
D
ra

ftFormalizing UML State Machines Semantics for
Formal Analysis–A survey (PRELIMINARY

VERSION)

Liu Shuang et al.
National University of Singapore

lius87@comp.nus.edu.sg

March 21, 2014

D
ra

ftAbstract

UML state machines are widely used in modeling the dynamic behavior
of object-oriented designs in industry. UML state machines specification,
which is maintained by Object Management Group (OMG), is documented
in natural language instead of formal language. The inherited ambiguity
of natural language introduces inconsistencies to the resulting state ma-
chine model. Formalizing UML state machine specification can solve the
ambiguity problem and provide a uniformed view to software designers and
developers. It would also provide a foundation for automatic verification of
UML state machines models, which can help to find software design vulnera-
bilities at an early stage and reduce the development cost. In this report, we
provide a comprehensive survey of existing work related to formalizing UML
state machines semantics for the purpose of conducting model checking on
the design models. We have also surveyed tools which have been developed
for this purpose.

D
ra

ft
Contents

1 Introduction . 2
2 Related Works . 3
3 Categorization Criteria . 5
4 The Translating Approaches 5

4.1 Translation into Abstract State Machines 5
4.2 Translation into Petri Nets 7
4.3 Translation into the Input Language of Model Checkers 9
4.4 Summary . 12

5 Approaches Providing Operational Semantics for UML State
Machines . 16
5.1 Semantics Defined Using LTS as Semantics Model . . 16
5.2 Approaches using other semantic models 18
5.3 Summary . 20

6 Tool Support . 22
7 Conclusion . 25

1

D
ra

ft
1 Introduction

UML state machines, an object-oriented variation of Harel Statechart [Har87],
are often used to model the dynamic behaviors of a system. The UML
specification, published and managed by the Object Management Group
(OMG) [OMG], introduces ambiguities and inconsistencies, which are te-
dious for manual detection or be verified automatically due to the lack of
formal semantics. Defining formal semantics for UML state machines has
been capturing more and more attention in the past decades. The benefit of
a formal UML state machine semantics is threefold. Firstly, it allows more
precise and efficient communication between engineers. Secondly, it yields
more consistent and rigorous models. Lastly and most importantly, it en-
ables automatic formal verification of UML state machine models through
techniques like model checking, which guarantees the verification of impor-
tant properties of a system in the early development stage. This results in
a possible reduction in the overall cost of the software development cycle.

During the past few decades, a number of works appeared in the litera-
ture, which provide formalization for UML state machines for the purpose
of model checking UML state machines. Those approaches adopt different
semantic models, support different subset of UML state machines features
and only a few of them provide tool supports. The existing approaches can
be divided into two categories:

1. approaches that directly provide an general operational semantics for
UML state machines, and

2. approaches that translate UML state machines into some specific for-
mal languages.

The first kind of approaches provide general operational semantics for UML
state machines in terms of inference rules, which is a standard format of
formalizing operational semantics. The second kind of approaches provide
translation rules from UML state machines to some existing specific lan-
guage. These kind of approaches usually aim at adopting the formal verifi-
cation power of the existing specific language, such as Promela [Proc], Petri
Nets etc.

Several previous survey papers [PB04, CD05b, LRS10] summarize ap-
proaches related to UML state machine formal semantics and automatic
verification. Bhaduri et al. [PB04] summarized approaches which translated
variants of statecharts1. (including STATEMATE statechart and UML stat-
echart) into input languages of SMV [CCG+02] and Spin [SPI] model check-
ers. Crane and Dingel [CD05b], provide a categorization and comparison of

1There are variants of statechart diagrams, such as Harel statechart [Har87], STATE-
MATE statchart [HN96], etc. A comparison of the semantic differences can be found
in [CD05a]

2

D
ra

ft
26 different approaches of formalizing UML state machine semantics (includ-
ing denotational and operational semantics). Lund et al. [LRS10] surveyed
existing works on formalizing UML sequence diagram-like and state machine
diagram-like semantics. The survey focused more on sequence diagrams and
it selectively discusses some representative approaches.

Since a large number of works have been published in this area of provid-
ing directly or indirectly verification support for UML state machines and
there is no recent survey paper which summarizes these approaches (The
work in [CD05b] is the most related in this aspect, but it is out-of-date and
does not cover some related approaches.), we believe it is important to pro-
vide a comprehensive study and comparison on existing works which provide
operational semantics for UML state machines, especially those contribute
to formal verification of UML state machines.

In this paper, we provide a survey of existing approaches which aim
at providing formalization for UML state machines (instead of the other
variants of statecharts), especially for the purpose of providing verification
support for UML state machines. Our survey provides comparisons of those
approaches in two dimensions. The first dimension is the semantic model
used by the approaches. For the second dimension, we also compare those
approaches on the covered features, such as communication aspects, event
pool mechanisms and tool supports to automatically verify UML state ma-
chines.

The contribution of the survey is three-fold. Firstly, it provides an
overview of the status of researches in the area of formalizing UML state
machines semantics. Secondly, it provides a study of tool supports for for-
mal verification of UML state machines models. Lastly, it identify future
directions of research in this area.

The rest of this report is organized as follows. Section 2 discusses the
related surveys in the literature. Section 3 provides the categorization crite-
ria of our survey. Section 4 and Section 5 discuss formalization approaches
and translation approaches separately. In Section 6, we surveyed the ex-
isting tools which support formal verification of UML state machines. We
conclude the paper in Section 7.

2 Related Works

There are some surveys [PB04, CD05b, LRS10] which summarize existing
approaches on formal semantics and verification of UML state machines2.
Each has a different view and coverage scope on existing works.

In 2004, Bhaduri et al. [PB04] summarized approaches which translated
variants of statecharts (including STATEMATE statechart and UML stat-

2In this paper, we use UML state machines and UML statechart in interleaving, re-
specting the original notation in the surveyed paper.

3

D
ra

ft
echart) into input languages of SMV and Spin model checkers. The survey
only covers a subset of approaches, with detailed descriptions and discus-
sions about each individual work. The paper also discuss possible future
research direcitons, such as adopting slicing, abstraction-based approaches
or compositional verification approaches to reduce the state space in model
checking, explore abstractions on environments etc. The paper only lists a
subset of works which translates statecharts into SMV or Spin model check-
ers. It does not provide any comparisons among those works or conclusive
comments on those works.

In 2005, Crane and Dingel [CD05b], provide a categorization and com-
parison of 26 different approaches of formalizing UML state machine seman-
tics. They categorized those approaches based on the underlying formalism
used and conducted comparisons on other dimensions such as UML state ma-
chines feature coverage, tool support etc. This paper provides a high-level
comparison and discussion on different aspects of the existing 26 approaches.
Though the amount of work discussed is not large, it covers different kinds
of approaches and provides a good way to categorize those approaches. The
categorization of the work is wide, but the coverage within each categoriza-
tion is too narrow, a lot of translation based approaches are not included.
Moreover, the survey is out of date and does not include recent works.

In 2010, Lund et al. [LRS10] surveyed existing works on formalizing UML
sequence diagram-like and state machine diagram-like semantics. The sur-
vey does not focus on a thoroughly coverage of all the existing approaches;
instead, it selectively discusses some representative approaches which fall in
one of their categorization criteria. There are two dimensions of categoriza-
tion. The main dimension is the style of the semantics, namely denotational
semantics and operational semantics. The second dimension captures fea-
tures such as real-time or probability. The focus is on both sequence diagram
and state machine diagrams. Though the survey provides new comparison
criteria such as the supported properties, refinement support, etc., it covers
a limited number of approaches, especially for the UML state machine part.
Moreover, no formal verification tool support information for UML state
machines is discussed.

We notice the following from these surveys.

1. There are a lot of works, especially 7 recent works, that are not covered
by any of these surveys.

2. There is no survey focusing specifically on formalization of UML state
machines for the practical application purpose, i.e., formal verification
of UML state machines.

This motivate us to provide a survey, which covers works that focus on
providing formalization for UML state machines, especially for the purpose
of formal verification. Tool supports for such verifications are also provided.

4

D
ra

ft
3 Categorization Criteria

In this paper, we survey works on providing operational formalization for
UML state machines. Since all the approaches of this kind aim at providing
foundations for tool supports of verification of certain kind. Some of them
are more general, i.e., they directly provide operational semantics for UML
state machines in the form of inference rule or SOS (structured operational
semantics) so that any kind of verification tools can be developed based on
it. There are also other works which conduct an indirect approach. They
translate UML state machines into a specific specification language, which
usually have formal verification tool supports.

Based on the above observations, we decide to categorize the surveyed
approaches in two dimensions. The first and main dimension is whether the
approach is a direct or indirect approach.

As the second dimension, we compare the surveyed works on the features
supported, semantic models used, UML specification version, etc. More-
over, we link the approaches with tool supports which are based on those
approaches, hence provides a good reference for readers who want to do use
those tools.

4 The Translating Approaches

A popular approach to formalize UML state machines is to provide a trans-
lation to some existing formal languages (such as Petri nets [JK09] or Ab-
stract State Machines [ER03]), or to the input languages of model checkers
(such as Spin, SMV, UPPAAL [UPP]). Those formal languages have their
own operational semantics. This kind of approaches can be regarded as
an indirect way of providing formalizations for UML state machines. The
purpose of this kind of approaches is more explicit, i.e., to utilize existing
verification techniques and tools for UML state machines verification. So
we regard these approaches as translation approaches and summarize them
in this section.

We categorize these approaches based on the target formal languages
they adopt, viz., abstract state machines (Section 4.1), Petri nets (Sec-
tion 4.2), and translation to the input modeling language of model check-
ers (Section 4.3). We summarize the translation-based approaches in Sec-
tion 4.4.

4.1 Translation into Abstract State Machines

Abstract State Machines (ASMs) can offer the most general notion of state
(which abstract away from graphical form) in the form of structures of ar-
bitrary data and operations which can be tailored to any desired level of

5

D
ra

ft
abstraction. State machines’ configuration changes are represented by tran-
sition rules, which consists of conditions and update functions. . On
the other hand, the notion of multi-agent (distributed) ASMs can naturally
reflect the interaction between objects [ER03]. Spielmann [Spi00], Castillo
and Winter [GDC00] and recently Klünder et al. [BKKS08] provide theoretic
and tool support of model checking abstract state machines.

Translating into ASM

Börger et al. [BCR00, BCR03, BCR04] are among the pioneers in formaliz-
ing UML state machines into ASMs. ASM contains a collection of states
and a collection of rules (conditional, update, Do-forall etc) which update
those states. The work [BCR00] in this direction was proposed in 2000.
The syntax model is a tuple, which captures the attributes and associations
of a construct (states, transitions, etc). This approach covers most UML
state machines features, including deferred events, completion events and
internal activities associated with states which are mostly left out by other
approaches. But pseudostates such as fork, join, junction, choice, terminate
are not considered. In contrast, the authors argue that these constructs
can find their semantically equivalent constructs in their defined subset,
where they use a transition from (resp. to) the boundary of an orthogonal
composite state to replace the join (resp. fork) pseudostates. But with a
join (resp. fork) pseudostate, we can decide which substates of the target
orthogonal composite state are going to be entered simultaneously, while
this semantic meaning is not expressible by the “equivalent” method they
provide.

In 2003, another work [BCR03] extends [BCR00] to support transitions
from and to orthogonal composite states3 in the context of event deferral
and RTC step.

In 2004, Börger et al. [BCR04] provided some further discussions about
the ambiguities in the official semantics of UML state machines [UMLa] and
their solutions. The works by Eörger et al. [BCR00, BCR03, BCR04] cover
a large set of features and the formalization is easy to follow due to the
abstract feature of ASM notations. But no automatic translating tool has
been developed based on these work so far.

Another approach [CGHS00] which translates UML state machines into
ASMs was proposed by Compton et al. To be precise, this work translates
UML state machines into extended ASMs, in which ASMs are extended
to represent inter-level transitions with multiple transitions which do not
cross any boundary of states. This extension makes it easier to deal with
interruptions; it also makes the formalization procedure more structured

3The orthogonal composite state acts as the main source/target state of the transition,
i.e., the source/target of the transition can be a substate of the orthogonal composite state
at any depth.

6

D
ra

ft
and layered (since inter-level transitions break the hierarchical structure
of UML state machine and such a decomposition of inter-level transitions
into multiple transitions preserve such an hierarchical structure). It shares
a similar idea with [BCR00, BCR03] in the rest of translation procedure.
Agents are used to process executions of UML state machines. An activity
agent is used to model the execution of an activity associated with a node.
The execution of agents are divided into different modes, which indicates
what kind of rules (operations) the current agent should take.

Jürjens [Jür02] provided a semantics in the form of abstract state ma-
chines in 2002. The focus of this work is not on supporting various features
of UML state machine. Instead, they rather focus on the communications as-
pects between state machines. The work explicitly models the message (with
parameters) passing between state machines as well as the event queue.

Translating into variant of ASM

Jin et al. [JEJ04] (2004) provided an approach which syntactically defines
UML statecharts as attributed graphs which are described using the Graph
Type Definition Language (GTDL). They further provide some constraints
in the form of predicates to specify the well-formedness rules of statecharts,
which is considered as the static semantics of a UML statechart. The se-
mantic domain is defined as an Object Mapping Automaton (OMA [JK98]),
which is a variant of ASMs. Given the abstract syntax (of the attributed
graph) of a well-formed statechart, they first “compile” it into OMA al-
gebraic structures, which specifies “advanced static semantics” of a UML
statechart. Based on OMA algebraic structures, two rules (viz., the ini-
tialization rule and the run-to-completion rule) are defined to describe the
dynamic behavior of a UML statechart. The syntax and semantics provided
by this approach, benefiting from the highly compatibility of the abstract
syntax of attributed graph with UML statecharts, are more intuitive and
easy to follow. But this approach supports a limited subset of UML stat-
echarts features and does not even include concurrent composite states as
well as choice vertexes.

To summarize,approaches translating UML state machines into ASMs
tend to support more advanced features such as orthogonal composite states,
completion/defer events, fork/join/history/choice pseudostates and inter-
level transitions. The reason may be that ASMs are more flexible in terms
of syntax format as well as update rules and are more suitable to express
the non-structured feature of UML state machines.

4.2 Translation into Petri Nets

Petri nets is a mathematical modeling language with formal semantics.
There are a variety of different Petri nets based on the application domain.

7

D
ra

ft
Colored Petri Nets (CPN) [JK09] are a special case of Petri nets in which the
tokens identifies attributes (types). As a result, it leads to a more clear and
simple representation.. Several approaches [Gom00, BP01, CKZ11, ACK12]
in the literature translate UML state machines into (Colored) Petri nets.
We review them in the following.

Robert et al. [Gom00] (2000) present an approach which uses CPN to
model and validate the behavior characters of concurrent object architec-
tures modeled by UML. The authors discuss how to map active/negative
objects as well as message communications into CPN. Synchronous as well
as asynchronous communications are discussed in message communications.
Though not specifically dealing with UML state machines, this paper pro-
vides a general idea of transforming UML diagrams to (Colored) Petri nets.

Luciano et al. [BP01] (2001) propose another approach to formalize UML
with high-level Petri nets, i.e., Petri nets whose places can be refined to rep-
resent composite places, and class diagrams, state diagrams and interaction
diagrams are considered. Customization rules are provided for each diagram.
But the authors do not provide details about those customization rules; in-
stead, they illustrate the steps with the Hurried Philosopher Problem. The
analysis and validation are also discussed, especially how to represent in
UML the properties (such as absence of deadlocks, fairness etc.), as well as
how to translate them into Petri nets representations.

Trowitzsch and Zimmermann [TZ05] (2005) proposed to translate a sub-
set of timed UML state machines into Stochastic Petri nets. The work [TZ05]
uses stochastic Petri nets, which contain exponential transitions, making it
more suitable to model time events. The approach does not cover many
UML state machines features, but time events are discussed.

Choppy et al. [CKZ11] (2011) propose an approach that formalizes UML
state machines by translating them to hierarchical colored Petri nets. They
provide a detailed pseudo algorithm for the formalization procedure. They
map simple states of UML state machine into Petri nets places and compos-
ite states of UML state machine into composite Petri nets places. Transitions
in UML state machines are mapped to arcs in Petri nets and correspond-
ing triggering events are properly labeled. An extra place called Events is
modeled with an event place in Petri nets, with each type of event assigned
different color type. Entry and exit actions of UML state machines are
modeled with an arc in Petri nets which is labeled with the proper event
type and ends in the event place. Though the mapping from UML state
machines to HCPN is clearly expressed compared to [BP01], a very limited
subset of UML state machines features are supported: only the very basic
features such as simple state, composite state, transitions, triggering event
and entry/exit actions are discussed. How to type the events, and how to
deal with concurrency invocations of a concurrent composite state are not
discussed.

André et al. [ACK12] (2012) propose an approach different from the work

8

D
ra

ft
by Choppy [CKZ11], and support a larger subset of UML state machine fea-
tures, including state hierarchy, internal/external transitions, entry/exit/do
activities, history pseudostates, etc. However, a limitation of that approach
is that concurrency is left out: hence fork and join pseudostates, as well as
synchronous communication between state machines is not considered.

Petri net is used in modeling work flow in industry. It is more rigor-
ous benefiting from its mathematical supporting. But it is always hard for
non-experts to understand. With automatic translators from UML state
machines to Petri net, we can benefit from the rigorous verification power of
existing Petri net verification tool. However, approaches translating UML
state machines to Petri net usually cover a small subset of UML state ma-
chine features.

4.3 Translation into the Input Language of Model Checkers

Another kind of approaches consists in translating UML state machines
into the modeling language of some model checkers (Spin, SMV, FDR or
PAT). Bhaduri et al. [PB04] provide a good (though now somehow outdated)
survey on this kind of approaches. But it focuses on many variants of Harel’s
statechart [Har87, HN96, HLN+90], such as RSML or UML. We rather focus
specifically on UML state machine, which is the object-oriented variant of
Harel’s statecharts.

In this section, we perform a detailed survey of this kind of approaches.
We sort the different approaches based on the model checker’s input language
they adopt: Spin, SMV, and other model checkers.

Approaches Based on Spin

Latella et al. are among the first few researchers who contributed to the
formal verification of UML state machines. They utilize Extended Hierar-
chical Automaton (EHA) as an intermediate representation of UML state
machines; then they define formal semantics of EHA with Kripke struc-
tures as the semantics domain [DIM99] (1999). Based on this formaliza-
tion work [DIM99], they proceed one step further in [LMM99] (1999) by
providing translations from UML state machines to PROMELA, the input
language of the Spin model checker. The translation function takes a hierar-
chical automaton as input and generates PROMELA code as output. This
approach uses STEP PROMELA process to simulate a run to completion
step in UML state machines, which includes dispatching of events from the
environment; identify candidate transitions to fire; solve conflicts and select
firable transitions; actual execution of the selected transitions (including
identifying the next configuration after execution of the current transition
and maybe side effects, which are events generated during the execution of
actions associated with the transition). The run to completion step in UML

9

D
ra

ft
state machine is, as indicated by the name itself, non-interruptable (but
can be stopped4). This is guaranteed by the PROMELA atomic command.
The translation process is structured since it is based on the pre-defined
formal semantics of EHA [DIM99]. The authors also provide proof for the
translation to guarantee the correctness of the procedure.

Timm et al. [SKM01] (2001) provided a method to model checking UML
state machines as well as collaborations with the other UML diagrams. They
compile UML state machines into a PROMELA model and collaborations
into sets of Büchi automata, and then invoke the Spin model checker to verify
the model against the automata. Each state in the state machine is mapped
to an individual PROMELA process. Two additional PROMELA processes
are generated to handle event dispatching and transitions. The event queue
is modeled as buffered channels and communication among processes are
modeled via unbuffered channels, i.e., they are synchronized. This approach
further considers the consistencies between UML diagrams, i.e., collabora-
tion diagram and state machine diagram. The possible communications
among objects shown in a collaboration diagram should be consistent with
the dynamic behavior represented in the state machine diagram. By trans-
lating collaboration diagrams into sets of Büchi automata, which is the form
of property to be checked against the model, this approach cleverly checks
the consistencies between the two diagrams.

Jussila et al. [JDJ+06] (2006) provide an approach to translate UML
state machines into PROMELA. This approach considers multiple objects
interacting with each other. The translation is based on a formally de-
fined semantics of UML state machines. It supports initial and choice pseu-
dostates as well as deferred and completion events. It further provides an
action language, a subset of the Jumbala [Dub06] action language, that is
used to specify guard constraints and the effects of transitions of a UML
state machine. The authors implemented a tool called PROCO, that takes
a UML model in the form of XMI files and outputs a PROMELA model.

Carlsson and Johansson [ML09] (2009) have designed a prototype tool
to link Spin with RSARTE, a modeling tool for UML diagrams. Their work
focuses on all kinds of RT-UML diagrams, i.e., UML diagrams related with
real time features. As part of UML, state machines are also translated into
PROMELA in their approach. Since their work is not aiming at model
checking of UML state machines, it does not provide detailed discussions
about each feature of UML state machines, but discusses the communica-
tions between different objects.

4The difference between interrupt and stop relies in the fact that interrupt means a
temporary stop that needs to be resumed afterwards, whereas stop means a permanent
stop without resuming.

10

D
ra

ft
Approaches Based on SMV and its Variants

Gihwon [Kwo00] (2000) first provides a formal semantics for UML state-
charts by rule-rewriting systems, and provides a translation approach from
the formalized semantics to the SMV model checker. No detailed implemen-
tation is discussed in this papers.

Compton et al. [CGHS00] (2000) provides another approach which uses
SMV as the back end model checker to automatically verify UML state
machines. The work first translates UML state machines into ASMs, which
has been discussed before. Then an SMV model checker is invoked to verify
the SMV specification of a UML state machine. This approach is different
from the other translations approaches in the sense that it does not provide a
direct translation from UML state machines to the input language of a model
checker, but conducts a 2-level translation approach. That is, UML state
machines are first translated into ASMs, and model checking is conducted
relying on a translation tool from ASMs to SMV [GDC00].

Lam and Padget [LP04] (2004) propose a symbolic encoding of UML
statecharts, and invoke NuSMV to perform the model checking. Their work
adopts a three-step procedure and uses φ-calculus as an intermediate format
for the translation. They have implemented the translator from UML stat-
echarts to φ−calculus, and claim that the implementation of a translator
from φ−calculus to the input language of NuSMV was ongoing (although
we did not find any later updates on this).

Encarnación et al. [BBSCdlF05] (2005) also provide a translation from
UML diagrams to the input language of SMV model checker. Instead of fo-
cusing on just UML state machines, this work focuses on the collaborations
of different UML diagrams such as class diagrams, state machine diagrams
and activity diagrams. This paper does not describe the detailed transla-
tion rules, but illustrates their translation procedure with an ATM machine
example. Noticing that high-level model designers are unfamiliar with LTL
and CTL properties which are used by model checkers, the authors also pro-
vide some aid in the form of ask and answer questions to aid the property
writing.

Dubrovin and Junttila [DJ07] (2007) first provide a symbolic encoding
for a UML state machine, which has been discussed in Section 5. Then they
perform a translation from the defined semantics to the input language of
the NuSMV [CCG+02] model checker. The detailed translation steps are
not discussed in the paper, but an implementation SMUML [SMU] has been
provided, and some experiment results are reported in their paper.

Approaches Based on Other Model Checkers

Gnesi and Latella et al. [GLM99] (1999) proposed another translation ap-
proach, which is also based on the formalization of UML state machines in

11

D
ra

ft
their early work [DIM99]. The translation is from a hierarchical automaton
into a semantic automaton (LTS), which needs to be further translated into
the FC2 format, which is the standard input format to Jack [BGL94].

Traoré [Tra00] (2000) and Aredo [Are00] (2000) propose to translate
UML state mcahines into PVS (Prototype Verification System) [PVS], which
is a specification language integrated with verification tools capable of doing
theorem proving, well-formedness checking and model checking.

Alexander et al. [KMR02] (2002) presented an approach to translate
timed UML state machines into timed automata which is used by the UP-
PAAL Model Checker. But the translation is not based on a formal seman-
tics of timed UML state machines. Event queue and UML state machine
are separately modeled by timed automata and the communication is mod-
eled with a channel. This approach is implemented in a prototype tool,
HUGO/RT [hug12], which can verify whether scenarios specified by ML col-
laborations with time constraints are consistent with the corresponding set
of timed UML state machines.

Ng and Butler [NB02, NB03] (2002) proposed to translate UML state
machines into CSP and utilize the FDR model checker to proceed with the
model checking procedure. Due to the differences between CSP and UML
state machines, some features of UML state machines, such as the priority
mechanism, cannot be modeled.

Hansen et al. [HKL+10] (2010) use another model checker, mCRL2 [mCR12],
to perform model checking tasks. Their work translates xUML into mCRL2
specifications. Note that it translates both class diagram and state machines
into mCRL2.

Zhang and Liu [ZL10] (2010) provide an approach which translates UML
state machines into CSP#, an extension of the CSP language, which serves
as the input modeling language of PAT [SLDP09]. Different from other
translation approaches, the transformation is not based on a pre-defined
formal semantics, but directly from the meaning of each UML state machine
construct. An implementation of the translator was done and experiment
results of the verification of UML state machines with PAT [SLDP09] were
presented.

4.4 Summary

The translation approaches aim at utilizing the automatic verification ability
of different model checkers. So the advantage of these approaches is that
most of them will provide the translation rules as well as the implementation
of those rules in the corresponding model checkers. But we notice that
translation-based approaches suffer from the following defects:

1. Due to the semantic gaps, it may be hard to translate some syntactic
features of UML state machines, introducing sometimes additional but

12

D
ra

ft
undesired behaviors. For example in [ZL10], extra events have to be
added to each process so as to model exit behaviors of orthogonal
composite states.

2. For the verification, translation approaches heavily depend on the
tool support of the target formal languages. Furthermore, the ad-
ditional behaviors introduced during the translation may significantly
slow down the verification; and optimizations and reduction techniques
(like partial order reduction) may not apply in order to preserve the
semantics of the original model.

3. Lastly, when a counterexample is found by the verification tool, it is
hard to map it to the original state machine execution, especially when
state space reduction techniques are used. Following these remarks, we
believe that a direct implementation based on an operational semantics
may solve the problem.

We have provided a comparison on the supported features5 of the sur-
veyed approaches in Table 4.4. The symbol “

√
” denotes the fact that the

feature is supported, “×” means the feature is not supported, “◦” means the
featured is discussed in the paper, but is not thoroughly solved. For exam-
ple, for “conflict/priority”, some works considered conflict among enabled
transitions, but did not discuss conflict due to deferred events. In this case,
we regard the features to be partially supported.

We can conclude from the table that in the translation based approaches,
time, submachine state, entry/exit pseudostate and junction pseudostate are
the least supported features. Less than 5 out of all the surveyed approaches
support these features. No approach using ASM as target language supports
choice or time features. But they almost all support orthogonal composite
state, completion event and entry/exit behaviors. All approaches use Petri
net as target language do not support priority mechanism, defer and com-
pletion events. Seen from Table 4.4 , we can notice that only 5 surveyed
translation approach focus on UML2.x state machine specifications and only
one tool was developed based on the approach.

5For space consideration, we remove the features that are commonly supported by all
approaches, such as simple state, transitions, initial pseudostate, etc.

13

Draft
Work Multiple charts Conflict Time Entry/exit States Pseudostates Events

(priority) behaviors orthogonal submachine fork/join junction choice history entry/exit defer completion call
[BCR00] ×

√
×

√
◦ × × × ×

√
×

√ √
×

[BCR03] ×
√

×
√ √

× × × ×
√

×
√ √

×
[Jür02]

√
× ×

√ √
× × × × × × × ◦

√

[CGHS00] × × × ×
√

× × × × × × ×
√

×
[JEJ04] ×

√
×

√ √
×

√ √
×

√
×

√ √
×

[Gom00]
√

× × × × × × × × × × × ×
√

[BP01]
√

× × × × × × × × × × × ×
√

[CKZ11] × × × ×
√

× × × × × × × × ×
[ACK12] × × ×

√
× × × × ◦

√
× × × ×

[TZ05] × ×
√

× ◦ ×
√ √ √

× × × × ×
[LMM99] × ◦ × ×

√
× × × × × × × ×

√

[JDJ+06]
√ √

× ×
√

× × ×
√

× ×
√ √

×
[SKM01]

√ √
×

√ √6 ×
√

×
√

× × ×
√ √

[ML09]
√

×
√

× × × × × × × × × × ×
[Kwo00] × ◦ × ×

√
× × × × × × × × ×

[DJ07]
√

× × ×
√

× × ×
√

× ×
√ √

×
[LP04]

√ √
× × × × × × × × × × × ×

[ZL10] × × ×
√ √ √ √

× ×
√ √

×
√

×
[KMR02] × × ×

√
× × × ×

√
× × ×

√
×

[Are00] × × ×
√ √ √ √ √ √ √ √

× ×
√

[Tra00] ×
√ √

×
√

×
√ √ √ √

× ×
√ √

Table 1: UML state machines features supported by each translation approach

14

Draft
Work Target Language Verification type Tool developed UML version

[BCR00] Abstract state machines × × 1.3

[BCR03] Abstract state machines × × 1.3

[Jür02] Abstract state machines − × 1.4

[CGHS00] Abstract state machines Model Checking
√

<= 1.3

[JEJ04] GDTL
√

(Moses) 1.5

[Gom00] Colored Petri nets deadlock and statistical analysis
√

<= 1.3

[BP01] High-level Petri nets model checking ×7 −
[CKZ11] Hierarchical Colored Petri nets Model checking

√
(CPN-AMI) −

[ACK12] Colored Petri nets − × 2.2

[TZ05] Stochastic Petri nets × × 2.0

[LMM99] PROMELA model checking × 1.1

[JDJ+06] PROMELA model checking
√

(PROCO) 1.4

[SKM01] PROMELA model checking
√

(HUGO) 1.4

[ML09] PROMELA model checking
√

(RSARTE) −
[Kwo00] SMV input language model checking × 1.3

[DJ07] NuSMV input language model checking
√

−
[BBSCdlF05] SMV input language model checking

√
< 1.3

[LP05] NuSMV input language model checking
√

(SC2PiCal)8 1.5

[ZL10] CSP# model checking
√

2.2

[KMR02] Timed automata model checking
√

(HUGO/RT) 1.4

[HKL+10] mCRL2 model checking × 2.2

[NB03] CSP model checking
√

1.4

[Are00] PVS Model Checking, theory proving × 1.3

[Tra00] PVS model checking
√

(PrUDE) 1.3

Table 2: Summary of translation approaches

15

D
ra

ft
5 Approaches Providing Operational Semantics for

UML State Machines

Different from the translation-based approaches, another kind of approaches
directly provides operational semantics to UML state machines, usually by
defining inference rules. These approaches are of general purpose, i.e., var-
ious verification techniques can be conducted based on the operational se-
mantics. The benefit of this kind of approaches are (1) they do not rely
on the target formal languages, thus no redundancies are introduced, and
(2) the semantic steps defined in the operational semantics directly coincide
with UML state machines semantic step, i.e., the Run To Completion (RTC)
step. A major benefit of these approaches is that state space reduction tech-
niques can now be applied. Moreover, approaches in this category usually
adopt Labeled Transition Systems (LTS) as the semantic model, which is
the common semantic model for concurrent systems; furthermore, it is also
well supported by many model checkers.

In this section, we categorize this kind of approaches based on the formal
formats used as semantic domains. Finally, we summarize the approaches
in Section 5.3.

5.1 Semantics Defined Using LTS as Semantics Model

In this section, we are going to discuss works which formalize UML state
machines into the Labeled Transition Systems (LTS). We further categorize
these works based on the syntax model they adopt.

Approaches using EHA as syntax model

Hierarchical Automata require a strict hierarchical structure. The existence
of interlevel transitions and local transitions break the hierarchical structure.
EHA extends the Hierarchical Automata to deal with interlevel transitions,
i.e., an interlevel transition which crosses multiple states will be assigned to
the outermost Sequence Automaton.

Latella et al. [DIM99] (1999) are among the pioneers who begin to focus
on formalizing UML statecharts (instead of other variants of statecharts)
semantics. The semantic model their formalization adopted is Kripke struc-
ture. They use a slightly modified variant of Extended Hierarchical Au-
tomata (EHA) as an intermediate model, and map the UML-statecharts
into an EHA. The hierarchical structure of UML statecharts and EHA make
the translation structured and intuitive. Then they define the operational
semantics for EHA in the model of Kripke structures.

A following work by Gnesi Latella and Massink [GLM02] extends their
previous work [DIM99] to include multicharts, i.e., multiple UML state

16

D
ra

ft
machines communicating asynchronously. The work also discusses how to
incorporate the semantics into the model checking tool–JACK.

This approach covers a quite restricted subset of UML state machine
structures: no pseudostates (excepted the initial pseudostate) are consid-
ered, no actions associated with states (i.e., entry/exit/do actions, and de-
ferred events) are considered, and the triggering events are restricted to the
signal and call events without parameters. Since states in different hierar-
chies cannot appear in a single Sequence Automaton, it is hard 9 to express
transitions which have their source and target states in different hierarchies.

Dong et al. [WJXZC01] (2001) further extend EHA to support more
features such as entry/exit actions or parameters in actions, and provide
a formal semantics for a subset of UML statecharts based on this EHA
model. The authors discuss the findings on the cost of solving conflicts
introduced by concurrent composite states, and the importance of modeling
with multiple objects instead of modeling them with concurrent regions
within one UML state machine. They consider the non-determinism caused
by multiple concurrent state machines, which was not captured by [DIM99].

Although approaches using EHA as an intermediate representation do
not “directly” provide the operational semantics, EHA still resemble UML
state machines in the hierarchical structure, and operational semantics for
EHA (which is not a formal modeling language as, e.g., CSP) are provided.
For this reason we consider this kind of approaches as directly providing
operational semantics.

Approaches using terms as syntax model

There are also works which uses terms or tuples as syntax model.
Von der Beek [Von02] (2002) also formalize a partial set of UML state-

charts, partially based on the work proposed in [DIM99]. But it supports
some more features such as history mechanisms, entry and exit actions com-
pared to [DIM99]. The syntax used in this work is called an UML-statechart
term, which is inductively defined on three kinds of terms, viz., Basic term,
Or-term and And-term. All of them contain basic information about a state
such as a unique ID, entry and exit actions, and sub-terms (for Or-term and
And-term) which contain the hierarchical information of a UML state ma-
chine. UML-statechart terms basically represent static information about
UML statechart vertices. Inter-level transitions are captured by explicitly
specifying source restrictions and target determinators in an Or-term; this
notation follows the idea of Latella et al [DIM99].

The dynamic behavior of UML-statechart is represented by configura-
tions. The auxiliary semantics is defined as a mapping from a UML stat-
echart to an LTS. Each state in the LTS is a UML-statechart term. A se-

9Actually transitions between states which have direct hierarchical relations not sup-
ported in [DIM99]

17

D
ra

ft
mantic transition is defined to proceed a single input event. Last, complete
semantics is given based on auxiliary semantics and a Kripke structure. In-
stead of representing a UML statechart into an EHA, Von der Beek [Von02]
chooses to use a UML-statechart term as the syntax domain of a UML
statechart.

Kwon proposed another approach [Kwo00] which utilizes Kripke Struc-
ture as the semantic domain and aimed at model checking UML statechart.
Similar to [Von02], Kwon uses terms as the syntax domain of UML state-
chart, which represent state hierarchy in the form of subterms as a field in
a term. But Kwon [Kwo00] use the conditional rewrite rules to represent
the transition relation in a UML statechart (while Breeck [Von02] explicitly
defined five SOS rules). Then the semantics of UML statechart is defined as
a Kripke Structure. This paper [Kwo00] also provides a translation from the
defined Kripke Structure to the input language of the SMV model checker,
which we have discussed in Section 4.3.

Eshuis and Wieringa [EW00] (2000) also utilize LTS as a semantic model
to provide an operational semantics for UML statecharts. The syntax model
used is tuple. This work focuses more on the communication and timing as-
pect of UML statecharts. It also considers object construction and destruc-
tion, which is not always considered by the other approaches. The approach
define UML statechart syntax as sets with defined functions and the se-
mantic model is LTS. The approach also define an action language, which
includes assignment, object creation/destruction, sequence operations, sig-
nal sending operation and time expressions.

Liu et al. [LLA+13] (2013) is the most recent approach which provides
formal semantics for UML 2.4.1 state machines. The approach covers all
the features of UML state machines except for time events. Moreover, the
syntax is defined totally in accordance with UML state machines specifi-
cations, which makes the approach extends easily to future changes such
as refinement. The semantic domain is LTS. The approach also considered
asynchronous/synchronous communications between objects.

Reggio et al. [RACH00] (2000) propose to use LTS as semantic model to
provide a formal semantics for UML state machines. This work considers an
early version (1.3) of UML specifications and discusses some inconsistencies
and ambiguities in the specification. The work does not provide a clear
syntax model and UML state machines are not represented formally. But
it does discuss in details the event dispatching and merging operation on
event pools.

5.2 Approaches using other semantic models

Lilius and Paltor [LP99c] (1999) provide an abstract syntax and semantics
for a subset of UML state machines. This work uses terms as syntax model
and considers most features of UML state machines. Although it does not

18

D
ra

ft
define a clear semantic model, this work formalizes the RTC step semantics
into an algorithm. The algorithm is in a high abstract level and many
concepts such as history pseudostates and completion events are described
in a rather informal manner. But the procedure of an RTC step is properly
described.

Some features such as join, fork, junction, choice vertices unspecified
and instead, claiming that these pseudostates can be replaced with extra
transitions. This may be achievable using a different modeling strategy, but
the expressiveness of the modeling language is weakened.

Damm et al. [DJPV03] (2003) provide a formal semantics for a kernel
set of UML in order to model real-time applications, including static and
dynamic aspects of the UML models. The formalization contains two steps.
Firstly, real-time UML (rtUML) is represented in terms of the kernel subset
of real-time UML (krtUML10). Then formal semantics of krtUML is pro-
vided. This approach provides a self-defined action language, which supports
object creation/destruction, assignment and operation calls. The semantic
domain is called Symbolic Transition System (STS), which conducts type-
consistent first-order predicate over a set of variables. UML state machines
semantics is just a component of the krtUML semantics. But the work pro-
vides a good reference for communications between different objects, such
as event dispatching and handling.

Fecher and Schönborn [FS07] use core state machine, which is a subset
of UML state machines, as the semantic domain for UML state machines. A
core state machine is a 7-tuple including states, do actions, deferred events,
transitions, initial state, set of variables and initial variable assignment.
History is explicitly described by a mapping from a region to its direct sub-
state. The work firstly formalizes both syntax and semantics of the core
state machine. This paper considers more UML state machine features. 14
configuration steps are provided on the core state machine, which form the
dynamic semantics of it. But there is no formal semantic model; hence, the
provided semantics is not complete since just transition rules are provided.
The RTC steps of a UML state machines are not defined. The transforma-
tion steps from UML state machines to core state machine is also provided.
But the steps are not formally stated, only natural language descriptions
with example illustrations are given. Moreover, the translation is very com-
plex since a lot of auxiliary vertexes need to be added, such as enter/exit
vertex. Both defects may make it unfeasible for automatic tool development.

Jens et al. [SdRFK05] (2005) provide a very comprehensive analysis
about UML 2.0 behavioral state machines, including discussions about de-
tailed semantics of each feature and the ambiguity statements. This ap-
proach covers almost all features of UML2.0 state machines, except for junc-
tion and choice vertices, which are considered as syntactic sugar and are said

10

19

D
ra

ft
to be easily represented by separate transitions. Termination pseudostates
and completion events are also left out unconsidered. The syntax model of
UML state machine is the tuple, which captures the components of each
construct. Many auxiliary functions are defined to capture the execution
of an RTC step, such as collecting all actions generated during transition
execution and put them in the event pool. This work contributes more on
the analysis of ambiguities in UML 2.0 specifications and the detailed dis-
cussion about the semantics of UML 2.0. In term of the formal semantics
they have defined, though achieves a high coverage, does not have a formal
semantic model. In a separate paper [FSKdR05], the same authors discuss
29 undeclared points in UML2.0 state machine specifications.

Jori and Tommi [DJ07] (2007) provide a symbolic encoding for UML
state machines. The approach can be regarded as either a translation ap-
proach or an operational semantics in the domain of first-order logic. The
approach discusses event dispatching mechanisms, multi-object communica-
tion (asynchronous) as well as choice pseudostate, which are often left out
in other approaches. But some commonly considered constructs, such as
history pseudostate, is not included in their formalization.

5.3 Summary

We provide here a detailed discussion about approaches which provide formal
operational semantics for UML state machines. We are focusing on those ap-
proaches which are related to automatic verification of UML state machines.
Among all the surveyed approaches, LTS-based approaches are most related
to automatic verification, specifically model checking, but always support
less features compared to other approaches due to the unstructured feature
of UML state machines.

Table 3 provides the syntax and semantic modals used by of all the
surveyed approaches in this section.

Table 4 summarizes the supported features of the surveyed approaches.√
means the feature is supported, × means the feature is not supported, ◦

means the featured is discussed in the paper, but is not thoroughly solved; for
example, for “conflict/priority”, some works consider conflict among enabled
transitions, but do not discuss conflicts due to deferred events. In this
case, we regard the features to be partially supported. ⊕ represents the
situation where the corresponding feature is not directly formalized, but it
is represented with the formally defined features in the semantics.

From the tables we can conclude that early works (works before 2002)
tend to use LTS or variance of LTS as semantic models, but support less
features (especially pseudostates, priority and event pool mechanisms) com-
pared to later approaches.

20

Draft
Work Syntax domain Action language Semantic domain Event queue UML version Leads to tol implementation

[DIM99] EHA − Kripke Structure × 1.1 JACK
[WJXZC01] EHA self-defined Kripke Structure × 1.1 ×

[Von02] term − Kripke Structure × 1.4 ×
[Kwo00] term abstract notation Kripke Structure × 1.3 ×
[EW00] set with functions self-defined LTS × 1.3 ×

[?] − − LTS
√

<= 1.3 ×
[LLA+13] tuple − LTS

√
2.4.1 USMMC

[LP99c] term − − × 1.3 ×
[DJPV03] krtUML self-defined STS

√
1.4 ×

[FS07] core state machine − − × 2.0 ×
[SdRFK05] tuple − − × 2.0 ×

[DJ07] tuple abstract notation first-order logic
√

2.0 ×

Table 3: Syntax and Semantic domains of surveyed operational semantics

Work Multiple charts Conflict Time Entry/exit States Pseudostates Events
(priority) behaviors orthogonal submachine fork/join junction choice history entry/exit defer completion call

[DIM99] × ◦ × ×
√

× × × × × × × ×
√

[WJXZC01]
√

◦ ×
√ √

× × × × × × ×
√

−
[Von02] × ◦ ×

√ √
× × × ×

√
× × × ×

[Kwo00] × ◦ × ×
√

× × × × × × × × ×
[EW00] × ◦ ×

√ √
× × × × × × ×

√ √

[?]
√

◦
√

× × × ×
√

× × ×
√

×
√

[LLA+13]
√ √

×
√ √ √ √ √ √ √ √ √ √ √

[LP99c] ×
√ √ √ √

× × × ×
√

×
√ √ √

[DJPV03]
√

×
√

× × × × × × × × × × ×
[FS07] ×

√ √
× ⊕

√
⊕ ⊕

√
⊕ ⊕

√ √
×

[SdRFK05] ×
√

×
√ √

×
√

× ×
√

×
√

× ×
[DJ07]

√
× × ×

√
× × ×

√
× ×

√ √
×

Table 4: UML state machines features supported by the direct formalization approaches

21

D
ra

ft
6 Tool Support

In this section, we discuss tool support for modeling and verifying UML state
machines. There are both commercial and academic tool supports for UML
modeling. To the best of our knowledge, current commercial tools only
support the design/graphical editing of UML models – hence, we discard
them here. Some academic prototype tools were developed based on the
translation approaches, which aim at automatically verifying UML state
machines, as we surveyed in Section 4. We are going to survey these tools
in this section and concentrate mainly on those automatic verification tools.

vUML Lilius and Porres [LP99a] (1999) report a tool vUML which aims
at automatically verifying UML model behaviors specified by UML state-
charts diagrams. This tool utilizes the Spin model checker as a backend
to perform model checking and creates a UML sequence diagram according
to the counterexample provided by Spin. The formal semantics is defined
in [LP99c]. They also conduct a case study with the production cell example
in [LP99b].

vUML aims at checking collaborations of UML models instead of a sin-
gle UML state machine. So the PROMELA specification for a UML model
is generated from class diagrams, statecharts and collaboration diagrams,
where each UML class is mapped into a PROMELA process-type, each
UML object is mapped into a PROMELA process and each link in the col-
laboration diagram is converted into a PROMELA channel for objects to
exchange messages. vUML provides an event generator to emulate exter-
nal events without parameters (close models) and removes external events
carrying parameters in order to avoid state space explosion.

vUML can check the following properties: deadlock, livelock, reaching
an invalid state, violating a constraint on an object, sending an event to a
terminated object, overrunning the input queue of an object, overrunning
the deferred event queue.

In order to verify those properties, two extra stereotypes are introduces,
namely <<invalid>> and <<progress>>. UML model developers need
to add those extra stereotypes into their models in order to use vUML to
model check safety and liveness properties. Constraints also act as a way to
specify properties (invariants over attributes and states). In order to verify
LTL formulas with UML, the users need to understand the PROMELA
model to come up with a proper LTL formula. .

JACK Gnesi et al. [GLM99] (1999) provide an algorithm to support direct
model checking UML statecharts based on the formal semantics they have
defined in [DIM99]. The implementation is based on the tool set JACK [?],
which is an environment based on the use of process algebras, automata
and temporal logic formalism, and supports many phases of the system

22

D
ra

ft
development process by integrating different editing tools and verification
tools. Different components of the JACK tool set communicate with the FC2
format. There is a model checking tool in the JACK tool set named AMC,
which supports ACTL model checking. The system should be translated
into the FC2 format first in order to utilize the AMC component. The users
also need to specify their own ACTL property according to the model. This
requires users to have a knowledge of model checking, the underlying model
as well as temporal logic formulas.

HUGO Alexander et al. [KMR02] (2002) developed a tool called HUGO,
which contains three components, each of which supports one functional-
ity. The first is the code generation component, which is used to auto-
matically generate Java code from UML state machines. The second is the
model checking component, used to verify the consistency of UML state
machines against specifications expressed as collaboration or sequence di-
agrams. HUGO can support LTL model checking provided knowledge of
the underlying model checker(Spin) and the structure of the translation.
The third component is a back end for the real-time model checker Up-
paal. In [KM02], they report an improved implementation of HUGO where
they discuss code generation and state reductions in the PROMELA code.
HUGO also adopts the translation approach where UML state machines are
translated into PROMELA models and utilizes the Spin model checker to
do the verification (the same applies to the real-time components where the
UML state machines are translated into the Uppaal modeling language).

ASM-based Verification Tools Shen et al. [SCH02] (2002) introduce
a tool based on an ASM model checker (which is based on theSMV model
checker). The semantics they adopt is defined in [CGHS00] (UML 1.3 or
earlier, though not explicitly mentioned in their technical report). This
tool set supports both static and dynamic checks of a UML diagrams. For
static aspects, syntax as well as well-formedness rules given by OCL can be
checked. Static views in UML, such as object diagram and class diagram
can also be transformed into ASM and checked. For the dynamic aspects,
UML state machines diagrams are transformed into ASM models, and an
ASM model checker is invoked to do the model checking. This tool takes
UML diagrams specified in the XMI format as input and outputs a coun-
terexample in the form given by the SMV model checker (since the dynamic
checking component of this toolset is based on the smv model checker). The
counterexample trace can be fed to their analysis tool, which will analyze
the error trace and produce some UML diagrams such as sequence diagrams
or a collaboration diagram to the users. Details about the tool are described
in [CGHS00] and details about the transformation procedures are discussed
in [BCR00].

23

D
ra

ft
TABU Beato et al. [BBSCdlF05] (2005) introduce a tool called TABU
(Tool for the Active Behavior of UML). TABU takes UML diagrams (activity
and state diagrams) in the form of XMI as input, automatically translates
it into an .smv representation (the input format of SMV model checker)
and calls the Cadence smv model checker to verify the UML model. In
addition, TABU also provides assistant for writing (LTL/CTL) properties
to verify against the model. This feature makes the underlying model and
the translation procedure transparent to the users, and solves the problem
faced by vUML [LP99c] to some extent.

This tool is attractive in the sense that it deals with UML 2.0 specifica-
tions, which is much closer to recent UML standards. The translation covers
most UML features (though not described in details in their paper) except
for synchronization states, events with parameters and dynamic creation
and destruction of objects. It also provides guides in writing properties.
But the counterexample is given in the form of the input format of SMV
model checker, which is not intuitive for model designers to map to their
models.

PROCO PROCO [PROb] (2006) translates a UML state machine in the
form of XMI forms into PROMELA, the input language of Spin model
checker is discussed in [JDJ+06]. No details are discussed in that paper,
but the paper reports the bugs found by the tool, which show its effective-
ness.

UML-B State Machine Animation Tool Recently, UML-B state ma-
chine Animation [UMLb] is developed as a plugin in the Rodin project [UMLb].
It is able to translate a UML-B diagram into Event-B representations and
utilize ProB [Proa], a plug-in of the Rodin project, to perform the simula-
tion and model checking tasks. The tool is available and can be installed
from the Rodin platform.

USM2C Liu et al. [LLA+13] (2013) report a tool called USM2C, that
implements the operational semantics defined in [LLA+13]. The tool sup-
ports most features of UML state machines and is capable of model checking
various properties, such as LTL, safety and deadlock-checking properties.

Summary

We notice that all the available tools, except for USM2C, just provide a front-
end supporting translation from UML state machines to languages of model
checkers. Such a translation will introduce extra cost for the verification
procedure. Due to the limitation of input languages to model checkers,
the complex semantics of UML state machine cannot be fully supported.
There are also problems for the utility of those tool, e.g., it is hard to map

24

D
ra

ft
Reference Tool name Underlying model checker model exchange format Availability
[LP99a] vUML Spin xmi ×

[KMR02] HUGO/RT Spin/Uppaal xmi
√

[SCH02] ASM based smv xmi ×
[BBSCdlF05] TABU smv xmi ×

[GLM99] JACK AMC FC2 ×
[JDJ+06] PROCO Spin xmi

√

[UMLb] UML-B ProB xmi
√

[LLA+13] USM2C PAT xmi
√

Table 5: Status of the tools

the found vulnerabilities to the original model. The informal translation
procedure cannot guarantee the soundness of the obtained model either.
Table 6 summarizes the basic information of the surveyed tools.

7 Conclusion

In this paper, we provide a thorough survey of approaches aiming at giv-
ing a formal semantics UML state machines, thus enabling their automated
verification. We categorized the approaches into two major groups, viz., the
translation approaches and those directly providing operational semantics.
In each group, we also provide comparisons of the surveyed approaches on
dimensions such as UML version, feature coverage, communication aspect,
event pool mechanism, consistency with other UML diagrams and tool sup-
ports.

25

D
ra

ft
Bibliography

[ACK12] Étienne André, Christine Choppy, and Kais Klai. Formalizing non-
concurrent UML state machines using colored Petri nets. ACM
SIGSOFT Software Engineering Notes, 37(4):1–8, 2012. Proceed-
ings of the 5th International workshop UML and Formal Methods
(UML&FM). 8, 14, 15

[Are00] Demissie B. Aredo. Semantics of uml statecharts in pvs. In In Proc.
of the 12th Nordic Workshop on Programming Theory (NWPT00),
2000. 12, 14, 15

[BBSCdlF05] M. Encarnación Beato, Manuel Barrio-Solórzano, Carlos E. Cuesta,
and Pablo de la Fuente. UML automatic verification tool with formal
methods. Electron. Notes Theor. Comput. Sci., 127(4):3–16, April
2005. 11, 15, 24, 25

[BCR00] E. Börger, A. Cavarra, and E. Riccobene. Modeling the dynamics of
uml state machines. In Abstract State Machines-Theory and Appli-
cations, pages 167–186. Springer, 2000. 6, 7, 14, 15, 23

[BCR03] Egon Börger, Alessandra Cavarra, and Elvinia Riccobene. Modeling
the meaning of transitions from and to concurrent states in UML
state machines. In Proceedings of the 2003 ACM symposium on Ap-
plied computing, SAC ’03, pages 1086–1091, New York, NY, USA,
2003. ACM. 6, 7, 14, 15

[BCR04] Egon Brger, Alessandra Cavarra, and Elvinia Riccobene. On formal-
izing UML state machines using asms. Information Software Tech-
nology, 46(5):287, 2004. 6

[BGL94] Amar Bouali, Stefania Gnesi, and Salvatore Larosa. The integration
project for the jack environment. Technical report, Amsterdam, The
Netherlands, The Netherlands, 1994. 12

[BKKS08] Jörg Beckers, Daniel Klünder, Stefan Kowalewski, and Bastian
Schlich. Direct support for model checking abstract state machines
by utilizing simulation. In Egon Brger, Michael Butler, JonathanP.
Bowen, and Paul Boca, editors, Abstract State Machines, B and Z,
volume 5238 of Lecture Notes in Computer Science, pages 112–124.
Springer Berlin Heidelberg, 2008. 6

[BP01] L. Baresi and M. Pezze. On formalizing uml with high-level petri
nets. Concurrent Object-Oriented Programming and Petri Nets,
pages 276–304, 2001. 8, 14, 15

26

D
ra

ft
[CCG+02] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto

Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and
Armando Tacchella. NuSMV 2: An opensource tool for symbolic
model checking. In Proceedings of the 14th International Conference
on Computer Aided Verification, CAV ’02, pages 359–364, London,
UK, UK, 2002. Springer-Verlag. 2, 11

[CD05a] Michelle L. Crane and Juergen Dingel. Uml vs. classical vs. rhapsody
statecharts: Not all models are created equal. In Proc. 8th Interna-
tional Conf. on Model Driven Engineering Languages and Systems,
Oct, pages 2–7, 2005. 2

[CD05b] M.L. Crane and J. Dingel. On the semantics of UML state machines:
Categorization and comparision. In In Technical Report 2005-501,
School of Computing, Queens. Citeseer, 2005. 2, 3, 4

[CGHS00] Kevin Compton, Yuri Gurevich, James Huggins, and Wuwei Shen.
An automatic verification tool for UML. Technical Report CSE-TR-
423-00, University of Michigan, 2000. 6, 11, 14, 15, 23

[CKZ11] C. Choppy, K. Klai, and H. Zidani. Formal verification of uml state
diagrams: a petri net based approach. ACM SIGSOFT Software
Engineering Notes, 36(1):1–8, 2011. 8, 9, 14, 15

[DIM99] Latella Diego, Majzik Istvan, and Massink Mieke. Towards a formal
operational semantics of UML statechart diagrams. In Proceedings
of the IFIP TC6/WG6, volume 1, page 465, 1999. 9, 10, 12, 16, 17,
21, 22

[DJ07] Jori Dubrovin and Tommi Junttila. Symbolic model checking of
hierarchical UML state machines. In Application of Concurrency to
System Design, 2008. ACSD, number B23, pages 108–117, Espoo,
Finland, December 2007. 11, 14, 15, 20, 21

[DJPV03] Werner Damm, Bernhard Josko, Amir Pnueli, and Angelika Vot-
intseva. Understanding uml: A formal semantics of concurrency
and communication in real-time uml. In FrankS. Boer, MarcelloM.
Bonsangue, Susanne Graf, and Willem-Paul Roever, editors, Formal
Methods for Components and Objects, volume 2852 of Lecture Notes
in Computer Science, pages 71–98. Springer Berlin Heidelberg, 2003.
19, 21

[Dub06] Jori Dubrovin. Jumbala — an action language for UML state ma-
chines. Technical report, Helsinki University of Technology, Labora-
tory for Theoretical Computer Science, 2006. 10

[ER03] Brger Egon and Strk Robert. Abstract State Machines A Method
for High-Level System Design and Analysis. Springer-Verlag USA.,
2003. 5, 6

[EW00] Rik Eshuis and Roel Wieringa. Requirements-level semantics for uml
statecharts. In ScottF. Smith and CarolynL. Talcott, editors, Formal
Methods for Open Object-Based Distributed Systems IV, volume 49
of IFIP Advances in Information and Communication Technology,
pages 121–140. Springer US, 2000. 18, 21

27

D
ra

ft
[FS07] H. Fecher and J. Schönborn. UML 2.0 state machines: Complete for-

mal semantics via core state machine. Formal Methods: Applications
and Technology, pages 244–260, 2007. 19, 21

[FSKdR05] H. Fecher, J. Schönborn, M. Kyas, and W.P. de Roever. 29 new
unclarities in the semantics of uml 2.0 state machines. Formal Meth-
ods and Software Engineering, pages 52–65, 2005. 20

[GDC00] Kirsten Winter Giuseppe Del Castillo. Model checking support for
the asm high-level language. Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 331–346, 2000. 6, 11

[GLM99] S. Gnesi, D. Latella, and M. Massink. Model checking UML state-
chart diagrams using jack. In High-Assurance Systems Engineering,
1999. Proceedings. 4th IEEE International Symposium on, pages 46–
55. IEEE, 1999. 11, 22, 25

[GLM02] Stefania Gnesi, Diego Latella, and Mieke Massink. Modular seman-
tics for a uml statechart diagrams kernel and its extension to mul-
ticharts and branching time model-checking. Journal of Logic and
Algebraic Programming, 51(1):43–75, 2002. 16

[Gom00] H. Gomaa. Validation of dynamic behavior in uml using colored petri
nets. 2000. 8, 14, 15

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Sci-
ence of computer programming, 8(3):231–274, 1987. 2, 9

[HKL+10] Helle Hvid Hansen, Jeroen Ketema, Bas Luttik, MohammadReza
Mousavi, and Jaco Pol van de. Towards model checking executable
uml specifications in mcrl2. Innovations in Systems and Software
Engineering, 6(1-2):83–90, March 2010. Open Access. 12, 15

[HLN+90] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtull-Trauring, and M. Trakhtenbrot. Statemate: A working en-
vironment for the development of complex reactive systems. Software
Engineering, IEEE Transactions on, 16(4):403–414, 1990. 9

[HN96] D. Harel and A. Naamad. The statemate semantics of state-
charts. ACM Transactions on Software Engineering and Methodology
(TOSEM), 5(4):293–333, 1996. 2, 9

[hug12] Hugo/rt website.[online] http://www.pst.informatik.

uni-muenchen.de/projekte/hugo/, Nov 2012. 12

[JDJ+06] Toni Jussila, Jori Dubrovin, Tommi Junttila, Timo Latvala, , and
Ivan Porres. Model checking dynamic and hierarchical uml state
machines. Proc. MoDeV2a: Model Development, Validation and Ver-
ification, pages 94–110, 2006. 10, 14, 15, 24, 25

[JEJ04] Y. Jin, R. Esser, and J.W. Janneck. A method for describing the
syntax and semantics of UML statecharts. Software and Systems
Modeling, 3(2):150–163, 2004. 7, 14, 15

28

http://www.pst.informatik.uni-muenchen.de/projekte/hugo/
http://www.pst.informatik.uni-muenchen.de/projekte/hugo/

D
ra

ft
[JK98] J.W. Janneck and P.W. Kutter. Mapping automata: simple abstract

state machines. TIK-Report. Computer Engineering and Networks
Laboratory (TIK), Swiss Federal Institute of Technology Zürich
(ETH), 1998. 7

[JK09] K. Jensen and L.M. Kristensen. Coloured Petri nets: modeling and
validation of concurrent systems. Springer-Verlag New York Inc,
2009. 5, 8

[Jür02] Jan Jürjens. A UML statecharts semantics with message-passing.
In Proceedings of the 2002 ACM symposium on Applied computing,
SAC ’02, pages 1009–1013, New York, NY, USA, 2002. ACM. 7, 14,
15

[KM02] A. Knapp and S. Merz. Model checking and code generation for UML
state machines and collaborations. In Proceedings of 5th Workshop
on Tools for System Design and Verification, Technical Report, vol-
ume 11, pages 59–64, 2002. 23

[KMR02] Alexander Knapp, Stephan Merz, and Christopher Rauh. Model
checking - timed uml state machines and collaborations. In Proceed-
ings of the 7th International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems: Co-sponsored by IFIP WG
2.2, FTRTFT ’02, pages 395–416, London, UK, UK, 2002. Springer-
Verlag. 12, 14, 15, 23, 25

[Kwo00] Gihwon Kwon. Rewrite rules and operational semantics for model
checking UML statecharts. In Proceedings of the 3rd international
conference on The unified modeling language: advancing the stan-
dard, UML’00, pages 528–540, Berlin, Heidelberg, 2000. Springer-
Verlag. 11, 14, 15, 18, 21

[LLA+13] Shuang Liu, Yang Liu, Étienne André, Christine Choppy, Jun Sun,
Bimlesh Wadhwa, and Jin Song Dong. A formal semantics for
the complete syntax of uml state machines with communications.
In Luigia Petre and Einar Broch Johnsen, editors, Proceedings of
the 10th International Conference on Integrated Formal Methods
(iFM’13), volume 7940 of Lecture Notes in Computer Science, pages
331–346. Springer, June 2013. 18, 21, 24, 25

[LMM99] Diego Latella, Istvan Majzik, and Mieke Massink. Automatic Verifi-
cation of a Behavioural Subset of UML Statechart Diagrams Using
the SPIN Model-checker. Formal Aspects of Computing, 11(6):637–
664, December 1999. 9, 14, 15

[LP99a] Johan Lilius and Ivan Porres Paltor. vUML: A tool for verifying UML
models. In Proceedings of the 14th IEEE international conference on
Automated software engineering, ASE ’99, pages 255–, Washington,
DC, USA, 1999. IEEE Computer Society. 22, 25

[LP99b] Johan Lilius and Iván Porres Paltor Paltor. Formalising uml state
machines for model checking. In Robert France and Bernhard
Rumpe, editors, ¡¡UML¿¿’99–The Unified Modeling Language, vol-
ume 1723 of Lecture Notes in Computer Science, pages 430–444.
Springer Berlin Heidelberg, 1999. 22

29

D
ra

ft
[LP99c] Johan Lilius and Ivn Porres Paltor. The semantics of UML state

machines. Technical report, 1999. 18, 21, 22, 24

[LP04] Vitus S.W. Lam and Julian Padget. Symbolic model checking of
uml statechart diagrams with an integrated approach. In 11th
IEEE International Conference and Workshop on the Engineering
of Computer-Based Systems, 2004. Proceedings., 2004. 11, 14

[LP05] Vitus S.W. Lam and Julian Padget. An integrated environment
for communicating uml statechart diagrams. In Proceedings of the
ACS/IEEE 2005 International Conference on Computer Systems
and Applications, AICCSA ’05, pages 111–vii, Washington, DC,
USA, 2005. IEEE Computer Society. 15

[LRS10] Mass Soldal Lund, Atle Refsdal, and Ketil Stølen. Semantics of UML
models for dynamic behavior: a survey of different approaches. In
Proceedings of the 2007 International Dagstuhl conference on Model-
based engineering of embedded real-time systems, MBEERTS’07,
pages 77–103, Berlin, Heidelberg, 2010. Springer-Verlag. 2, 3, 4

[mCR12] mCRL2, a specification language and toolset. http://www.mcrl2.
org/release/user_manual/index.html., 2012. 12

[ML09] Carlsson Mats and Johansson Lars. Formal verification of UML-RT
capsules using model checking. Master’s thesis, Department of Com-
puter Science and Engineering, Chalmers University of Technology,
Sweden, 2009. 10, 14, 15

[NB02] Muan Yong Ng and Michael Butler. Tool support for visualizing csp
in uml. In Chris George and Huaikou Miao, editors, Formal Methods
and Software Engineering, volume 2495 of Lecture Notes in Computer
Science, pages 287–298. Springer Berlin Heidelberg, 2002. 12

[NB03] Muan Yong Ng and Michael Butler. Towards formalizing UML state
diagrams in CSP. Third IEEE International Conference on Software
Engineering and Formal Methods, SEFM’03, 0:138, 2003. 12, 15

[OMG] Object management group. http://www.omg.org/. 2

[PB04] S. Ramesh Purandar Bhaduri. Model checking of statechart models:
Survey and research directions. Arxiv preprint cs/0407038, 2004. 2,
3, 9

[Proa] The prob animator and model checker, http://www.stups.

uni-duesseldorf.de/ProB/index.php5/The_ProB_Animator_

and_Model_Checker. 24

[PROb] Proco, http://www.tcs.hut.fi/SMUML/. 24

[Proc] The promela user menual. http://spinroot.com/spin/Man/

promela.html. 2

[PVS] Pvs specification and verification system. http://pvs.csl.sri.

com/. 12

30

http://www.mcrl2.org/release/user_manual/index.html
http://www.mcrl2.org/release/user_manual/index.html
http://www.omg.org/
http://www.stups.uni-duesseldorf.de/ProB/index.php5/The_ProB_Animator_and_Model_Checker
http://www.stups.uni-duesseldorf.de/ProB/index.php5/The_ProB_Animator_and_Model_Checker
http://www.stups.uni-duesseldorf.de/ProB/index.php5/The_ProB_Animator_and_Model_Checker
http://www.tcs.hut.fi/SMUML/
http://spinroot.com/spin/Man/promela.html
http://spinroot.com/spin/Man/promela.html
http://pvs.csl.sri.com/
http://pvs.csl.sri.com/

D
ra

ft
[RACH00] G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing

UML active classes and associated state machines - a lightweight
formal approach. In Proc. FASE 2000, number 1783 in Lecture Notes
in Computer Science, pages 127–146. Springer Verlag, 2000. 18

[SCH02] Wuwei Shen, Kevin Compton, and James Huggins. A toolset for sup-
porting UML static and dynamic model checking. In Proceedings of
the 26th International Computer Software and Applications Confer-
ence on Prolonging Software Life: Development and Redevelopment,
COMPSAC ’02, pages 147–152, Washington, DC, USA, 2002. IEEE
Computer Society. 23, 25

[SdRFK05] Jens Schonborn, Willem Paul de Roever, Harald Fecher, and Mar-
cel Kyas. Formal semantics of UML 2.0 behavioral state machines.
Technical report, Institute of Computer Science and Applied Math-
ematics, Technical Faculty, Christian-Albrechts-University of Kiel,
2005. 19, 21

[SKM01] Timm Sch”afer, Alexander Knapp, and Stephan Merz. Model check-
ing uml state machines and collaborations. Electronic Notes in The-
oretical Computer Science, 55(3):357–369, October 2001. 10, 14, 15

[SLDP09] J. Sun, Y. Liu, J. Dong, and J. Pang. Pat: Towards flexible verifica-
tion under fairness. In Computer Aided Verification, pages 709–714.
Springer, 2009. 12

[SMU] Symbolic methods for uml behavioural diagrams, http://www.tcs.
hut.fi/Research/Logic/SMUML.shtml. 11

[SPI] The spin model checker http://spinroot.com/spin/whatispin.

html. 2

[Spi00] Marc Spielmann. Model checking abstract state machines and be-
yond. In Yuri Gurevich, PhilippW. Kutter, Martin Odersky, and
Lothar Thiele, editors, Abstract State Machines - Theory and Appli-
cations, volume 1912 of Lecture Notes in Computer Science, pages
323–340. Springer Berlin Heidelberg, 2000. 6

[Tra00] Issa Traoré. An outline of pvs semantics for uml statecharts. Journal
of Universal Computer Science, 6:2000, 2000. 12, 14, 15

[TZ05] J. Trowitzsch and A. Zimmermann. Real-time uml state machines:
An analysis approach. 2005. 8, 14, 15

[UMLa] OMG unified language superstructure specification (formal). Version
1.4, 2011-08-06. http://www.omg.org/spec/UML/1.4/PDF/index.

htm. 6

[UMLb] UML-B statemate:achine animation, http://wiki.event-b.org/

index.php/UML-B_-_Statemachine_AnimState. 24, 25

[UPP] The uppaal model checker. http://www.uppaal.org/. 5

[Von02] M. Von Der Beeck. A structured operational semantics for UML-
statecharts. Software and Systems Modeling, 1(2):130–141, 2002. 17,
18, 21

31

http://www.tcs.hut.fi/Research/Logic/SMUML.shtml
http://www.tcs.hut.fi/Research/Logic/SMUML.shtml
http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/whatispin.html
http://www.omg.org/spec/UML/1.4/PDF/index.htm
http://www.omg.org/spec/UML/1.4/PDF/index.htm
http://wiki.event-b.org/index.php/UML-B_-_Statemachine_AnimState
http://wiki.event-b.org/index.php/UML-B_-_Statemachine_AnimState
http://www.uppaal.org/

D
ra

ft
[WJXZC01] Dong Wei, Wang Ji, Qi Xuan, and Qi Zhi-Chang. Model check-

ing UML statecharts. In Software Engineering Conference, 2001.
APSEC 2001. Eighth Asia-Pacific, pages 363–370, 2001. 17, 21

[ZL10] S.J. Zhang and Y. Liu. An automatic approach to model checking
uml state machines. In Secure Software Integration and Reliabil-
ity Improvement Companion (SSIRI-C), 2010 Fourth International
Conference on, pages 1–6. IEEE, 2010. 12, 13, 14, 15

32

	Introduction
	Related Works
	Categorization Criteria
	The Translating Approaches
	Translation into Abstract State Machines
	Translation into Petri Nets
	Translation into the Input Language of Model Checkers
	Summary

	Approaches Providing Operational Semantics for UML State Machines
	Semantics Defined Using LTS as Semantics Model
	Approaches using other semantic models
	Summary

	Tool Support
	Conclusion

