−ir) = −ε(i1, . . . , ir),
which is Condition (2) for j = r.

Proposition 3.25. An oriented matroid has exactly two canonical orientations of its bases,
and they are opposite.

Justification of the proposition. The unicity, up to a sign, comes from the exchange property
between bases (Claim 2.32, (4)): if one chooses the orientation of one basis, all the other
bases can be obtained with the three operations available in the proposition. Thus, their
orientation will be uniquely defined.

The existence in the case of oriented matroid representing a matrix over A ⊂ R will be
clear after next example. For the general case, we refer to [8]. �
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Example 3.26. Let f be a free family of size r overgenerating Im(Rᵀ). In this example we
will show that the map

ε : B( ~M) → {−1, 1},
~I 7→ sgn(detf (Rᵀ

~I )),
is one of the two canonical orientations (of the bases) of ~M where

R
ᵀ
~I := ri1 ? . . . ? rir ,

with Rᵀ = r1 ? . . . ? rn, r−i := −ri if i ∈ [1 . .n], and ~I = (i1, . . . , ir).
First, ε is well defined because if ~I ∈ B( ~M), then I ∈ B(M), thus columns of RI are free

and det(RI) is nonzero.
Then the first two points of Definition 3.23 are simply properties of the determinant.
Finally it remains to prove the last point. Let (i1, . . . , ir−1, i

′
r) be a second basis and let

ζ1, . . . , ζr, ζ
′
r ∈ {−1,+1} be such that {ζ1i1, . . . , ζrir, ζ

′
ri
′
r} is dependent. Then there exist

a1, . . . , ar, a
′
r ∈ R not all equal to zero such that

ζi =
{

1 if ai = 0,
sgn(ai) otherwise,
ζ ′r = sgn(a′r),

and
a1ri1 + · · ·+ arrir + a′rri′r = 0,

where 0 ∈ Mn,1(R) is the column matrix with only zero entries. Notice that a′r 6= 0 because
(ri1 , . . . , rir) is a basis. Then one has, setting ~J := (i1, . . . , ir−1),

ε(i1, . . . , ir−1, i
′
r) = sgn ◦ det(R ~J ? ri′r)

= sgn ◦ det
(
R ~J ?

(
− 1
a′r

(a1ri1 + · · ·+ arrir)
))

= sgn
(
− 1
a′r

det
(
R ~J ?

(
arrir

)))
= − sgn

(
ar
a′r

)
sgn ◦ det(R~I)

= −ζrζ ′rε(i1, . . . , ir).

Thus, ε verifies the three conditions to be a canonical orientation of ~M. By Proposition 3.25,
the two orientations on ~M are ε and −ε.

Definition 3.27. Let r be a nonnegative integer, ~M = ( ~E, ~I) be an oriented matroid of rank
r, M = (E, I) be the associated nonoriented matroid and l 6 r be a nonnegative integer. Let
I ∈ I be an independent set of rank l. Let ~I = (i1, . . . , il) be a tuple of elements in I with an
arbitrary order and with arbitrary signs.

We define −→Compl(I) as the set of tuples completing ~I into a basis, i.e., of (r − l)-tuples
~J := (jl+1, . . . , jr) such that (i1, . . . , il, jl+1, . . . , jr) ∈ B( ~M).
A canonical orientation of ~M relative to I, denoted by εI , is a function from −→Compl(I) to

{−1,+1} verifying: there exists a canonical orientation ε of ~M such that, for all elements
~J ∈ −→Compl(I),

εI( ~J) = ε(i1, . . . , il, jl+1, . . . , jr).
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Claim 3.28. With the notations of the definition, the definitions of −→Compl(I) and of canonical
orientations relative to I does not depend on the choice of ~I.

Proof. It is clear that ~J ∈ −→Compl(I) if and only if I and J are disjoint and I t J ∈ B(I).
Thus, the definition of −→Compl(I) does not depend on the choice of ~I.

Let ε be one of the two canonical orientations on ~M. Let us define
ε~I : −→Compl(I) → {−1,+1},

~J 7→ ε(i1, . . . , il, jl+1, . . . , jr).
It is clear that ε~I and −ε~I are the two opposite canonical orientations relative to I.

Let ~I ′ = (i′1, . . . , i′l) be a second tuple of elements in I with some signs. It remains to show
that ε~I′ = ±ε~I . There exists τ ∈ Sl and ζ1, . . . , ζl ∈ [1 . . l] such that

i′j = ζjiτ(j)

for all j ∈ [1 . . l]. Let ~J ∈ −→Compl(I). One has

ε~I′( ~J) = ε(i′1, . . . , i′l, jl+1, . . . , jr)
= ε(ζ1iτ(1), . . . , ζliτ(l), jl+1, . . . , jr).

Thus, using Conditions (1) and (2) of Definition 3.23,
ε~I′( ~J) = ζ1 · · · ζl σ(τ)ε(i1, . . . , il, jl+1, jr)

= ζ1 · · · ζl σ(τ)ε~I( ~J).
As the factor ζ1 · · · ζl σ(τ) does not depend on ~J ,

ε~I = ζ1 · · · ζl σ(τ)ε~I′ .
Finally, the definition of canonical orientations relative to I does not depend on the choice of
~I. �

Now the following proposition is straightforward.

Proposition 3.29. If ~M is an oriented matroid, and if M is its associated nonoriented
matroid, then, for any independent set I of M, there are exactly two canonical orientations
relative to I and, they are opposite.

Canonical relative orientations often have simple expression, as in the following two exam-
ples.

Example 3.30. Let ∆ be a simplicial complex of dimension d. Using the usual notations,
set l = r − 1. Let I ∈ Il, ~I = {i1, . . . , il} be an l-tuple of elements of I with some signs, and
εI be a canonical orientation relative to I. We know, by Proposition 3.6, that Il corresponds
to 1-forests of ∆. Therefore, εI is defined on the set of facets of ∆ completing Sub∆(I) into a
0-forest of I. If one takes two such different facets δ and δ′ of respective numbers jr and j′r,
then Z(Sub∆(I + jr + j′r)) has rank one and is generated by a cycle c. In this cycle, δ and δ′
have nonzero coefficients a and a′ of signs ζ and ζ ′. Using the third point of Definition 3.23
about canonical orientations,

εI(jr) = −ζζ ′εI(j′r).
That is to say that orientations relative to I are such that, if the orientation of δ follows the
orientation of the cycle c, then the orientation of δ′ follows the opposite orientation.
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Figure 11. Canonical orientations relative to some 1-forests.

Thus, one can compute a canonical orientation relative to a 1-forest in the following way:
take an arbitrary facet δ which completes Sub∆(I) into a 0-forest; set an arbitrary orientation
on δ; for each other facet δ′ completing Sub∆(I) into a 0-forest, compute the only orientation
compatible with the chosen orientation of δ. There are two examples of such an orientation
on Figure 11. In each example, the 1-forest is in blue, εI is defined on red facets, and the
associated orientation is indicated.

In the case of a connected graph (see left hand-side of the figure), the orientation is easy to
compute. A 1-forest is composed of two subtrees, and a canonical orientation relative to this
1-forest is defined on edges going from one tree to the other, and all these edges are oriented
from always the same tree to always the other.

Example 3.31. Another way to understand relative orientation is to use contraction on
matroids. Let I be an independent set in M. Let us begin with nonoriented contraction. The
contraction of M by I is the matroid denoted by M

/
I = (E

/
I, I

/
I), where E

/
I = E \ I and

J ∈ I
/
I if and only if J ∪ I ∈ I. Contractions correspond to projections in linear spaces. It

happens that J is a basis of M
/
I if and only if I ∪ J is a basis of M.

Now the oriented case. The contraction of ~M by I (I is still an element of I) is denoted
by ~M

/
I = ( ~E

/
I, ~I

/
I) where ~E

/
I := ~E \ (I ∪ (−I)), and ~I

/
I contains ~J ⊂ ~E

/
I if and only if:

for all ~I, where we put some signs on elements of I, ~J ∪ ~I is independent in ~M. It happens
that B( ~M

/
I) = −→Compl(I) (cf the end of the last paragraph).

The interesting property is that the canonical orientations on ~M
/
I are exactly the canonical

orientations relative to I in ~M. It suffices to check that a canonical orientation relative to I
verifies the three conditions of Definition 3.23, which can be easily done.

For example, Figure 12 shows what happens for a graphic matroid and a 2-forest. The
first figure is the graph associated to M, and the 2-forest in blue corresponds to I. Then,
the second graph represents M

/
I. Actually, the second graph can be reduced to the third

one. Finally, it suffices to study canonical orientations on the third graph to get canonical
orientations relative to I.
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Figure 12. A contraction of a 2-forest.

Theorem 3.32 below naturally introduces a link between relative orientations and Symanzik
polynomials. This theorem will be useful in order to understand why Symanzik polynomials
with parameters generalize the second Symanzik polynomials of the introduction (see (2)).

We have to introduce two new sets. If I ⊂ E is any subset of the ground set of M, then

Compl(I) := {J ⊂ Ic
∣∣I ∪ J ∈ B(M)} and

Compl(I) := {J
∣∣J ∈ Compl(I)}.

Notice that the set Compl(I) is the subset of completions in −→Compl(I) which only contain
positive elements.

Theorem 3.32. If l is a nonnegative integer, if f is a free family of size r overgenerating
Im(Rᵀ), and if u1, . . . , ul ∈ Im(Rᵀ), then there is a canonical orientation εI relative to I, for
each I ∈ Ir−l, such that

Symk(R, f, u1, . . . , ul;x) =
∑

I∈Ir−l

( ∑
J∈Compl(I)

εI(J)| detf (Rᵀ

I∪J)|v1,j1 · · ·vl,jl
)k
xI

c
,

where, for all i ∈ [1 . . l], vi = (vi,1, . . . ,vi,n) ∈ An is such that Rvi = ui.

The proof of this theorem is a big computation. We will cut it into some lemmas.
With the notations of the theorem, let f̃ be a basis of Im(Rᵀ), S be a normal kernel matrix

of R with basis f̃ , and e be the standard basis of As+l.
Let V = v1 ? . . . ? vl (be careful, vi,j is the entry in the (i)-th column and in the j-th row

of V ). For all i ∈ I and j ∈ [1 . . s], si,j denotes the entry of S of index (i, j). If I is a set,
we write i1, . . . , i|I| its elements such that i1 < · · · < i|I|. Then, ord(I) denotes the tuple
(i1, . . . , i|I|). The set of permutations on I is denoted by SI .

If J, J ′ ⊂ I are such that J t J ′ = I, then we denote by τJ ′,J ∈ SI the permutation such
that

(36)
(
τJ ′,J(i1), . . . , τJ ′,J(i|I|)

)
=
(
j′1, . . . , j

′
|J ′|, j1, . . . , j|J |),

and by ζJ ′,J = σ(τJ ′,J) its signature. With these notations, we have the following generaliza-
tion of the Laplace decomposition.
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Lemma 3.33. If I is a subset of [1 . .n] of size s+ l, then

det((S ? V )I) =
∑
J⊂I
|J |=l

ζI\J,J det(SI\J) det(VJ).

Proof. If J is a subset of I and if τJ ∈ SJ , then τ IJ denotes the permutation on I which is
equal to τJ on J and to identity on I \ J . Notice that σ(τ IJ ) = σ(τJ).

Let us study the map
Φ : {(J ′, J, τJ ′ , τJ)

∣∣J ′ t J = I, |J | = l, τJ ′ ∈ SJ ′ , τJ ∈ SJ} → SI

(J ′, J, τJ ′ , τJ) 7→ τ IJ ′ ◦ τ IJ ◦ τJ ′,J .

If we choose an element (J ′, J, τJ ′ , τJ) in the set of definition of Φ, and if we denote by τI its
image, then, using (36),

J ′ = τI({i1, . . . , i|J ′|),
J = τI({i|J ′|+1, . . . , i|I|) and(

τI(i1), . . . , τI(is+l)
)

=
(
τJ ′(j′1), . . . , τJ ′(j′s), τJ(j1), . . . , τJ(jl)

)
.

One can create an inverse function of Φ thanks to these three equations. Thus, Φ is a bijection.
Now we can write the decomposition of the determinant.

det((S?V )I)

=
∑
τI∈SI

σ(τI)sτI(i1),1 · · · sτI(is),sv1,τI(il+1) · · ·vl,τI(il+s)

=
∑
J ′,J

J ′tJ=I,|J |=l

∑
τJ′∈SJ′

∑
τJ∈SJ

σ(τ IJ ′ ◦ τ IJ ◦ τJ ′,J)sτJ′ (j′1),1 · · · sτJ′ (j′s),sv1,τJ (j1) · · ·vl,τJ (jl)

=
∑
J ′,J

J ′tJ=I,|J |=l

σ(τJ ′,J)
∑

τJ′∈SJ′
σ(τJ ′)sτJ′ (j′1),1 · · · sτJ′ (j′s),s

∑
τJ∈SJ

σ(τJ)v1,τJ (j1) · · ·vl,τJ (jl)

=
∑
J ′,J

J ′tJ=I,|J |=l

ζJ ′,J det(SJ ′) det(VJ),

=
∑
J⊂I
|J |=l

ζI\J,J det(SI\J) det(VJ).

which concludes this first lemma. �

The second lemma deals with signs.

Lemma 3.34. If I ⊂ [1 . .n] is of size r − l, then there exists a canonical orientation εI
relative to I such that, for all J ∈ Compl(I),

ζIc\J,J σ(I ∪ J) sgn ◦ det
f̃
(Rᵀ

I∪J) = εI(j1, . . . , jl).

Proof. We compute the different signs.
First, ζIc\J,J is by definition the signature of τIc\J,J . Set J ′ := Ic \ J . Let us count the

number of inversions in τJ ′,J . This permutation is the only permutation which is increasing
from {i1, . . . , is} to J ′ and increasing from {is+1, . . . , is+l} to J . The set of elements in
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{i1, . . . , is} implied in an inversion with is+1 is τ−1
J ′,J([j1 . .n]∩ J ′). A similar result is true for

is+2, . . . , is+l. Thus,

ζIc\J,J = (−1)
∣∣[j1 . .n]∩(Ic\J)

∣∣+···+∣∣[jl . .n]∩(Ic\J)
∣∣
.

Second,
σ(I ∪ J) = σ(I)(−1)j1+···+jl .

Then, as we have seen in Example 3.26, there exists a canonical orientation ε′ on ~MR such
that

sgn ◦det
f̃
(Rᵀ

I∪J) = ε′(ord(I ∪ J)).
Finally, set ε′I the canonical orientation relative to I associated to ε′, i.e., such that, for all

~J ∈ −→Compl(I),
ε′I(j1, . . . , jl) = ε′(i1, . . . , is, j1, . . . , jl).

Thus, using the third point of Definition 3.23,
ε′(ord(I ∪ J))

ε′(i1, . . . , is, j1, . . . , jl)
is equal to the signature of the permutation τ such that

(τ(i1), . . . , τ(is), τ(j1), . . . , τ(jl)) = ord(I ∪ J).
But this is exactly the permutation τ−1

I,J (see Equation (36)). With the same argument as
above, we obtain

σ(τ−1
I,J ) = (−1)

∣∣[j1 . .n]∩I
∣∣+···+∣∣[jl . .n]∩I

∣∣
.

We can end the proof:

ζIc\J,J σ(I ∪ J)
sgn ◦ det

f̃
(Rᵀ

I∪J)
ε′I(j1, . . . , jl)

= (−1)
∣∣[j1 . .n]∩(Ic\J)

∣∣+···+∣∣[jl . .n]∩(Ic\J)
∣∣
σ(I)(−1)j1+···+jl ε′(ord(I ∪ J))

ε′(i1, . . . , is, j1, . . . , jl)

= (−1)
∣∣[j1 . .n]∩(Ic\J)

∣∣+···+∣∣[jl . .n]∩(Ic\J)
∣∣
σ(I)(−1)j1+···+jl(−1)

∣∣[j1 . .n]∩I
∣∣+···+∣∣[jl . .n]∩I

∣∣
= σ(I)

l∏
α=1

(−1)
∣∣[jα . .n]∩(Ic\J)

∣∣+jα+
∣∣[jα . .n]∩I

∣∣
.

But, if α ∈ [1 . . l],∣∣[jα . .n] ∩ (Ic \ J)
∣∣+ ∣∣[jα . .n] ∩ I

∣∣ = |[jα . .n] ∩ (Ic \ J) ∪ [jα . .n] ∩ I|
= |[jα . .n] ∩ (I ∪ (Ic \ J))|
= |[jα . .n] \ J |.

Moreover [jα . .n] ∩ J = {jα, jα+1, . . . , jl}, whose cardinality is l − α+ 1. That is why
|[jα . .n] \ J | = n− jα + 1− (l − α+ 1) = n− l − jα + α.

We continue the computation. The jαs disappear:

ζIc\J,J σ(I ∪ J)
sgn ◦det

f̃
(Rᵀ

I∪J)
ε′I(j1, . . . , jl)

= σ(I)(−1)l(n−l)+1+···+l.
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The right hand-side member is independent of J . Thus, the orientation

εI := σ(I)(−1)l(n−l)+1+···+lε′I ,

verifies the lemma: for all J ∈ Compl(I),

ζIc\J,J σ(I ∪ J) sgn ◦det
f̃
(Rᵀ

I∪J) = εI(j1, . . . , jl).

�

The third lemma is a development of the determinant of V .

Lemma 3.35. If I ⊂ [1 . .n] is of size r, and if εI is a canonical orientation relative to I,
then ∑

J∈Compl(I)
εI(j1, . . . , jl) det(VJ) =

∑
J∈Compl(I)

εI(J)v1,j1 · · ·vl,jl .

Notice that in the left hand-side of the equation above we have j1 < · · · < jl but this is no
more true in the right hand-side.

Proof. The proof is essentially the definitions of the determinant and of the canonical orien-
tations. Let I ⊂ [1 . .n] be of size r. The following map is clearly a bijection.

Compl(I)×Sl → Compl(I),
(J, τ) 7→ (jτ(1), . . . , jτ(l)).

Moreover, the first condition to be a canonical orientation (Definition 3.23), which clearly
applies for relative canonical orientation, implies that if J ∈ Compl(I) and if τ ∈ Sl, then

εI(jτ(1), . . . , jτ(l)) = σ(τ)εI(j1, . . . , jl).
Thus, we have∑

J∈Compl(I)
εI(j1, . . . , jl) det(VJ) =

∑
J∈Compl(I)

εI(j1, . . . , jl)
∑
τ∈Sl

σ(τ)v1,jτ(1) · · ·vl,jτ(l)

=
∑

J∈Compl(I)

∑
τ∈Sl

εI(jτ(1), . . . , jτ(l))v1,jτ(1) · · ·vl,jτ(l)

=
∑

J∈Compl(I)
εI(J)v1,j1 · · ·vl,jl ,

which ends the proof. �

Proof of Theorem 3.32. Now we can do the main computation. We recall that f̃ is a basis of
Im(Rᵀ), S is a normal kernel matrix of R with basis f̃ , and e is the standard basis of As+l.

Symk(R, f̃ , u1, . . . , ul;x)
= Kirk(S ? v1 ? · · · ? vl, e;x) (Definition 2.24)

=
∑

I⊂[1 . .n]
|I|=s+l

det((S ? V )I)kxI (Definition 2.4)

=
∑

I⊂[1 . .n]
|I|=s+l

( ∑
J⊂I
|J |=l

ζI\J,J det(SI\J) det(VJ)
)k
xI (Lemma 3.33)
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=
∑

I⊂[1 . .n]
|I|=s+l

( ∑
J⊂I
|J |=l

ζI\J,J σ((I \ J)c) det
f̃
(Rᵀ

(I\J)c) det(VJ)
)k
xI

( Equation (4),
Definition 2.20

)

=
∑

I⊂[1 . .n]
|I|=r−l

( ∑
J⊂Ic
|J |=l

ζIc\J,J σ(I ∪ J) det
f̃
(Rᵀ

I∪J) det(VJ)
)k
xI

c
. (I ← Ic)

Notice that det
f̃
(Rᵀ

I∪J) 6= 0 if and only if I ∈ Ir−l and J ∈ Compl(I). Thus, there exist
relative orientations εI for each I ∈ Ir−l such that

Symk(R,f̃ , u1, . . . , ul;x)

=
∑

I∈Ir−l

( ∑
J∈Compl(I)

ζIc\J,J σ(I ∪ J) sgn ◦ det
f̃
(Rᵀ

I∪J)| det
f̃
(Rᵀ

I∪J)| det(VJ)
)k
xI

c(37)

=
∑

I∈Ir−l

( ∑
J∈Compl(I)

εI(j1, . . . , jl)| det
f̃
(Rᵀ

I∪J)| det(VJ)
)k
xI

c (Lemma 3.34)

=
∑

I∈Ir−l

( ∑
J∈Compl(I)

εI(J)|det
f̃
(Rᵀ

I∪J)|v1,j1 · · ·vl,jl
)k
xI

c
. (Lemma 3.35)

Actually, in the left equality, we use a result a little stronger than Lemma 3.35. Looking
carefully at the proof of this lemma, the reader could be convinced that this result is true.

Multiplying each side of the last equation by detf (F̃ )k and replacing εI by sgn(detf (F̃ )k)εI ,
for all I ⊂ [1 . .n] of size r − l, we obtain what we wanted to prove (using Lemmas 2.2 and
2.12):

Symk(R, f, u1, . . . , ul;x) =
∑

I∈Ir−l

( ∑
J∈Compl(I)

εI(J)| detf (Rᵀ

I∪J)|v1,j1 · · ·vl,jl
)k
xI

c
.

�

Remark 3.36. In Theorem 3.32, if the order k is even, then one can choose any relative
canonical orientation for each I. Moreover, a factorized form of the theorem can be found in
the proof: ∑

I∈Ir−l

( ∑
J∈Compl(I)

εI(j1, . . . , jl)| det(RI∪J)| det(VJ)
)k
xI

c
.

Now we restate Theorem 3.32 in terms of simplicial complexes.

Corollary 3.37. If l is a nonnegative integer and if u1, . . . , ul ∈ Bd−1(∆), then for each
I ∈ F l(∆) there is a canonical orientation εI relative to I such that

Symk(∆, u1, . . . , ul;x) =
∑

I∈F l(∆)

( ∑
J∈Compl(I)

εI(J)
∣∣Hd−1(Sub∆(I∪J))

/
Hd−1(∆)

∣∣v1,j1 · · ·vl,jl
)k
xI

c

modulo A∗k, where, for all i ∈ [1 . . l], vi ∈ A〈∆d〉 is such that ∂∆vi = ui, and λ(vi) =
(vi,1, . . . ,vi,n) ∈ An.

Proof. By definition (Definition 3.21), if f is a basis of Im(Rᵀ)

Symk(∆, u1, . . . , ul;x) = Symk(R, f̃ , λ(u1), . . . , λ(ul);x)
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modulo A∗k. Then Theorem 3.32 gives

Symk(∆, u1, . . . , ul;x) =
∑

I∈Ir−l

( ∑
J∈Compl(I)

εI(J)| detf (Rᵀ

I∪J)|v1,j1 · · ·vl,jl
)k
xI

c
.

But Proposition 3.6 affirms that Ir−l = F l(∆), and we have already seen in the proof of the
generalized Kirchhoff’s theorem (see Equation (24)) that, since f is a basis of B(∆),

| detf (Rᵀ

I∪J)| = |Bd−1(∆)
/

Bd−1(Sub∆(I ∪ J))|,

and that
Bd−1(∆)

/
Bd−1(Sub∆(I ∪ J)) ' Hd−1(Sub∆(I ∪ J))

/
Hd−1(∆),

which concludes the proof. �

We can finally explain the link between Symanzik polynomials with parameters defined
in this paper, and the second Symanzik polynomial used in quantum field theory (see the
introduction, (2)).

Example 3.38. In this example, A = R. Suppose that ∆ is a connected 1-dimensional com-
plex. Let G be the oriented graph corresponding to ∆, with the corresponding enumeration
of the edges and of the vertices. Let V be the set of vertices of G and E be its set of edges.
Suppose that ∆ is such that G is connected. We rewrite differently the definition of the second
Symanzik polynomial ((2) with D=1):

(38) φG(p, x) :=
∑

F∈SF2(G)
q(T1, T2)x(num(T1)∪ num(T2))c

where p ∈ R〈V 〉 is the momentum on each vertex of G, SF2(G) is the set of pairs of subtrees
{T1, T2} forming a spanning forest with 2 connected components of G (i.e., such that the pair
consisting of the set of vertices of T1 and of the set of vertices of T2 forms a partition of V ),

(39) q(T1, T2) := −pT1pT2 ,

with pTi , i ∈ {1, 2}, being the sum of coefficients of p corresponding to vertices in Ti, and
num(Ti), i ∈ {1, 2}, is the set of numbers of edges in E which are edges of Ti. Suppose that
coefficients of p ∈ R〈V 〉 sum to zero. Then, u := λ−1(p) is an element of B0(∆) (see Example
3.4 for an explicitation of B0(∆)). We will show that

φG(p, x) = Sym2(∆, u;x).

By Corollary 3.37,

(40) Sym2(∆, u;x) =
∑

I∈F1(∆)

( ∑
J∈Compl(I)

εI(J)
∣∣Hd−1(Sub∆(I ∪ J))

/
Hd−1(∆)

∣∣vj1)2
xI

c

where v ∈ R〈∆1〉 verifies that ∂∆v = u and λ(v) = (v1, . . . ,vn) ∈ Rn, and, if I ∈ F1(∆), εI
is any canonical orientation relative to I (k = 2 is even). We have seen in Example 3.4 that
F1(∆) corresponds to subforests of G with two connected components, that we have called
1-forest. More precisely, subsets I of [1 . .n] verify

I ∈ F1(∆) ⇐⇒ ∃{T1, T2} ∈ SF2(G), I = num(T1) ∪ num(T2).
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Let I ∈ F1(∆) and let {T1, T2} be the unique pair in SF2(G) such that I = num(T1) ∪
num(T2). Comparing polynomials (38) and (40), as k = 2 is even, it remains to prove that( ∑

J∈Compl(I)
εI(J)

∣∣Hd−1(Sub∆(I ∪ J))
/
Hd−1(∆)

∣∣vj1)2
= q(T1, T2).

Looking at the definition of q(T1, T2) (Equation (39)), since the sum of coefficients of p is
zero,

q(T1, T2) = p2
T1 .

If J ∈ Compl(I), then I ∪ J corresponds to a 0-forests of ∆. Since ∆ is 1-dimensional, one
obtains that Bd−1(∆) = Bd−1(Sub∆(I ∪ J)) (once more, the reader can look at Example 3.4
to see that the set of (d− 1)-boundaries only depends on connected components). Thus,

|Hd−1(Sub∆(I ∪ J))
/
Hd−1(∆)| = 1.

If u′ ∈ R〈∆0〉, we denoted by u′T1
the value of p′T1

, where p′ = λ−1(u′). Then (∂v)2
T1

= p2
T1
.

It remains to show that
(41) (∂v)T1 =

∑
(j)∈Compl(I)

εI(j)vj .

One can choose εI such that, in the last equation, εI(j) is equal to 1 if the edge numbered
j goes from T2 to T1 and to −1 otherwise (see Example 3.30). Let e ∈ ∆1 be any edge of
G. Let ae be the coefficient of e in v. If e goes from T2 to T2, then e does not contribute to
(∂v)T1 . If e goes from T1 to T1, then contribution of e is equal to ae − ae = 0. If e goes from
T1 to T2, then only the tail of e is in T1, thus its contribution is −ae. Finally, if e goes from
T2 to T1, contribution of e is ae. Thus, Equation (41) is true. Finally, the second Symanzik
polynomial corresponds to our Symanzik polynomial of order 2:

φG(p, x) = Sym2(∆, u;x).

Now we will discuss what happens when boundaries chosen as parameters are simple
enough. Let u ∈ Bd−1(∆). Let U be the subset of faces in ∆d−1 which have a nonzero
coefficient in u. We say that u′ is included in u if all the faces which have a nonzero coeffi-
cient in u′ are in U .

Definition 3.39. A boundary u ∈ Bd−1(∆) is said simple if, for all u′ ∈ Bd−1(∆) such that
u′ is included in u, there exists an a ∈ A such that u′ = au.

Example 3.40. For example, if G is a graph and if v1, v2 are two vertices of a same connected
component of G, then {v2} − {v1} is a simple boundary of G. Actually, all simple boundaries
on G are of this form.

Example 3.41. A second example: let S be a compact orientable surface. A simple closed
path on S which is a boundary is always simple. More precisely, let (∆, ν,Φ) be an abstract
triangulation of S. Let u be a 1-boundary of ∆. Suppose that u as only coefficients in
{−1, 0, 1} and let U be the set of faces which have a nonzero coefficient in u. Let

ν̃(u) :=
⋃
δ∈U

ν̃(δ).

Finally, suppose that Φ(ν̃(u)) (thus, ν̃(u)) is a simple closed path (i.e., is homeomorphic to
the circle). Then u is a simple boundary. Let us sketch the proof. If u′ is a 1-boundary
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v1
−1

v2

1

v

v1 = v2

Figure 13. A simple boundary on a metric graph and its contraction.

included in u, then ν̃(u′) ⊂ ν̃(u). Since ν̃(u) is homeomorphic to the circle, and since u′ is a
cycle, ν̃(u′) is either empty or equal to ν̃(u). Thus, u′ has to be a multiple of u.

In general, unlike the case of the graphs, there exist other kinds of simple boundaries (see
the red boundary on Figure 14).

Now we complete Examples 3.14 and 3.19 adding parameters.

Example 3.42. Let G be a metric graph with an enumeration of vertices and another one of
edges. Let G be the associated graph and ∆ be the associated simplicial complex. Let v1, v2
be two points of G. We can assume that these points are vertices. Then, if we also denote by
v1 and v2 the corresponding vertices in ∆, u := {v2} − {v1} is a simple boundary of ∆. Let
G′ be the metric graph G

/
{v1, v2}, i.e., G′ is the metric graph G where we have glued v1 and

v2. Put the corresponding enumeration of edges of G′, and set G′ and ∆′ the corresponding
graph and simplicial complex. If G is the metric graph on the left of Figure 13, then G′ is
the metric graph on the right. Let Ψ be the natural isomorphism from A〈∆d〉 to A〈∆′d〉. Let
v ∈ A〈∆d〉 be such that ∂∆(v) = u, and v ∈ Mn,1(A) be the column matrix corresponding
to λ(v). We will see that

Symk(∆, u;x) = Symk(∆′;x)
modulo A∗k.

It suffices to prove that we can find a normal kernel matrix S of R, with some basis of
Im(Rᵀ), such that S ?v is a normal kernel matrix of ∆′. This is clearly possible if Ψ(Zd(∆) +
Av) = Zd(∆′). But, clearly, an element of A〈∆d〉 is in Ψ−1(Zd(∆′)) iff its boundary is
in A({v2} − {v1}). Moreover, since ∂∆(v) = ({v2} − {v1}) and since Zd(∆) = ker(∂∆),
Zd(∆) +Av = ∂−1

∆ (A{v2} − {v1}). Thus, Ψ(Zd(∆) +Av) = Zd(∆′). One can conclude that
Symk(∆, u;x) = Symk(∆′;x).

Remark 3.43. In last example, we see that adding a parameter which is a simple boundary
is equivalent to contracting the corresponding set. This is true in general. We will not state it
rigorously, however, let us sketch the proof. It begins as in the previous example. Then, it is
not difficult to show the inclusion Ψ(Zd(∆) + Au) ⊂ Zd(∆′). The opposite inclusion is given
by the following argument. All new cycles obtained after the contraction has a preimage by
Ψ which is a nonempty boundary included in u. Thus, this boundary is a multiple of u. That
prooves the inclusion Zd(∆′) ⊂ (Zd(∆) +Au). Here is the second example.
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Figure 14. A simple boundary on a triangulated torus, and its contraction.

Example 3.44. We use the same notations as in Example 3.41. In Figure 14, Φ(ν̃(u)) is
represented in red. Let S ′ be the topological space obtained by contracting Φ(ν̃(u)) (see the
right hand-side of Figure 14). S ′ is composed of two compact orientable surfaces S1 and S2
glued in one point. The triangulation (∆, ν,Φ) induced a triangulation (∆′, ν ′,Φ′) of S ′ which
contains two particular subcomplexes, ∆1 and ∆2, which correspond to the preimages of S1
and S2 by Φ′ ◦ ν ′. Let (∆i, νi,Φi), i ∈ {1, 2}, be the induced triangulation of Si. A 0-forest
of ∆′ is clearly a union of a 0-forest of ∆1 and of a 0-forest of ∆2. As in Example 3.19 about
Symanzik polynomials on compact orientable surfaces, a 0-forest of ∆i, i ∈ {1, 2}, is obtained
removing any facet. Moreover, every coefficients of Symanzik polynomials of even order on
∆i are equal to one. This is still true on ∆′. Thus, if k is a nonnegative even integer,

Symk(∆i;xFac(∆i)) =
∑

j∈Fac(∆i)
xFac(∆i

2)−j ,

where the j-th variable of xFac(∆i) is xl, l being the number in ∆′ of the j-th facet of ∆i.
Moreover,

Symk(∆, u;x) = Symk(∆′;x)

=
∑

j1∈Fac(∆1
2)

j2∈Fac(∆2
2)

x[1 . .n]\{j1,j2}.

Thus,
Symk(∆, u;x) = Symk(∆1;xFac(∆1)) Symk(∆2;xFac(∆2)).

Set a good measure π on S in a similar way as in Example 3.19. This measure can naturally
be extended to S ′. Replacing xjs by the measure of the corresponding facets, we obtain that

Symk(∆, u;x) = π(S1)π(S2).

This can be generalized to larger numbers of parameters. Roughly speaking, on a compact
oriented surface endowed with a fitting measure, the Symanzik polynomials of even order
with parameters which are disjoint simple boundaries, and with variables corresponding to
the measure of facets, is equal to the product of the measures of the different part of the
surface obtained cutting along the parameters.

Before stating the last theorems of this paper about Symanzik polynomials (Theorem 5.1
and 5.2), we have to prove some interesting combinatorial results.
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4. Exchange graph for matroids

This section could seem out of context: we will not talk about Symanzik polynomials.
However, we need Corollary 4.13 below in the next section. Theorem 4.9 and its corollaries
are interesting combinatorial results about connected components of what we call the exchange
graph of a matroid. These results generalize Theorem 2.12 of [1] to the matroids, and they
go further in the study of the exchange graph. The name “exchange graph” has been chosen
because of the similarity with the exchange property of the bases of a matroid stated in Claim
2.32.

In this section, we fix a (nonoriented) matroid M = (E, I). We set r := rk(M). If I ⊂ E,
Fr(I) will denote the complement of cl(I) in E, where we recall that cl(I) is the closure of I
(see Subsection 2.4).

We are interested in finding the different connected components of some interesting sub-
graphs of the exchange graph of a matroid we define right below.

Definition 4.1. The exchange graph G = (V, E) associated to M is the graph with vertex
set V := I × I and edge set E such that two vertices (I1, I2) and (I ′1, I ′2) are adjacent if there
exists i ∈ E such that either, I ′1 = I1 + i and I ′2 = I2 − i, or, I ′1 = I1 − i and I ′2 = I2 + i.

We fix G = (V, E) the exchange graph of M. If U is a subset of V, then G[U ] denotes the
induced subgraph of G with vertex set U : G[U ] = (U , E [U ]) where E [U ] contains all the edgess
of E connecting two vertices in U . If p, q ∈ [0 . . r], then we set Vp,q := Ip × Iq, where Il,
l ∈ [0 . . r], is the set of independents of rank l in M. Moreover, if p 6= 0 and q 6= r, we define
the bipartite graph Gp,q := G[Vp,q t Vp−1,q+1], whose edge set is denoted Ep,q.

Remark 4.2. If p ∈ [1 . . r] and q ∈ [0 . . r − 1], then we have a natural graph isomorphism:

Φp,q : Gp,q
∼−−→ Gq+1,p−1,

(I1, I2) ∈ Vp,q t Vp−1,q+1 7−−→ (I2, I1) ∈ Vq,p t Vq+1,p−1.

There are two important invariants in connected components of G. They correspond to
Definitions 4.3 and 4.6 below.

Definition 4.3. If I, J are two non necessarily disjoint set, we write I ] J for the multiset
containing elements of I and, disjointly, elements of J (such that elements in I ∩ J appear in
I ] J with multiplicity 2).

Abusing notation, if (U, V ) and (I, J) are two ordered pairs of sets, then we write (U, V ) ⊂
(I, J) if U ⊂ I and V ⊂ J . That defines a partial order on ordered pairs of sets.

Definition 4.4. If (I, J) ∈ I × I is an ordered pair of independent sets and if (U, V ) is
another one, we say that (U, V ) is a codependent ordered pair of (I, J) if (U, V ) ⊂ (I, J) and
cl(U) = cl(V ).

Notice that both members of a codependent ordered pair have the same size (because they
are independent sets of the same rank, see Claim 2.31).

Claim 4.5. Let (I, J) ∈ I × I be an ordered pair of independent sets. Let (U, V ), (U ′, V ′) ∈
I × I be two codependent ordered pairs of (I, J). Then (U ∪ U ′, V ∪ V ′) is a codependent
ordered pair of (I, J).
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In the proofs of this section, we will often use the basic properties of the closure operator
listed in Claim 2.31.

Proof. Clearly (U ∪ U ′, V ∪ V ′) ⊂ (I, J). Moreover

U ∪ U ′ ⊂ cl(U) ∪ cl(U ′) ⊂ cl(U ∪ U ′).

Thus,
cl(U ∪ U ′) ⊂ cl(cl(U) ∪ cl(U ′)) ⊂ cl(cl(U ∪ U ′)) = cl(U ∪ U ′),

and so cl(cl(U)∪cl(U ′)) = cl(U ∪U ′). But, using Definition 4.4, cl(cl(U)∪cl(U ′)) = cl(cl(V )∪
cl(V ′)). Finally, cl(U ∪ U ′) = cl(V ∪ V ′), which ends the proof. �

Thanks to the previous claim, and noticing that (∅, ∅) is always a codependent ordered
pair, one can state the following definition.

Definition 4.6. If (I, J) ∈ I × I is an ordered pair of independent sets, we call maximal
codependent ordered pair (or MCP) of I and J , denoted by MCP(I, J), the unique maximal
codependent ordered pair of (I, J) for the inclusion.

Example 4.7. For example, letM be a graphic matroid represented by a graph G with vertex
set V and edge set E. Then, an ordered pair (I, J) of independent sets corresponds to an
ordered pair of non-necessarily disjoint subforests (F1, F2) of G. Let U be a subset of V and
let H := G[U ] be the induced subgraph of G of vertex set U . If F1[U ] and F2[U ] are subtrees
of H, then the edge set of F1[U ] and the edge set of F2[U ] form a codependent ordered pair
of (I, J). The maximal dependent ordered pair of (I, J) is the union of all ordered pairs of
this kind. See Definition 2.5 of [1] about saturated components of a graph for more details.

It is easy to see that, if (I, J) ∈ V, then I]J and MCP(I, J) are invariant in the connected
component of (I, J) in G (we will prove it later). The nice result is that, in many interesting
subgraphs, they form a complete set of invariants among the subgraph of non-isolated vertices.
That is why we first study which vertices are isolated.

Proposition 4.8. Let p ∈ [1 . . r] and q ∈ [0 . . r− 1] be two integers. Let (I, J) be a vertex of
G. Then:

(1) (I, J) is an isolated vertex of G if and only if cl(I) = cl(J), i.e., MCP(I, J) = (I, J);
(2) if (I, J) ∈ Gp,q, then (I, J) is an isolated vertex of Gp,q if and only if: (I, J) ∈ Vp,q

and I ⊂ cl(J), or (I, J) ∈ Vp−1,q+1 and J ⊂ cl(I);
(3) if p = q + 1, Gp,q has no isolated vertex.

Proof. We will prove the different points of the theorem in another order.
(2) Suppose that (I, J) ∈ Vp,q. If (I, J) is not isolated in Gp,q, there exist (I1, J1) ∈
Vp−1,q+1 and i ∈ E such that I1 = I − i and J1 = J + i. Thus, i ∈ I \ cl(J), and so
I 6⊂ cl(J). Reciprocally, if I 6⊂ cl(J), let i ∈ I \ cl(J). Therefore i 6∈ J . The ordered
pair (I − i, J + i) is an element of Vp−1,q+1 and it is adjacent to (I, J). Thus, (I, J) is
not isolated. To summarize, (I, J) ∈ Vp,q is not isolated in Gp,q if and only if I 6⊂ cl(J).
The case of vertices of Vp−1,q+1 is symmetric: it suffices to use the isomorphism Φp,q

of Remark 4.2. We finally obtain the Point (2).
(1) A similar argument shows that (I, J) is isolated in G if and only if I ⊂ cl(J) and

J ⊂ cl(I). But I ⊂ cl(J) is equivalent to cl(I) ⊂ cl(J). Thus, (I, J) is isolated in G
iff cl(I) ⊂ cl(J) and cl(J) ⊂ cl(I), iff cl(I) = cl(J).



A GENERALIZATION OF SYMANZIK POLYNOMIALS 61

(3) If p > q and if (I, J) ∈ Vp,q, by definition of a matroid, there exists i ∈ I such that
J + i is independent. Thus, I 6⊂ cl(J). Therefore, if p = q + 1 and (I, J) ∈ Vp,q, then
(I, J) is not isolated in Gp,q. Thus there is no isolated vertex in the part Vp,q of the
bipartite graph Gp,q. But, since p = q+1, the isomorphism Φp,q is an automorphism on
Gp,q which exchanges the two parts Vp,q and Vp−1,q+1. Since automorphisms preserve
isolated vertices, there could not be any isolated vertex in Gp,q.

�

Theorem 4.9. Let (I, J) and (I ′, J ′) be two non-isolated vertices of Gp,q. Then (I, J) and
(I ′, J ′) are in the same connected component of Gp,q if and only if

I ] J = I ′ ] J ′ and MCP(I, J) = MCP(I ′, J ′).

Proof. In this proof, the only graph we consider is Gp,q.
Let us begin with the forward direction. Let (I, J) ∈ Vp,q and let (J1, I1) be one of its

neighbor in Vp−1,q+1. Let i ∈ E be such that I1 = J + i, and I = J1 + i. One has

I ] J = (J1 + i) ] J = J1 ] (J + i) = J1 ] I1.

Moreover, if (U, V ) := MCP(I, J), since i ∈ Fr(J), i 6∈ cl(V ), and so i 6∈ U . Thus,
MCP(I, J) = MCP(I − i, J) = MCP(J1, J). Using the same argument on (J1, I1), one
obtains that MCP(I, J) = MCP(J1, I1), which concludes this first part.

Let (I0, J0) and (I ′0, J ′0) be two non-isolated vertices of Gp,q such that I0 ] J0 = I ′0 ] J ′0.
Denote by W, resp. W ′, the set of vertices in the connected component of (I0, J0), resp. of
(I ′0, J ′0). Define Wp,q := W ∩ Vp,q, and define similarly Wp−1,q+1,W ′p,q,W ′p−1,q+1. Since the
two vertices are assumed to be non-isolated, the four previous sets are nonempty. If (I, J)
and (I ′, J ′) are two elements of Vp,q, we set

d((I, J), (I ′, J ′)) := |I \ I ′| = p− |I ∩ I ′|.

Now, set (I, J) ∈ Wp,q and (I ′, J ′) ∈ W ′p,q such that d((I, J), (I ′, J ′)) is minimal. Set d :=
d((I, J), (I ′, J ′)). Assume that d 6= 0. In order to show the theorem, it suffices to prove that
MCP(I, J) 6= MCP(I ′, J ′). We will do it step by step.

Let us begin with two lemmas about matroids.

Lemma 4.10. Let U,U ′ ∈ I be such that |U | = |U ′| and cl(U) 6= cl(U ′). Then, U ∩ Fr(U ′)
and U ′ ∩ Fr(U) are nonempty.

Proof of the lemma. Suppose, without loss of generality, that cl(U)\ cl(U ′) is non empty. Let
i ∈ cl(U) \ cl(U ′) = cl(U) ∩ Fr(U ′). Let j ∈ Fr(U) ∩ (U ′ + i) (it exists because rk(cl(U)) =
rk(U) < rk(U ′+ i), thus (U ′+ i) cannot be included in cl(U)). Since i ∈ cl(U) and j ∈ Fr(U),
one has i 6= j, and so j ∈ Fr(U) ∩ U ′ 6= ∅. Let j′ ∈ Fr(U ′) ∩ (U + j). Once more, j′ 6= j, thus
j′ ∈ Fr(U ′) ∩ U 6= ∅, which concludes the proof. �

Lemma 4.11. If U ∈ I and i ∈ cl(U), then {C ⊂ U
∣∣i ∈ cl(C)} admits a least element for

the inclusion.

Proof of the lemma. Let C and D be two minimal elements of the set of the statement. It
suffices to show that C = D. Let j ∈ C (assume we are not in the trivial case {i} 6∈ I). By
minimality, C − j + i ∈ I. Using several times the augmentation property (Definition 2.30,
(3)), one obtains that U−j+i ∈ I. Since i ∈ cl(D) but i 6∈ cl(U−j), necessarily D 6⊂ (U−j),
and so j ∈ D. The end of the proof is now straightforward. �
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Let us come back to the main proof. Let (I, J) and (I ′, J ′) be as defined above. Here are
the first results.
(42) I ∩ J = I ′ ∩ J ′.
This can be easily deduced from I ] J = I ′ ] J ′.

Next,
(43) Fr(J) = Fr(J ′).
To see this, suppose on the contray that this equation is false. By Lemma 4.10, there exists
an i ∈ J ∩ Fr(J ′). One can see that i ∈ I ′, because i ∈ (I ∪ J) \ J ′. Moreover, let
j ∈ Fr(I ′ − i) ∩ I. Similarly, j ∈ J ′ + i. One obtains that (I ′ − i+ j, J ′ + i− j) ∈ W ′p,q and
(I ′ − i+ j) ∩ I = (I ′ ∩ I) + j, because j ∈ I and i 6∈ I (otherwise one would have i ∈ I ∩ J ,
and so i ∈ I ′ ∩ J ′ by (42); but i ∈ Fr(J ′)). The last equality contradicts minimality of d.

Now set i ∈ Fr(J) ∩ I. One has directly by (43) that i ∈ Fr(J ′), and so i ∈ I ∩ I ′. Then
we prove that

Fr(I − i) = Fr(I ′ − i).(44)

Otherwise, by Lemma 4.10, one could set j ∈ (I ′−i) ∩ Fr(I−i) and j′ ∈ (I−i) ∩ Fr(I ′−i). But
(I−i+j, J+i−j) ∈ Wp,q and (I ′−i+j′, J ′+i−j′) ∈ W ′p,q. Moreover (I−i+j) ∩ (I ′−i+j′) =
(I ∩ I ′)− i+ j + j′. Once more, that contradicts minimality of d.

If (J1, I1) is a neighbor of (I, J), and if (I2, J2) is a neighbor of (J1, I1), then there exists an
i ∈ Fr(J) such that I1 = J+i, and there exists a j ∈ Fr(J1) = Fr(I−i) such that I2 = I−i+j.
By (43), i ∈ Fr(J ′), and, by (44), j ∈ Fr(I ′− i). Setting (I ′2, J ′2) := (I ′− i+ j, J ′+ i− j), one
obtains that (I ′2, J ′2) ∈ W ′p,q and

J2 \ J ′2 = (J + i− j) \ (J ′ + i− j) = J \ J ′.
In particular, if one sets R := J \ J ′, notice that R is nonempty and that R ⊂ J2. Moreover,
notice that R ⊂ I1. Since the neighbors have been arbitrarily chosen, this property extends
to the whole component W. Thus, if we set

P2 :=
⋂

(U,V )∈W
V,

which we will call the set of fixed elements of J , one has R ⊂ P2. We similarly define

P1 :=
⋂

(U,V )∈W
U,

as well as P ′1 and P ′2, where we replace W by W ′ in the definition.
The end of the demonstration will mainly consist in the proof of the following proposition.

Proposition 4.12. With above notations,
MCP(I, J) = (P1, P2).

Let us assume the proposition for the moment, and let us end the proof of the theorem.
If (I, J) and (I ′, J ′) are not in the same connected component, then R is nonempty. But
R ∩ J ′ = ∅, P ′2 ⊂ J ′ and R ⊂ P2. Finally, P2 6= P ′2 and, using the proposition, MCP(I, J) 6=
MCP(I ′, J ′). The contrapositive is: under the hypothesis I ] J = I ′ ] J ′, if MCP(I, J) =
MCP(I ′, J ′) then (I, J) and (I ′, J ′) are in the same connected component. That is what we
wanted to prove.
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Proof of the proposition. It remains to show the proposition. Actually, we have already shown
the inclusion: MCP(I, J) ⊂ (P1, P2). Indeed, at the beginning of the proof, we showed that
if (U, V ) ∈ W, then MCP(U, V ) = MCP(I, J). Looking at the definitions of P1 and of P2, it
is clear that MCP(I, J) ⊂ (P1, P2).

In order to prove the other inclusion, we have to introduce the two following sets

Q1 :=
⋂

(J1,I1)∈Wp−1,q+1

cl(J1), Q2 :=
⋂

(I2,J2)∈Wp,q

cl(J2).

Clearly,
(45) P1 ⊂ Q1 and P2 ⊂ Q2.

The interesting property of these sets is that
(46) Q1 = Q2.

It suffices to proof that any element of E which is not in Q2, is not in Q1 either. Let i be
an element of E which is not in Q2. There exists (I2, J2) ∈ Wp,q such that i 6∈ cl(J2). If
i 6∈ cl(I2), then i 6∈ cl(J1) for any neighbor (J1, I1) of (I2, J2), and so i 6∈ Q1. Otherwise,
i ∈ cl(I2). By Lemma 4.11, there exists a least element for the inclusion C ⊂ I2 such that
i ∈ cl(C). Since i 6∈ cl(J2), we have C 6⊂ cl(J2). Let j ∈ C ∩ Fr(J2). One obtains that
(I2 − j, J2 + j) ∈ Wp−1,q+1, and that i 6∈ cl(I2 − j) since C 6⊂ I2 − j. Thus, i 6∈ Q1.

Now we show a last result, namely that
(47) Q2 ⊂ cl(P2).
To see this, let i ∈ Q2. Let (J1, I1) be a neighbor of (I, J), and (I2, J2) be a neighbor of
(J1, I1). One has i ∈ cl(J) and i ∈ cl(J2), and so i ∈ cl(I1). Thus, by Lemma 4.11, one can
choose C, resp. C1, C2, minimal for the inclusion in J , resp. I1, J2, such that i is in the closure
of C, resp. C1, C2. Since C ⊂ I1, one has, by minimality, that C1 ⊂ C. Then, C1 ⊂ J , and
so, by minimality, C ⊂ C1. All this induces that C = C1. Similarly, C2 = C1, and so C = C2.
By connectivity, for all (U, V ) ∈ W, C ⊂ V . Thus, we have C ⊂ P2, and so i ∈ cl(P2). The
result is now straightforward.

Now we have all the needed intermediate results. Equations (45), (46) and (47) imply that
P1 ⊂ Q1 = Q2 ⊂ cl(P2), and so cl(P1) ⊂ cl(P2). Using a symmetric argument, we obtain
that cl(P1) = cl(P2). Thus, (P1, P2) is a dependent ordered pair of (I, J). In particular,
(P1, P2) ⊂ MCP(I, J).

Finally, we obtain the second inclusion, and then the proposition follows. �

Thus, we have finished the proof of Theorem 4.9. To summarize, the proposition shows
that fixed elements of I ] J cannot be exchanged because they are in the MCP. The rest of
the proof shows that if a configuration cannot be reached, that is because it does not have the
fixed elements of (I, J). To conclude with, the MCPs are the unique nontrivial constraints
preventing exchanges. �

This first corollary will be useful in Section 5.

Corollary 4.13. Let (I, J), (I ′, J ′) be two arbitrary vertices of Gr,r−1. Then (I, J) and (I ′, J ′)
are in the same connected component of Gr,r−1 if and only if

I ] J = I ′ ] J ′ and MCP(I, J) = MCP(I ′, J ′).

Proof. It suffices to combine Theorem 4.9 with Point (3) of Proposition 4.8. �
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The second corollary completes Theorem 4.9 with the case of the whole exchange graph.

Corollary 4.14. Let (I, J), (I ′, J ′) be two arbitrary vertices of G. Then (I, J) and (I ′, J ′)
are in the same connected component of G if and only if

I ] J = I ′ ] J ′ and MCP(I, J) = MCP(I ′, J ′).

Proof. The forward direction is identical as in the proof of Theorem 4.9. For the other
direction, let (I, J) and (I ′, J ′) be two vertices of G such that I]J = I ′]J ′ and MCP(I, J) =
MCP(I ′, J ′). Let

p :=
⌈ |I|+ |J |

2

⌉
=
⌈ |I ′|+ |J ′|

2

⌉
,

q :=
⌊ |I|+ |J |

2

⌋
=
⌊ |I ′|+ |J ′|

2

⌋
.

If |J | > |I|, then J ∩ Fr(I) is nonempty. Let j be an element of this set. Then (I + j, J − i)
is adjacent to (I, J). Iterating this process, it is clear that, if |J | > |I|, the connected
component of (I, J) contains a vertex of Gp,q. Actually, this is still true if |J | 6 |I| putting
elements of I in J and stopping at the right time. Let (Ĩ , J̃), resp. (Ĩ ′, J̃ ′), be an element
of Gp,q in the connected component of (I, J), resp. of (I ′, J ′). We have Ĩ ] J̃ = Ĩ ′ ] J̃ ′ and
MCP(Ĩ , J̃) = MCP(Ĩ ′, J̃ ′). Thus, (Ĩ , J̃) and (Ĩ ′, J̃ ′) are connected in Gp,q, thus in G, if they
are not isolated in Gp,q. There are two possibilities.

If p = q+ 1, then they cannot be isolated by Proposition 4.8 (3). Otherwise, p = q. In this
case, suppose, for example, that (Ĩ , J̃) is isolated. Then, by Proposition 4.8 (2), J̃ ⊂ cl(Ĩ).
But, since |J̃ | = |Ĩ|, Lemma 4.10 implies cl(J̃) = cl(Ĩ), thus MCP(Ĩ , J̃) = (Ĩ , J̃), and so
MCP(Ĩ ′, J̃ ′) = (Ĩ , J̃). Looking at cardinalities, this last equality implies that (Ĩ , J̃) = (Ĩ ′, J̃ ′).

In every case, (Ĩ , J̃) and (Ĩ ′, J̃ ′) are in the same connected component, so are (I, J) and
(I ′, J ′). �

Now we arrive to the last section of this paper which generalizes Theorem 1.1 of [1].

5. Variation of Symanzik rational fractions

In this section we take A = R. We set n, p, q three positive integers, R ∈ Mn,p(R) a
matrix, r its rank, f a basis of Im(Rᵀ), M := MR the matroid associated to R, s := n − r,
S ∈ Mn,s(R) a normal kernel matrix of R with basis f , u ∈ Im(Rᵀ) a nonzero vector,
v = (v1, . . . ,vn) ∈ Rn such that Rᵀv = u, T := S ?v and X ∈Mn(R[x]) the diagonal matrix
diag(x1, . . . , xn). Moreover, we set ∆ a simplicial complex of dimension d, d being a positive
integer, with n facets and p (d− 1)-dimensional faces.

In this last section, we state a nice property of Symanzik rational fractions. One can
roughly states it as “a bounding deformation of the metric of a simplicial complex only
implies a uniformly bounded variation of the Symanzik rational fraction of even order with
one parameter”, where uniformly means that the bound does not depend on the chosen metric.

As seen in Proposition 2.6 and using Proposition 2.27 with standard bases, we have

S̃ym2(R, u;x) = det(T ᵀ
XT )

det(SᵀXS) .

If R is the transpose of the d-th incidence matrix of the simplicial complex ∆ of dimension
d, we have seen in Examples 3.14, 3.19 and 3.44 that it is natural to replace xi, for each
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i ∈ [1 . .n], by the measure of the i-th facet of ∆. That’s why we will deform the metric of ∆
by slightly perturbing X.

Let U be some space and F : U → Mn(R) be a bounded map (i.e., such that there
exists a positive constant C such that, for all t ∈ U , all entries of F (t) are in [−C,C]). Let
y1, . . . , yn : U → R+ be n functions and let

Y : U −→ Mn(R),
t 7−→ diag(y1(t), . . . , yn(t)).

Suppose that Sᵀ(F (t) + Y (t))S is invertible for all t ∈ U .
If φ and ψ are two functions from U to R, then the notation φ = Oy(ψ) means that there

exist two positive constants c and C such that, for all t ∈ U , y1(t), . . . , yn(t) > C implies
that |φ(t)| 6 c|ψ(t)|. Similarly, the notation φ = oy(ψ) means that, for all positive real ε,
there exists a positive real Cε such that, for all t ∈ U , y1(t), . . . , yn(t) > Cε implies that
|φ(t)| 6 ε|ψ(t)|.

We will show he following theorem.
Theorem 5.1. With the above notations,

det(T ᵀ
Y T )

det(SᵀY S) −
det(T ᵀ(Y + F )T )
det(Sᵀ(Y + F )S) = Oy(1).

Before giving the proof, we remark that one can generalize this theorem to Symanzik poly-
nomials of even positive order (the case of the order 0 is trivial), thanks to multidimensional
matrices, in the following way.

Let k be any even positive integer. Let F : U → Ckn(R) be a bounded map, let y1, . . . , yn :
U → R+ be n functions and let

Y : U −→ Ckn(R),
t 7−→ diagk(y1(t), . . . , yn(t)),

where diagk is defined in Proposition 2.7. Suppose that det((Y (t) + F (t)) ·1 S · · · ·k S) is
nonzero for all t ∈ U .
Theorem 5.2. With the above notations,

det(Y ·1 T · · · ·k T )
det(Y ·1 S . . . ·k S) −

det((Y + F ) ·1 T · · · ·k T )
det((Y + F ) ·1 S · · · ·k S) = Oy(1).

Proof of both theorems. Let k be any positive even integer. The proof essentially follow the
proof of Theorem 1.1 in [1]. Let us set the following functions

f1 := det(Y ·1 S · · · ·k S),
f2 := det(Y ·1 T · · · ·k T ),

g1 := det((Y + F ) ·1 S · · · ·k S),
g2 := det((Y + F ) ·1 T · · · ·k T ).

We have already seen (for example in Claim 2.36) that det(SIc) 6= 0 if and only if I ∈ B(M) =
Ir. Moreover, det(TJc) 6= 0 only if J ∈ Ir−1 (see Proposition 2.38). Thus, using Proposition
2.7,

f1 =
∑
I∈Ir

det(SIc)kyI
c
,
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f2 =
∑

J∈Ir−1

det(TJc)kyJ
c
.

Notice that f1 and f2 are homogeneous polynomials of R[y] of respective degrees r and r− 1,
and, more importantly, that all their coefficients are positive.

By the generalized Cauchy-Binet formula (Proposition A.5) applied, for example, to g1,
one obtains

g1 = det((Y + F ) ·1 S · · · ·k S)

=
∑

Ik⊂[1 . .n]
|Ik|=s

det
((

(Y + F ) ·1 S · · · ·k−1 S
)
k:Ik

)
det(SIk)

=
∑

Ik⊂[1 . .n]
|I|k=s

∑
Ik−1⊂[1 . .n]
|I|k−1=s

det
((

(Y + F ) ·1 S · · · ·k−2 S
)
k−1:Ik−1,k:Ik

)
det(SIk−1) det(SIk)

=
...

=
∑

I1,...,Ik⊂[1 . .n]
|I1|=···=|Ik|=s

det
(
(Y + F )1:I1,...,k:Ik

)
det(SI1) · · · det(SIk).

Moreover, as we have seen, if we take the complementaries of the Iis, then we can restrict
them in the following way.

(48) g1 =
∑

I1,...,Ik∈Ir
det

(
(Y + F )1:Ic1 ,...,k:Ic

k

)
det(SIc1 ) · · · det(SIc

k
).

In the same way,

(49) g2 =
∑

J1,...,Jk∈Ir−1

det
(
(Y + F )1:Jc1 ,...,k:Jc

k

)
det(TJc1 ) · · · det(TJc

k
).

Admitting coefficients to be functions, g1 and g2 are still polynomials of respective degrees
r and r − 1, but they are no more homogeneous. Moreover all coefficients of g1 and g2 are
bounded.

If I is a subset of [1 . .n] and if h ∈ R[y], let us denote by [yI ]h the coefficient of the
monomial yI in h. For example, if I ∈ Ir, the monomial yIc of g1 is only present in the term
where all Iis are equal to I. Thus

[yIc ]g1 = [yIc ]
(

det
(
(Y + F )1:Ic,...,k:Ic

)
det(SIc)k

)
= det(SIc)k.

We deduce that these coefficients are constant, and that for all I ∈ I,
(50) [yIc ]g1 = [yIc ]f1.

Similarly, if J ∈ Ir−1, [yJc ]g2 = [yJc ]f2.
The statements of the theorems are that f2/f1 − g2/g1 = Oy(1). Let us simplify this

statement thanks to the following claim.

Claim 5.3. We have g1 − f1 = oy(f1).
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Proof of the claim. By (50), g1−f1 is a polynomial of degree at most r−1, whose coefficients
are bounded functions. Moreover, if J ⊂ [1 . .n] is an arbitrary subset such that [yJ ](g1 − f1)
is nonzero, then, looking at (48), it is clear that J is strictly included in some basis I ∈ Ir of
M. It happens that [yI ]f1 = det(SI)k is a positive integer. Since [yJ ](g1 − f1) is bounded,(

[yJ ](g1 − f1)
)
yJ = oy(yI).

Since all coefficients of f1 are positive, we can sum all terms of (g1 − f1), and then conclude
the proof. �

Multiplying f2/f1 − g2/g1 by f1g1, and using the claim, it remains to show that
g1f2 − f1g2 = Oy(f2

1 ).

Notice that the monomials with nonzero coefficients in f2
1 are exactly the monomials of the

form yI
c
yI
′c where (I, I ′) ∈ Ir × Ir.

Let us rewrite
g1(t)f2(t) =

∑
I1,...,Ik∈Ir

∑
J∈Ir−1

a(I1, . . . , Ik, J)h(I1, . . . , Ik, J ; t),

where
h(I1, . . . , Ik, J ; t) := det

(
(Y + F )1:Ic1 ,...,k:Ic

k

)
yJ

c

is a polynomial whose coefficients are functions, and
a(I1, . . . , Ik, J) = det(SIc1 ) · · · det(SIc

k
) det(TJc)k

is a real number. Similarly,
f1(t)g2(t) =

∑
J1,...,Jk∈Ir−1

∑
I∈Ir

a(J1, . . . , Jk, I)h(J1, . . . , Jk, I; t),

where
h(J1, . . . , Jk, I; t) := det

(
(Y + F )1:Jc1 ,...,k:Jc

k

)
yI

c
,

a(I1, . . . , Ik, J) := det(TJc1 ) · · · det(TJc
k
) det(SIc)k.

It is clear that
h(K1, . . . ,Kk, L; t) = Oy(yK

c
1∩···∩K

c
nyL

c)

= Oy(y(K1∪···∪Kn)cyL
c).(51)

Let us define a new graph which is slightly similar to the exchange graph Gr,r−1 of M. Let
G be a bipartite graph with vertex set V = Vr−1,r tVr,r−1 and edge set E where

Vr−1,r := (Ir−1)k × Ir,
Vr,r−1 := (Ir)k × Ir−1,

and where two vertices (J1, . . . , Jk, I) ∈ Vr−1,r and (I1, . . . , Ik, J) ∈ Vr,r−1 are connected
by an edge if and only if there exists i ∈ Fr(J1) ∩ · · · ∩ Fr(Jk) ∩ I such that I = J + i and
Il = Jl + i, for all l ∈ [1 . . k].

Definition 5.4. A vertex (J1, . . . , Jk, I) in Vr−1,r is said ordinary if Fr(J1) = · · · = Fr(Jk).
A vertex (I1, . . . , Ik, J) in Vr,r−1 is said ordinary if I1 ∩Fr(J) = · · · = Ik ∩Fr(J). A vertex of
V which is not ordinary is called special.
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Now one can see h and a as some functions on G. Moreover

g1(t)f2(t) =
∑

u∈Vr,r−1

a(u)h(u; t),(52)

g2(t)f1(t) =
∑

u∈Vr−,r
a(u)h(u; t).(53)

That is why, we will need the following claim.

Claim 5.5. Here are some properties of h and a.
(1) If u and v are two adjacent vertices of G, then h(u)− h(v) = Oy(f2

1 ).
(2) If u is a special vertex of V, then h(u; t) = Oy(f2

1 ).
(3) If (J1, . . . , Jk, I) ∈ Vr−1,r is an ordinary vertex, and if (I1, . . . , Ik, J) ∈ Vr,r−1 is one

of its neighbors, then, for all l ∈ [1 . . k],

det(SIc
l
)

det(SIc1 ) =
det(TJc

l
)

det(TJc1 ) .

Proof. The three points are proven independently.
(1) Let u = (J1, . . . , Jk, I) ∈ Vk−1,k and v = (I1, . . . , Ik, J) be two adjacent vertices. Let

i ∈ [1 . .n] be such that I = J + i. Let us extract yi from h(u; t) and from h(v; t). One
has

h(I1, . . . , Ik, J ; t) = det
(
(Y + F )1:Ic1 ,...,k:Ic

k

)
yJ

c

=
(

det
(
(Y + F )1:Ic1 ,...,k:Ic

k

)
yI

c
)
yi,

and, using the Laplace decomposition along the column of the determinant which
contains yi,

h(J1, . . . , Jk, I; t) = det
(
(Y + F )1:Jc1 ,...,k:Jc

k

)
yI

c

=
(

det
(
(Y + F )1:Ic1 ,...,k:Ic

k

)
yi +Oy(yI

c
1∩···∩I

c
k)
)
yI

c
.

Thus,

h(u; t)− h(v; t) = Oy(yI
c
1∩···∩I

c
kyI

c)

= Oy(yI
c
1yI

c).

But the monomial yIc1yIc is present in f2
1 with a positive coefficient. Thus,

h(u; t)− h(v; t) = Oy(f2
1 ).

(2) Since they are two kinds of special vertices, we will make two cases. Let u =
(J1, . . . , Jk, I) be a special vertex of Vr−1,r. Assume, without loss of generality, that
Fr(J1) 6= Fr(J2). We have seen in (51) that

h(u; t) = Oy(y(J1∪···∪Jk)cyI
c).
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By Lemma 4.10, Fr(J1) 6= Fr(J2) implies that there exists j ∈ J1 ∩ Fr(J2). Since
rk(J2) = r − 1, I ′ := J2 + j is in Ir. But I ′ ⊂ J1 ∪ · · · ∪ Jk, and so

y(J1∪···∪Jk)c = Oy(I ′c).

Then,
h(u; t) = Oy(yI

′c
yI

c),

but the monomial yI′cyIc is present in f2
1 , and so

h(u; t) = Oy(f2
1 ).

In the same way, if u = (I1, . . . , Ik, J) is a special vertex of Vr,r−1 we have

h(u; t) = Oy(y(I1∪···∪Ik)cyJ
c).

Assume, without loss of generality, that there exists an element i in (I1∩Fr(J))\ (I2∩
Fr(J)). One has

i 6∈ (I1 ∪ · · · ∪ Ik)c, (I1 ∪ · · · ∪ Ik)c ⊂ Ic2, i ∈ Ic2.

This implies (I1 ∪ · · · ∪ Ik)c + i ⊂ Ic2. Moreover, I := J + i is in Ir. One obtains

y(I1∪···∪Ik)cyJ
c = y(I1∪···∪Ik)c+iyJ

c−i

= Oy(yI
c
2yI

c).

Finally, the monomial yIc2yIc has a positive coefficient in f2
1 . Thus

h(u; t) = Oy(f2
1 ).

(3) We use the notations of the statement. Let i be such that I = J + i. The partial
result (37) in the proof of Theorem 3.32 can be restated here as

det(TJc1 ) =
∑

j∈Fr(J1)
ζJc1−j,{j}σ(J1 + j) detf (Rᵀ

J1+j)vj ,

where

ζJc1−j,{j} =
detf (Rᵀ

J1
? R

ᵀ

{j})
detf (Rᵀ

J1+j)
.

Since the vertex is ordinary, cl(J1) = cl(Jl). Thus, there exists an invertible matrix
Pl ∈Mn(R) such RJl = PlRJ1 . We set

P̃l :=

 Pl

0
...
0

0 ··· 0 1

 .
We also have Fr(Jl) = Fr(J1), and

det(TJc
l
) =

∑
j∈Fr(Jl)

ζJc
l
−j,{j} σ(Jl + j) detf (Rᵀ

Jl+j)vj

=
∑

j∈Fr(J1)

detf (Rᵀ

Jl
? R

ᵀ

{j})
detf (Rᵀ

Jl+j)
σ(Jl + j) detf (Rᵀ

Jl+j)vj
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=
∑

j∈Fr(J1)
σ(Jl + j) detf (Rᵀ

Jl
? R

ᵀ

{j})vj

=
∑

j∈Fr(J1)
σ(Jl + j) detf (P̃l(R

ᵀ

J1 ? R
ᵀ

{j}))vj

= det(P̃l)
∑

j∈Fr(J1)

σ(Jl + j)
σ(J1 + j) σ(J1 + j) detf (Rᵀ

J1 ? R
ᵀ

{j})vj

= det(Pl)
∑

j∈Fr(J1)

σ(Jl)
σ(J1)ζJ

c
1−j,{j} σ(J1 + j) detf (Rᵀ

J1+j)vj

= det(Pl)
σ(Jl)
σ(J1) det(TJc1 ).

We have to make a second, much easier, computation. We use Equation (4), in the
proof of Theorem 2.15, and the fact that S is a normal kernel matrix of R with basis
f .

det(SIc
l
) = σ(Icl ) det(Rᵀ

Il
)

= σ(Icl )
σ(Ic1) σ(Ic1) det(PlR

ᵀ

I1)

= σ(Jl + ic)
σ(J1 + ic) det(Pl)σ(Ic1) det(Rᵀ

I1)

= σ(Jcl )
σ(Jc1) det(Pl) det(SIc1 ),

and
σ(Jcl )
σ(Jc1) = σ([1 . .n])

σ([1 . .n])
σ(Jcl )
σ(Jc1) = σ(Jl)

σ(J1) .

Looking both last equations of both computations, we can conclude that
det(SIc

l
)

det(SIc1 ) =
det(TJc

l
)

det(TJc1 ) .

�

Let CC(G) be the set of connected components of G. If H ∈ G, we set
Hr−1,r := H ∩Gr−1,r and
Hr,r−1 := H ∩Gr,r−1.

Moreover, we denote by SCC(G) the set of special connected components of G, i.e., of con-
nected components of G containing a special vertex, and by NCC(G) := CC(G) \ SCC(G)
the set of ordinary connected components of G.

The equation we wanted to show,
g1f2 − g2f1 = Oy(f2

1 ),

is equivalent to ∑
H∈CC(G)

( ∑
u∈Hr,r−1

a(u)h(u; t)−
∑

u∈Hr−1,r

a(u)h(u; t)
)

= Oy(f2
1 ).
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In the above sum, we can remove the special vertices because of Point (2) of Claim 5.5.
But we can also remove any neighbor of a special vertex, thanks to the Point (1), and even
all the vertices which are connected to a special vertex by a path in G. Thus, it remains to
show ∑

H∈NCC(G)

( ∑
u∈Hr,r−1

a(u)h(u; t)−
∑

u∈Hr−1,r

a(u)h(u; t)
)

= Oy(f2
1 ).

Actually, we will prove that, for all H ∈ NCC(G),∑
u∈Hr,r−1

a(u)h(u; t)−
∑

u∈Hr−1,r

a(u)h(u; t) = Oy(f2
1 ).

Fix a connected component H in NCC(G). Let V′ be its vertex set and E′ be its edge set.
Let G be the exchange graph of M, as defined in Section 4, with vertex set V and edge set E .
We define the following projection:

π : V → Vr,r−1 t Vr−1,r,
(K1, . . . ,Kk, L) 7→ (K1, L).

Let H := G[π(V′)] be the induced subgraph of G with vertex set the image of V′ by π. Let
V ′ be its vertex set and E ′ be its edge set. We have the following claim.

Claim 5.6. H is a connected component of G, and the map π induces an isomorphism of
graphs between H and H.

Proof. First we prove that π is injective on H. Notice that if u = (K1, . . . ,Kk, L) and v =
(K ′1, . . . ,K ′k, L′) are two vertices in H, then Kl ] L = K ′l ] L′ for all l ∈ [1 . . k] (the proof
is identical as the case of the exchange graph). Thus, if we know u, we can retrieves v only
knowing L′. But L′ is encoded in π(v). That concludes the injectivity. Thus π induces a
bijection between V′ and V ′.

Next, we prove that π induces a natural bijection between E′ and E ′. Let e ∈ E′. e is
incident to a vertex in V′r−1,r, which is ordinary. Let u = (J1, . . . , Jk, I) ∈ V′r−1,r be this
vertex. Let v = (I1, . . . , Ik, J) be the other endpoint of e. Then there exists i ∈ [1 . .n] such
that I = J + i and I1 = J1 + i. Thus, π(v) = (I1, J) is a neighbor of π(u) = (J1, I).

Reciprocally, let e be an edge of Gr,r−1 which is incident to a vertex u of V ′. Let u ∈ V such
that π(u) = u. Let v be the other endpoint of e. We want to show that there exists v in V
such that π(v) = V (in order to show that v ∈ V ′, and so that H is a connected component),
and that u and v are connected by an edge. There are two cases.

• If u = (J1, . . . , Jk, I) ∈ Vr−1,r, then u = (J1, I). There exists i ∈ Fr(J1) such that
v = (J1 + i, I − i). Since u is an ordinary vertex, i ∈ Fr(J1) implies that i ∈ Fr(Jl)
for all l ∈ [1 . . k]. Thus, v := (J1 + i, . . . , Jr + i, I − i) is a neighbor of u such that
π(v) = v.
• If u = (I1, . . . , Ik, J) ∈ Vr,r−1, then u = (I1, J). There exists i ∈ Fr(J) ∩ I1 such that
v = (I1− i, J + i). Since u is a special vertex, i ∈ Fr(J)∩ Il for all l ∈ [1 . . k]. Finally,
v := (I1 − i, . . . , Ik − i, J + i) is a neighbor of u in H, and π(v) = v.

π induces a bijection between vertices of H and of H, and between edges of H and edges of
Gr,r−1 which are incident to a vertex of H. Thus, the claim is true. �

Let us denote by π′ : H→ H the isomorphism induced by π.
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Now we study a second bijection. The well-definiteness will be justified in Claim 5.7 below.
Set

Φ : V ′r,r−1 → V ′r−1,r,

(I, J) 7→
(
U ∪ (J \ V ), V ∪ (I \ U)

)
,

where (U, V ) is the MCP of any vertex of H. This map induces a map on H:

Φ̃ : V′r,r−1 → V′r−1,r,
u 7→ π′−1 ◦ Φ ◦ π′(u).

Claim 5.7. Φ and Φ̃ have the following properties.
(1) Φ and Φ̃ are well-defined, and both are bijections.
(2) If u ∈ V′r,r−1, then a(Φ̃(u)) = a(u).

Proof. We prove the two points independently.
(1) It suffices to prove the first point for Φ. Let (I, J) ∈ Hr,r−1. Let (U, V ) := MCP(I, J).

Let (J ′, I ′) :=
(
U ∪ (J \V ), V ∪ (I \U)

)
. We want to apply Corollary 4.13 in order to

show that (J ′, I ′) ∈ H. In the definition of (J ′, I ′), the unions are disjoint because, if
i ∈ U ∩ J , then ({i}, {i}) is a codependent ordered pair of (I, J), and so i ∈ V . Thus

(U t (J \ V )) ] (V t (I \ U)) = U ] (J \ V ) ] V ] (I \ U)
= I ] J.

Moreover, set (U ′, V ′) := MCP(J ′, I ′). Clearly (U, V ) ⊂ (U ′, V ′). And
cl(U ′) = cl(U t (U ′ \ U))

= cl(cl(U) t (U ′ \ U))
= cl(cl(V ) t (U ′ \ U))
= cl(V t (U ′ \ U)).

Similarly,
cl(V ′) = cl(U t (V ′ \ V )).

But V t (U ′ \ U) ⊂ V t (J \ V ) = J and U t (V ′ \ V ) ⊂ I. Since
cl(U t (V ′ \ V )) = cl(V ′) = cl(U ′) = cl(V t (U ′ \ U)),(

Ut(V ′\V ), V t(U ′\U)
)
is a codependent ordered pair of (I, J). Thus, it is included

in (U, V ), and so U ′ \ U and V ′ \ V are empty. Finally,
I ] J = J ′ ] I ′ and MCP(I, J) = MCP(J ′, I ′).

We can apply Theorem 4.9, and we obtain (J ′, I ′) ∈ Hr−1,r. Thus, Φ is well-defined.
One can easily retrieve (I, J) from (J ′, I ′) by (I, J) := (U ∪ (I ′ \ V ), V ∪ (J ′ \ U)).

Thus, Φ is a bijection. So is Φ̃.
(2) Let u = (I, I2, . . . , Ik, J) ∈ Vr,r−1 be a vertex and let v = (J ′, J2, . . . , Jk, I

′) ∈ Vr−1,r
be the image of u by Φ̃. By connectivity, Property (3) of Claim 5.5 extends to the
whole component H. Thus, for all l ∈ [2 . . k],

det(SIc
l
)

det(SIc)
=

det(TJc
l
)

det(TJ ′c)
.
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Setting al := det(SIc
l
)/ det(SIc) for all l ∈ [2 . . k], we obtain

a(u) = det(SIc)k1 · a2 · · · ak det(TJc)k,
a(v) = det(TJ ′c)k1 · a2 · · · ak det(SI′c)k.

It remains to show that det(SIc)k det(TJc)k = det(SI′c)k det(TJ ′c)k. The proof will be
very similar to the proof of (3) in Claim 5.5. We have

cl(J ′) = cl(U ∪ (J \ V ))
= cl(cl(U) ∪ (J \ V ))
= cl(cl(V ) ∪ (J \ V ))
= cl(J).

In particular, a consequence of Example 3.31 is that, if εJ and εJ ′ are orientions
relative to J and to J ′ on M, then εJ = ±εJ ′ . Moreover, since cl(U) = cl(V ), there
exists an invertible matrix P ∈ M|U |(R) such that RtV = RtUP . A consequence of
Theorem 3.32 is that there exists εJ and εJ ′ two orientations relative to J and to J ′
on M such that

det(TJ ′c) =
∑

j∈Fr(J ′)
εJ ′(j)|detf (Rᵀ

J ′+j)|vj

=
∑

j∈Fr(J)
±εJ(j)|detf (Rᵀ

U ? R
ᵀ

(J\V )+j)|vj

= ±
∑

j∈Fr(J)
εJ(j)

∣∣∣∣ detf
(
R

ᵀ

V ? R
ᵀ

(J\V )+j

 P−1
0
...
0

0 ··· 0 Id


)∣∣∣∣vj

= ± 1
det(P )

∑
j∈Fr(J)

εJ(j)
∣∣∣∣ detf (Rᵀ

J+j)
∣∣∣∣vj

= ±det(TJc)
det(P ) .

And for S, thanks to (4) and using the fact that S is a normal kernel matrix of R
with basis f ,

|det(SI′c)| = |detf (Rᵀ

I′)|
= |detf (Rᵀ

V ? R
ᵀ

I\U )|

=
∣∣∣∣ detf

(
R

ᵀ

U ? R
ᵀ

I\U

 P
0
...
0

0 ··· 0 Id


)∣∣∣∣

= |det(P )| · | detf (Rᵀ

I )|.

Since k is even, we obtain that

det(SI′c)k det(TJ ′c)k = det(SIc)k det(TJc)k.
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Finally,
a(u) = a(Φ(u)).

�

We recall that we wanted to show∑
u∈Hr,r−1

a(u)h(u; t)−
∑

u∈Hr−1,r

a(u)h(u; t) = Oy(f2
1 ).

By Claim 5.7, this equation is equivalent to∑
u∈Hr,r−1

a(u)h(u; t)− a(Φ̃(u))h(Φ̃(u; t)) = Oy(f2
1 ),

and even to ∑
u∈Hr,r−1

a(u)(h(u; t)− h(Φ̃(u; t))) = Oy(f2
1 ).

As we have already seen, Point (1) of Claim 5.5, which states that h(u)−h(v) = Oy(f2
1 ) if u

and v are adjacent, can be extended to the whole connected component. Thus, if u ∈ Vr,r−1,

h(u; t)− h(Φ̃(u; t)) = Oy(f2
1 ).

We obtain a sum of Oy(f2
1 ), which is a Oy(f2

1 ). Finally,

g1f2 − f1g2 = Oy(f2
1 ),

which concludes the proof of the theorem. �

One can easily obtain from Theorem 5.1 the following corollary.

Corollary 5.8. Let l be a positive integer, u1, . . . , ul be l independent vectors in Im(Rᵀ) and
Tl := S ? v1 ? . . . ? vl where, for each i ∈ [1 . . l], vi ∈ Rn and verifies Rᵀvi = ui. Let F and
Y be two functions as in Theorem 5.1. Then

det(T ᵀ

l Y Tl)
det(SᵀY S) −

det(T ᵀ

l (Y + F )Tl)
det(Sᵀ(Y + F )S) = Oy

(
max

i∈[1 . .n]
(yl−1
i )

)
.

Similarly, from generalized Theorem 5.2 we have the following generalization.

Corollary 5.9. Let l be a positive integer, u1, . . . , ul be l independent vectors in Im(Rᵀ) and
Tl := S ? v1 ? . . . ? vl where, for each i ∈ [1 . . l], vi ∈ Rn and verifies Rᵀvi = ui. Let F and
Y be two functions as in Theorem 5.2. Then

det(Y ·1 Tl · · · ·k Tl)
det(Y ·1 S · · · ·k S) −

det((Y + F ) ·1 Tl · · · ·k Tl)
det((Y + F ) ·1 S . . . ·k S) = Oy

(
max

i∈[1 . .n]
(yl−1
i )

)
.

Proof of both corollaries. We use the notations of Corollary 5.9. First, if l′ ∈ [0 . . l], Tl′ will
denote S ?v1 ?. . .?vl′ . If l′ 6= l, set Rl′ a normal kernel matrix of Tl′ for the standard basis. It
happens that, symmetrically, Tl′ will be a normal kernel matrix of Rl′ for the standard basis.
Thus, applying Theorem 5.1, one obtains that

det(Y ·1 Tl′+1 · · · ·k Tl′+1)
det(Y ·1 Tl′ · · · ·k Tl′)

− det((Y + F ) ·1 Tl′+1 · · · ·k Tl′+1)
det((Y + F ) ·1 Tl′ . . . ·k Tl′)

= Oy
(

max
i∈[1 . .n]

(yl−1
i )

)
.

Next, we will prove that
g2
g1

= Oy( max
i∈[1 . .n]

yi),
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where
g1 := det((Y + F ) ·1 T1 . . . ·k T1),
g2 := det((Y + F ) ·1 S · · · ·k S).

By Claim 5.3, it suffices to prove that
g2
f1

= Oy( max
i∈[1 . .n]

yi),

where
f1 :=

∑
I∈Ir

det(SIc)kyI
c
.

Since f1 has only positive coefficients, and since coefficients of g2 are bounded, it remains to
show that, if J ⊂ [1 . .n] is such that [yJ ]g2 is nonzero, then there exists I ∈ Ir and i ∈ I
such that J ⊂ Ic + i. But we have Formula (49):

g2 =
∑

J1,...,Jk∈Ir−1

det
(
(Y + F )1:Jc1 ,...,k:Jc

k

)
det(TJc1 ) · · · det(TJc

k
).

It implies that, if [yJ ]g2 is nonzero, then J ⊂ J ′c for some J ′ ∈ Ir−1. Thus, one can find
i ∈ Fr(J ′), and set I = J ′ + i. Then, J ⊂ J ′c = Ic + i, and so

yJ = Oy(f1 max
i∈[1 . .n]

(yi)).

Summing all monomials, we obtain
g2
f1

= Oy( max
i∈[1 . .n]

(yi)).

This last formula can be applied to all Tl′ , l′ ∈ [0 . . l− 1]: replace T by Tl′+1 and S by Tl′ .
If l′ ∈ [0 . . l], we define the functions

al′ := det(Y ·1 Tl′+1 · · · ·k Tl′+1)
det(Y ·1 Tl′ · · · ·k STl′)

,

bl′ := det((Y + F ) ·1 Tl′+1 · · · ·k Tl′+1)
det((Y + F ) ·1 Tl′ · · · ·k Tl′)

.

The previous results can be summarized by the formulæ
al′ − bl′ = Oy(1),

bl′ = Oy( max
i∈[1 . .n]

(yi)).

Actually, we also have
al′ = Oy( max

i∈[1 . .n]
(yi)).

Now the last computation:
det(Y ·1 Tl · · · ·k Tl)
det(Y ·1 S · · · ·k S) −

det((Y + F ) ·1 Tl · · · ·k Tl)
det((Y + F ) ·1 S . . . ·k S)

= a1 · · · al − b1 · · · bl
= (a1 − b1)a2 · · · al + b1(a2 − b2)a3 · · · al + · · ·+ b1 · · · bl−1(al − bl).

Each term is a Oy(1)
(
Oy(maxi∈[1 . .n] yi)

)l−1, which concludes the proof. �
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One cannot expect a better asymptotic for Corollary 5.8 because of the following counter-
example.

Example 5.10. Let n = 3 be an integer We set

R =


0 0 0
1 0 0
0 1 0
0 0 1

 , S =


1
0
0
0

 , T3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
And F will be constant equal to 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 .
Thus,

det(T ᵀ

3 Y T3) = det(Y ) = y1y2y3y4,

det(Sᵀ
Y S) = y1,

det(T ᵀ

3 (Y + F )T3) = det(Y + F ) = y1y2y3(y4 − 1),
det(Sᵀ(Y + F )S) = y1.

Finally,
det(T ᵀ

l Y Tl)
det(SᵀY S) −

det(T ᵀ

l (Y + F )Tl)
det(Sᵀ(Y + F )S) = y1y2y3y4

y1
− y1y2y3(y4 − 1)

y1
= y2y3

= Oy
(

max
i∈[1 . . 4]

(y2
i )
)
.

Conclusion

We have seen several mathematical results where Symanzik polynomials appear. Moreover,
our generalization of Symanzik polynomials induces generalization of some of these results.
However, there are still many ways to explore. For example, since Theorem 1.1 of [1] are
generalized in Section 5, this could lead to a natural generalization of Theorem 1.2 of [1]. We
also think that Example 3.14 about Jacobian torus could be extend to greater dimensions
using Poincaré duality.

In conclusion, Symanzik polynomials has many interesting properties in many different
domains: quantic field theory, combinatorics, geometry, algebraic geometry. The author
will pursue its research on these interesting objects, and he hopes he will find many more
interesting results.

Appendix. Multidimensional matrices

In this appendix, we will defined what we called multidimensional matrices, and some
basic operations on it. We will almost only discuss here what we need in the rest of this
article; that is to say: define a multiplication, state some properties of it, define a generalized
determinant called hyperdeterminant, state the multiplicativity of the hyperdeterminant, and
state a generalized Cauchy-Binet formula. We will make no proof. They all can be done,
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eventually adapting the corresponding proof on usual matrices. In fact, hyperdeterminants
were first discovered by Arthur Cayley in 1843 (see [5]), and all below results are known for
some time.

Let A be a PID. A k-dimensional matrix of size n1 × · · · × nk on A, where k is a positive
integer, and where the size denoted by n1 × · · · × nk is a k-tuple of positive integers, is a
family of elements of A indexed by [1 . .n1]×· · ·× [1 . .nk]. If C is a multidimensional matrix,
we denote by dim(C) its dimension, by size(C) its size, and by sizei(C), i ∈ [1 . . k], the i-th
element of size(C). Moreover, in order to not make too many indices in what follows, if r
is a nonnegative integer, if l1, . . . , lr are different integers of [1 . . k], if i1, . . . , ir are positive
integers, and if jl for l ∈ [1 . . k] \ {i1, . . . , ir} are positive integers too, then

[l1 : i1, . . . , lr : ir, l : jl otherwise]

is the k-tuple (α1, . . . , αk) where

αl =
{
im if m ∈ [1 . . r] and l = lm,
jl otherwise.

If [u] denotes a k-tuple (u1, . . . , uk) of positive integers such that [u] 6 size(C) (i.e., such that
ul 6 sizel(C) for all l ∈ [1 . . k]), then c[u] is the element of C of index u. In a similar way, if
n, s are positive integers and if P is a (usual) matrix ofMn,s(A), then p[i, j], with i ∈ [1 . .n]
and j ∈ [1 . . s], will denote the entry of P indexed by (i, j).

Now we fix k a positive integer, and C a k-dimensional matrix on A.
If B is another k-dimensional matrix on A with size(B) = size(C), then D := B + C is

naturally defined by: for all [u] 6 size(B),

d[u] = b[u] + c[u].

Set s a positive integer, m ∈ [1 . . k], n := sizem(C), and P a (usual) matrix of Mn,s(A).
Then the (right) multiplication of C by P along the m-th direction, denoted by C ·m P , is the
k-dimensional matrix B of size

size(B) = [m : s, l : sizel(C) otherwise]

verifying, for all k-tuple u 6 size(B),

b[u] =
n∑
i=1

a[m : i, l : ul otherwise] · p[i, um].

In some cases, this multiplication verifies some simple properties similar to the associativity
and the commutativity.

Claim A.1. Let k be a positive integer and C be a k-dimensional matrix.
• Let l ∈ [1 . . k] be an integer, p := sizel(C), r and s be two positive integers, and
P ∈Mp,r(A) and Q ∈Mr,s(A) be two matrices, then

C ·l P ·l Q = C ·l (PQ).

• Let l, l′ ∈ [1 . . k] be two different integers, p := sizel(C), q := sizel′(C), r and s be two
positive integers, P ∈Mp,r(A), and Q ∈Mq,s(A), then

C ·l P ·l′ Q = C ·l′ Q ·l P.
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Now we will define the hyperdeterminant which gives a meaning to Proposition 2.7.
We say that C is hypercubic of size n if sizei(C) = n for every i in [1 . . k]. Let n be a

positive integer. Then, Ckn(A) will denote the set of k-dimensional hypercubic matrices of size
n on A. If C ∈ Ckn(A), the hyperdeterminant det(C) of C is defined by

det(C) := 1
n!

∑
τ1,...,τk∈Sn

k∏
i=1

σ(τi)
n∏
i=1

c[l : τl(i)].

With usual matrices, we are more accustomed to a definition with a sum where τ1 is always
the identity permutation, making disappear the multiplicative constant 1/n!:

d̃et(C) :=
∑

τ2,...,τk∈Sn

∏
i=2k

σ(τi)
n∏
i=1

c[1 : i, l : τl(i)].

Our first definition is more symmetric and, more importantly, it has the expected properties
of the determinant. The other one has not. The link between both definitions is the following
claim.

Claim A.2.

det(C) =
{

d̃et(C) if k is even,
0 otherwise.

The following claim states that, if we see a k-dimensional matrix as a superposition of n
(k − 1)-dimensional matrix, then the determinant is alternating and n-linear. It also states
that the determinant is invariant by permutation of the directions.

Claim A.3. Let k > 2 be an integer, l, l′ be two integers of [1 . . k] with l < l′, n be a positive
integer, C1, . . . , Cn, C

′
l ∈ Ck−1

n (A) be multidimensional matrices, and a be an element of A.
If we denote by

?(C1, . . . , Cn)
the element of Ckn(A) being the superposition along the k-th direction of the Cis, i.e., verifying,
for every k-tuple [u] 6 (n, . . . , n),

?(C1, . . . , Cn)[u] = Cuk [l : ul],

then we have

det(?(C1, . . . , Cl + aC ′l , . . . , Cn)) = det(?(C1, . . . , Cn)) + a?(C1, . . . , C
′
l , . . . , Cn)

and

det(?(C1, . . . , Cl−1, Cl′ , Cl+1, . . . , Cl′−1, Cl, Cl′+1, . . . , Cn)) = −det(?(C1, . . . , Cn)).

Moreover, if k and n are positive integers, C ∈ Ckn(A), τ ∈ Sk, and if we denote by
Cτ ∈ Ckn(A) the matrix verifying, for every k-tuple [u] 6 size(C),

Cτ [u] = C[l : uτ−1(l)],

then
det(C) = det(Cτ ).

Now we state the multiplicativity of the determinant relatively to the multiplication by
usual matrices.
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Proposition A.4. If k and n are positive integers, if l ∈ [1 . . k], if C ∈ Ckn(A), and if
P ∈Mn(A), then

det(C ·l P ) = det(C) det(P ).

And finally, the generalization of the Cauchy-Binet formula. Let n, s, k be positive integers,
m ∈ [1 . . k] be an integer, and Γ = {γ1, . . . , γs} be a set of size s of elements in [1 . .n]s such
that γ1 < · · · < γs. If C is a k-dimensional matrix with sizem(C) = n, then Cm:Γ denote the
k-dimensional matrix which verifies

size(Cm:Γ) = [m : s, l : sizel(C) otherwise],
and, for any k-tuple [u] 6 size(Cm:Γ),

Cm:Γ[u] = C[m : γum , l : ul otherwise].
Of course, if m′ ∈ [1 . . k] is different from m and if Γ′ ⊂ [1 . . sizem′(C)], then

Cm:Γ,m′:Γ′ :=
(
Cm:Γ

)
m′:Γ′ .

Proposition A.5 (Generalized Cauchy-Binet formula). Let k, n, s be positive integers, m ∈
[1 . . k], C a k-dimensional matrix on A of size

size(C) = [m : n, l : s otherwise]
and P ∈Mn,s(A). Then

det(C ·m P ) =
∑

I⊂[1 . .n]
|I|=s

det(Cm:I) det(PI).
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