The Combinatorics of Harmonic Sums and Polylogarithms at negative integer multi- indices

Gérard H. E. Duchamp - Hoang Ngoc Minh - Ngo Quoc Hoan 20-10-2015

Abstract

Let $Y_0 = \{y_s\}_{s \ge 0}$ be an infinite alphabet. We define Y_0^* to be the (free) monoid of words on the alphabet Y_0 . Then each of elements $w \in Y_0^*$ can be writen in the form $w = y_{s_1} \dots y_{s_r}$ for any r-uplet $(s_1, \dots, s_r) \in \mathbb{N}^r$. Let $r \in \mathbb{N}$, and $z \in \mathbb{C}$ such that |z| < 1, then the following Polylogarithm is well defined

$$\operatorname{Li}_{s_1,\dots,s_r}^{-}(z) \coloneqq \sum_{n_1>\dots>n_r>0} z^{n_1} n_1^{s_1} \dots n_r^{s_r}. \tag{1}$$

The Taylor expansion of the function $(1-z)^{-1}\operatorname{Li}_{s_1,...,s_r}(z)$ is given by $\frac{\operatorname{Li}_{s_1,...,s_r}^-(z)}{1-z} = \sum_{N\geq 0} \operatorname{H}_{s_1,...,s_r}^-(N) z^N$, where the coefficient $\operatorname{H}_{s_1,...,s_r}^-: \mathbb{N} \longrightarrow \mathbb{Q}$ is an arithmetic function, also called $\operatorname{Harmonic} \operatorname{sum}$, which can be expressed as follows

$$H_{s_1,\ldots,s_r}^-(N) := \sum_{N \ge n_1 > \ldots > n_r > 0} n_1^{s_1} \ldots n_r^{s_r}.$$
 (2)

Then it can be checked that $\mathrm{H}_w^-(N) \in \mathbb{C}[N]$ and $\mathrm{Li}_w^-(z) \in \mathbb{C}[z]$ for any $w \in Y_0^*$. Moreover, the sets $\{\mathrm{H}_w^-(N)\}_{w \in Y_0^*}$ and $\{\mathrm{Li}_w^-(N)\}_{w \in Y_0^*}$ are basis of the vector spaces $\mathbb{Q}_+[N]$ and $\mathbb{Q}[z]$ respectively. In this talk, we discuss some combinatorics on Harmonic sums and the polylogarithms at the negative integer multi-indices.

References

- [1] Costermans C., Hoang Ngoc Minh, Noncommutative algebra, multiple harmonic sums and applications in discrete probability, Journal of Symbolic Computation (2009), pp. 801-817.
- [2] Faulhaber J., Darinnen die miraculosische Inventiones zu den hochsten Cossen weiters continuirt und profitiert werden, Academia Algebrae (1631).
- [3] Foata D., Marcel-P. Schützenberger, *Théorie Géométrique des Polynômes Eulériens*, Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, (1970), 138(45 pp).