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Motivations

Programs analysis deal about uniform properties:
Do all the executions terminate?
Are all the executions performed within a given
time/space bound ?

Importance of the use of resources.
Time and space are resources usually considered.
Termination is usually reduced to finding a
decreasing well-founded ordering, i.e. total usage of
a finite resource.
Only specific resources may be considered
(non-overflow of a specific buffer or stack).

Design a single tool for this kind of analysis.

Séminaire CLI – p.



The core idea
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Control Flow Graphs

We’re working here over counters machines.

0 : if x = 0 jmp end

1 : x −−

2 : y + +

3 : jmp 0

end : end
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Control Flow Graphs

We’re working here over counters machines.

0 : if x = 0 jmp end

1 : x −−

2 : y + +

3 : jmp 0

end : end

An execution of the program A path in the CFG.
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Petri nets and VASS

Resource usage, i.e. values of variables, can be seen as
the number of token in states of a Petri net.

0 : if x = 0 jmp end

1 : x −−

2 : y + +

3 : jmp 0
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Petri nets and VASS

Resource usage, i.e. values of variables, can be seen as
the number of token in states of a Petri net.
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Petri nets and VASS

Values of variables can be stored in a vector thus leading to
a Vectors Addition System with States (VASS).

0 : if x = 0 jmp end

1 : x −−

2 : y + +

3 : jmp 0

end : end
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Petri nets and VASS

Values of variables can be stored in a vector thus leading to
a Vectors Addition System with States (VASS).

0 : if x = 0 jmp end
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2 : y + +

3 : jmp 0

end : end
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Resource Systems with States
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Resource Systems with States

A RSS is a quintuple (G,V, V +,W, ω) where:
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Resource Systems with States

A RSS is a quintuple (G,V, V +,W, ω) where:

G is a directed graph.
S = {s1, · · · , sn} are the vertices.
A = {a1, · · · , am} are the edges.
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A RSS is a quintuple (G,V, V +,W, ω) where:

G is a directed graph.
S = {s1, · · · , sn} are the vertices.
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Resource Systems with States

A RSS is a quintuple (G,V, V +,W, ω) where:

G is a directed graph.
S = {s1, · · · , sn} are the vertices.
A = {a1, · · · , am} are the edges.

For each vertex si, there is:
A set of valuations Vi

A set of admissible valuations V +

i .

V =
⋃

Vi, V + =
⋃

V +

i .

Wi,j = F(Vi, Vj), W =
⋃

Wi,j is the set of weights.

ω : A → W such that if a = (si, sj), then ω(a) ∈ Wi,j.
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Configuations and walks

Let G = (S,A) be a graph.

A vertex is an element of S.

A path is a sequence of vertices s1, · · · , sn such that
there is an edge between si and si+1.
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Configuations and walks

Let G = (S,A) be a graph.

A vertex is an element of S.

A path is a sequence of vertices s1, · · · , sn such that
there is an edge between si and si+1.

Let R = (G,V, V +,W, ω) be a RSS.

A configuration is a couple (si, x) with x ∈ Vi.

A configuration (si, x) is admissible if x ∈ V +

i .
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Configuations and walks

Let G = (S,A) be a graph.

A vertex is an element of S.

A path is a sequence of vertices s1, · · · , sn such that
there is an edge between si and si+1.

Let R = (G,V, V +,W, ω) be a RSS.

A configuration is a couple (si, x) with x ∈ Vi.

A configuration (si, x) is admissible if x ∈ V +

i .

A walk is a sequence of configurations
(s1, x1), · · · , (sn, xn) such that:

s1, · · · , sn is a path.

If ai is the edge between si and si+1, then
xi+1 = ω(ai)(xi).

Séminaire CLI – p.



Turing Machines

A TM can be represented by a RSS in the following way:

Underlying graph is the automaton of the TM.

Valuations (and admissible valuations) are bi-infinite
strings over {0, 1}.

Weights perform the corresponding operations.

Each execution of the TM corresponds to an (admissible)
walk in the RSS and each (admissible) walk in the RSS
corresponds to an execution of the TM.

By Rice’s theorem, extensionnal properties of RSS are not
decidable.

Séminaire CLI – p.



Facts and notations

Let R = (G,V, V +,W, ω) be a RSS. Let (s0, x0), · · · , (sn, xn)

be a walk following edges a1, · · · , an.

xn = ω(an) ◦ · · · ◦ ω(a1)(x0).

Functions composition is done in reverse order.

Weight functions are usually somewhat uniform.

We write f # g instead of g ◦ f and x⊛ f instead of f(x).

xn = x0
⊛ ω(a1) # · · · # ω(an).

# is associative.

W is the closure of
⋃

ω(ai) by #.
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Ordering, termination, resource awarness

An ordered RSS is a RSS R = (G,V, V +,W, ω) together with
a well partial order ≺ over V .
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Ordering, termination, resource awarness

An ordered RSS is a RSS R = (G,V, V +,W, ω) together with
a well partial order ≺ over V .

R is monotonic if all functions in W are monotonic
(increasing).

R is positive if v ∈ V + and v ≺ v′ implies v′ ∈ V +.
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Ordering, termination, resource awarness

An ordered RSS is a RSS R = (G,V, V +,W, ω) together with
a well partial order ≺ over V .

R is monotonic if all functions in W are monotonic
(increasing).

R is positive if v ∈ V + and v ≺ v′ implies v′ ∈ V +.

R uniformely terminates if there is no infinite admissible
walk.

R is f -resource aware if for each admissible walk
(s0, x0), · · · , (si, xi), xi ≺ f(x0) (f increasing).
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A first result

R does not uniformely terminate ⇒ ∃ an
admissible cycle (s, x)

∗

→(s, x′) such that x � x′.
If R is monotonic and positive, the converse is

true.
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A first result

R does not uniformely terminate ⇒ ∃ an
admissible cycle (s, x)

∗

→(s, x′) such that x � x′.
If R is monotonic and positive, the converse is

true.

If an infinite admissible walk exists, extract from it an infinite
sequence of configurations with the same vertex. Since ≺ is
a well ordering, x � x′ can be extracted from this sequence.
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A first result

R does not uniformely terminate ⇒ ∃ an
admissible cycle (s, x)

∗

→(s, x′) such that x � x′.
If R is monotonic and positive, the converse is

true.

If an infinite admissible walk exists, extract from it an infinite
sequence of configurations with the same vertex. Since ≺ is
a well ordering, x � x′ can be extracted from this sequence.

If the cycle exists, follow it infinitely many time. Monotonicity
ensure that valuations reached increase and positivity that
this keeps everything admissible.
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Resource Control Graph

Let p be a program. It’s Resource Control Graph (RCG) is a
RSS where:

The underlying graph is the Control Flow Graph.

Admissible valuations approximate the state of memory.

Approximations allow to restrict weighting functions to some
uniform familly of functions (e.g. λx.x + α).
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Resource Control Graph

Let p be a program. It’s Resource Control Graph (RCG) is a
RSS where:

The underlying graph is the Control Flow Graph.

Admissible valuations approximate the state of memory.

Approximations allow to restrict weighting functions to some
uniform familly of functions (e.g. λx.x + α).

To each execution of the program corresponds an
admissible walk in the RCG.

Unif. term. of the RCG ⇒ u.t. of the program.
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Weighted graphs and Non Size
Increasingness
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Weighted graphs as RSS

A weighted graph is a graph G = (S,A) together with a
weighting function ω : A → Z.

The weight of a path is the sum of the weights of each
edges.
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Weighted graphs as RSS

A weighted graph is a graph G = (S,A) together with a
weighting function ω : A → Z.

The weight of a path is the sum of the weights of each
edges.

This is similar to RSS with W = Z and # = +.
V = Z and V + = N.
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Weighted graphs as RSS

A weighted graph is a graph G = (S,A) together with a
weighting function ω : A → Z.

The weight of a path is the sum of the weights of each
edges.

This is similar to RSS with W = Z and # = +.
V = Z and V + = N.

A weighted graph uniformely terminates if and
only if it contains no cycle of weight ≥ 0.

It is λx.x + α-resource aware if it contains no
cycle of weight > 0.

Both criterions can be decided in polynomial time.
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Non Size Increasingness

Consider assembly-like programs working over lists of
integers.
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Non Size Increasingness

Consider assembly-like programs working over lists of
integers. Build the RCG with the following approximation:

The memory is only represented by its total space
usage.

Space usage of integers is 1.

Space usage of lists is their length.
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Non Size Increasingness

Consider assembly-like programs working over lists of
integers. Build the RCG with the following approximation:

The memory is only represented by its total space
usage.

Space usage of integers is 1.

Space usage of lists is their length.

This leads to the following RCG:

V + = N (total space usage is ≥ 0).

ω(cons) = λx.x + 1, ω(tail) = λx.x − 1.

W =
⋃

λx.x + α, V = Z.
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NSI (2)

If the RCG is λx.x + α-resource aware, then the
program is NSI.

If the RCG is λx.βx + α-resource aware, then
the program is LINSPACE.
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NSI (2)

If the RCG is λx.x + α-resource aware, then the
program is NSI.

If the RCG is λx.βx + α-resource aware, then
the program is LINSPACE.

Admissible valuations play exactly the same role as
M. Hofmann’s diamonds: the valuation is equal to the
number of diamonds needed in the current state.
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Going further

We can use more types if we have an appropriate size
function.

We can choose not to consider all the lists, i.e. only
control some buffers.

We can similarly control depth of data stacks (push,
pop).

We can similarly control depth of recursion stack (call,
return).
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Size Change Principle
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Original SCP

(Lee, Jones, Ben Amram)
f(a + 1, b) → g(a, b, b)

g(a, b, c + 1) → g(a, b, c)

g(a, b, 0) → f(b, a)
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Multipaths, threads.
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Original SCP

(Lee, Jones, Ben Amram)
f(a + 1, b) → g(a, b, b)

g(a, b, c + 1) → g(a, b, c)

g(a, b, 0) → f(b, a)
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Multipaths, threads.
FLOWω, DESCω

FLOWω = DESCω ⇒ termination
(PSPACE-complet).
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SCP as a RSS

f(a + 1, b) → g(a, b, b)

g(a, b, c + 1) → g(a, b, c)
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W = SCG, # = SCG-composition.
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SCP as a RSS
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SCP as a RSS

f(a + 1, b) → g(a, b, b)

g(a, b, c + 1) → g(a, b, c)

g(a, b, 0) → f(b, a)

f
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↓

W = SCG, # = SCG-composition.
V = N

k (number of ↓), V + if all component ≤ n.
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SCP as a RSS

f(a + 1, b) → g(a, b, b)

g(a, b, c + 1) → g(a, b, c)

g(a, b, 0) → f(b, a)

f
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g3

↓
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g2

g3
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g3
↓

f1

f2
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g3

↓
f1

f2

g1

g2

g3

⇒
f1

f2

f1

f2

↓

W = SCG, # = SCG-composition.
V = N

k (number of ↓), V + if all component ≤ n.

SCP ≡ uniform termination for all n.
Not u.t. ⇔ ∃ cycle of dec. idempotent weight.
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Using matrices

(Abel and Altenkirch)
f(a + 1, b) → g(a, b, b)

g(a, b, c + 1) → g(a, b, c)

g(a, b, 0) → f(b, a)

f
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Using matrices

(Abel and Altenkirch)
f(a + 1, b) → g(a, b, b)

g(a, b, c + 1) → g(a, b, c)

g(a, b, 0) → f(b, a)

f

g

↓ ∅ ∅

∅ = =

= ∅ ∅

∅ = ∅

∅ ∅ ↓

∅ =
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Using matrices

(Abel and Altenkirch)
f(a + 1, b) → g(a, b, b)

g(a, b, c + 1) → g(a, b, c)

g(a, b, 0) → f(b, a)

f

g

↓ ∅ ∅

∅ = =

= ∅ ∅

∅ = ∅

∅ ∅ ↓

∅ =

= ∅

∅ ∅

↓ ∅ ∅

∅ = =
⊗

∅ =

= ∅

∅ ∅

⇒
∅ ↓

= ∅

W : matrices over the three valued set.
# : matrices multiplication.
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Matrices Multiplication Systems
with States
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MMSS

A MMSS is a RSS where:

Vi = bZki , V +

i = N
ki

Wi,j = Mki,kj

# = ⊛ = ×

If we use column-vectors instead of row-vectors, we need to
transpose matrices and perform multiplication in reverse
order.
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Uniform termination

Uniform termination of MMSS is not decidable
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Uniform termination

Uniform termination of MMSS is not decidable

Reduce to uniform termination of counter machines.

x + +, x −−: keep 1 as first component of vector.

x 6= 0: x −−;x + +.

x = 0: multiplication by −1.
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Difficulty of instructions

x + +, x −−, x 6= 0 can be modelised with VASS (i.e.
with vectors).

x = 0 needs MMSS (i.e. a matrix) to be modelised.
(it is a well-known fact that Petri nets cannot test if a
place is empty)

First order program can be represented by several
matrices, i.e. a tensor (given an enumeration of the
edges).

Tensor Multiplication Systems should be able to
modelise high order programs.

The higher the order, the more dimensions are required.
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Polynomial bound

(Niggl and Wunderlich)

Use a matrice over {0, 1,∞} as a certificate for
polynomiality of instructions.

Certificate for P1;P2: M1 × M2.

Certificate for tests: max.

Certificate for loops: closure.

Shape of the certificate of a program can lead to polytime
bound.
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Conclusion

New tool, generalisation of existing one (Petri
nets/VASS).

Several analysis can be rewritten using this tool.

Is it possible to combine these analysis ?

Can we also rewrite other analysis ?

Can we discover new analysis ?
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