
Non-Uniform Polytime Computation in
the Infinitary Affine Lambda-Calculus

Damiano Mazza

CNRS, UMR 7030, LIPN, Université Paris 13, Sorbonne Paris Cité
Damiano.Mazza@lipn.univ-paris13.fr

Abstract. We give an implicit, functional characterization of the class of non-
uniform polynomial time languages, based on an infinitary affine lambda-calculus
and on previously defined bounded-complexity subsystems of linear (or affine)
logic. The fact that the characterization is implicit means that the complexity
is guaranteed by structural properties of programs rather than explicit resource
bounds. As a corollary, we obtain a proof of the (already known) P-completeness
of the normalization problem for the affine lambda-calculus which mimics in an
interesting way Ladner’s P-completeness proof of CIRCUIT VALUE (essentially,
the argument giving the Cook-Levin theorem). This suggests that the relation-
ship between affine and usual lambda-calculus is deeply similar to that between
Boolean circuits and Turing machines.

1 Introduction

Loosely speaking, the aim of implicit computational complexity is to replace clocks (or
other explicit resource bounds) with certificates. For example, if we consider polyno-
mial time computation, the idea is to define a structured programming language whose
programs guarantee a polynomial dependence of the runtime on the input by construc-
tion, i.e., because they satisfy some syntactic condition, not because their execution is
artificially stopped after a polynomial number of steps. At the same time, such a pro-
gramming language must be expressive enough so that every polynomial time function
may be somehow implemented. Notable early examples of such methodology are the
work of Bellantoni and Cook [2], Leivant and Marion [9], and Jones [5].

We consider here the question of finding an implicit characterization of non-uniform
polynomial time, i.e., the class P/poly. Our approach brings together two lines of work,
both based on linear logic. The first is the linear-logical take at implicit computational
complexity initiated by Girard [4] and reformulated in the λ-calculus, for example,
by Asperti and Roversi [1]. The second is the author’s work on the infinitary affine
λ-calculus [11], previously considered also by Kfoury [6] and Melliès [12].

For our present purposes, the essence of linear logic is in its resource awareness.
Linear (or, more precisely, affine) types describe volatile data, which may be accessed
only once. Accordingly, the linear (or affine) functional type A ( B describes pro-
grams producing an output of type B by using their input of type A exactly (or at most)
once. Persistent data is described by the type !A, which may be understood as volatile
access to a bottomless pile of copies of A, thus obtaining unlimited access to A. The
usual functional type A→ B may then be expressed by !A( B.



In the λ-calculus, which is the prototypical functional language, affinity takes the
form of forbidding duplication, which translates into an extremely simple syntactic re-
striction: each variable must appear at most once in a term. Our previous work [11]
shows how affine λ-terms may approximate usual λ-terms arbitrarily well, in a precise
topological sense which is compatible with computation (i.e., reduction is continuous).
In the limit, usual λ-terms are recovered by considering infinitary affine terms (thus
taking quite literally the above idea of “bottomless pile”). However, the limit process
(which is just the completion of a uniform space) introduces a host of infinitary terms
which do not correspond to any usual λ-term. The reason is easily explained: to act
as a persistent memory cell, a datum of type !A must contain infinitely many identical
copies of a datum of type A. Without further constraints, the infinitary affine λ-calculus
allows memory cells whose content changes arbitrarily with each access. This is the
“functional gateway” to non-uniform computation.

The technical contribution of this paper is to “tame” the non-uniformity of the un-
restricted calculus `Λ∞ of [11] so as to keep it within interesting boundaries, namely
those of P/poly. Let us give an informal description of what this means. Using (an
adaptation of) the standard λ-calculus encodings of binary strings, we may say that a
term t decides L ⊆ {0, 1}∗ in `Λ∞ if, given w ∈ {0, 1}∗, tw →∗ b with b ∈ {0, 1}
according to whether w belongs to L (w is the encoding of w and→∗ is the reduction
relation of the calculus). Now, t is generally infinite, but we may define a canonical se-
quence btcn of approximations of t, which are finite affine terms such that limbtcn = t.
Intuitively, btcn behaves like t in which every internal memory cell is limited to at most
n accesses. We may then appeal to the continuity of reduction, by which, if we let un
be the normal form of btcn w, we have that b = limun. But our topology is such that
pieces of data like b are isolated points, so there exists m ∈ N such that un = b for all
n ≥ m. This means that a finite approximation of t suffices to compute tw. The size
of btcm is linear in m, so the question is: How big is m? Can we relate it to |w|? If
we can make m be polynomial in |w|, the language decided by t is in P/poly: we may
use the btcm as (polynomial) advice and then normalize btcm w, which may be done in
polynomial time in |w| because it is a finite affine term.

There exist several λ-calculus characterizations of P based on linear logic (most no-
tably Girard’s [4] and Lafont’s [8]) and the naive idea to polynomially bound m would
be to reuse the recipes given therein. However, non-uniformity in the λ-calculus is ex-
tremely subtle and the approach “take your favorite λ-calculus characterization of P
and add non-uniformity” does not necessarily yield P/poly. The most surprising aspect
is that polytime non-uniformity seems to refuse the logical principle of contraction (ex-
pressed by the formula !A( !A⊗ !A): in its presence,mmay be exponentially big and
we may therefore decide any language (an intuitive explanation is given below). This
rules out Girard’s approach [4]. Lafont’s system [8] does not use contraction but appears
to have the opposite problem: we are currently unaware of whether the expressiveness
of its non-uniform version reaches P/poly.

The key to our solution is a new structural constraint on terms, which we call parsi-
mony. In `Λ∞, affinity is enforced by giving a unique integer index to each occurrence
of non-linear variable x: intuitively, xi means “access to the i-th copy of the datum con-
tained in x”. In this setting, contraction (corresponding to duplication) is implemented



using “Hilbert’s hotel”: from an infinite family (xi)i∈N representing an argument of
type !A, we make two infinite families, e.g. x2i and x2i+1. Iterating this n times, we
obtain a family whose first element is xO(2n), causing the exponential growth rate of
m mentioned above. A very high level description of parsimony is that, when such a
reallocation of a family of occurrences is performed, the resulting families may not
“waste” indices: each of them contains either finitely many xi (i.e., it is finite), or al-
most all of them (i.e., it is co-finite). Parsimony therefore refuses contraction, which
necessarily produces infinite co-infinite families. Instead, it allows an asymmetric form
of contraction, also known as absorption, expressed by the formula !A( !A⊗A.

Parsimony is coupled with stratification, which is a staple of Girard’s work [4].
Stratification partitions a program into rigid levels which may not interact and, very
roughly speaking, forbids the self-reference that makes the λ-calculus Turing powerful.
Alone, it guarantees termination (in elementary time, in the uniform case). Without it,
parsimonious terms may diverge and the question of bounding m may not make sense.

For brevity, most of the results are given here without proof. An extended version
of this paper, containing the missing proofs, is available on the author’s web page.

2 The Affine Lambda-Calculus

Pre-terms. We fix two denumerably infinite disjoint sets of linear variables, ranged
over by a, b, c, and non-linear variables, ranged over by x, y, z. Patterns and pre-terms
are generated by the grammar

p, q ::= a | x | p⊗ q, t, u ::= ⊥ | a | xi | λp.t | tu | t⊗ u | u,

where i ∈ N and u, which we refer to as a box, is a finite sequence of pre-terms, which
for convenience we identify with a function from N to pre-terms almost everywhere
equal to ⊥. We also use the explicit notation 〈u(0), . . . ,u(n− 1)〉, in which we imply
that u(i) = ⊥ for all i ≥ n. If a variable a or x appears in a pattern p, we write a ∈ p
or x ∈ p. We require that, in p ⊗ q, a variable cannot appear both in p and q. Free
and bound variables are defined as customary, the only point worth mentioning is that
if x ∈ p, then all occurrences of the form xi are bound in λp.t. As usual, we identify
two pre-terms if they only differ in the names of their bound variables (α-equivalence).

Shallow contexts and contexts are defined by the following grammar:

S ::= • | λp.S | St | tS | S ⊗ t | t⊗ S C ::= S | 〈u0, . . . , C, . . . , un〉,

where t, u1, . . . , un are arbitrary pre-terms. As usual, we denote by C[t] the term ob-
tained by substituting t to • in the context C. We say that u is a subterm of t, and we
write u v t, if there exists a context C such that t = C[u].

We will find useful to see pre-terms as labelled trees. Intuitively, this is done in
the obvious way: a pre-term t induces a function t : N∗ −→ Σ, where Σ :=
{⊥, a, xi, λp,@,⊗, !} and N∗ is the set of finite sequences of natural numbers, ranged
over by α and with the empty sequence denoted by ε. Sequences of arbitrary integers
are needed because of boxes. The symbol t[α] denotes the kind of constructor at posi-
tion α in t:⊥, a variable (a or xi), an abstraction (λ), an application (@), a tensor (⊗) or
a box (!). Also, when u v t, we say that u occurs at position α if u is rooted at position
α in t. Note that, when the position α does not exist in t, we assume that t[α] = ⊥.



Terms and reduction. A term is a pre-term t such that:
– every linear variable and occurrence of non-linear variable appears at most once in
t (i.e., if xi, xj v t occur at different positions, then i 6= j);

– whenever u v t, the free variables of u are all non-linear.
We denote by `Λ the set of all terms.

We say that a term t matches a pattern p, and write t G p, when: t G a for all
t; t G x just if t = u; and if t G p and u G q, then t ⊗ u G p ⊗ q. In case u G
p, we define the substitution t[u/p] as follows: t[u/a] is defined as usual; t[u/x] is
obtained by substituting u(i) to the unique free occurrence xi in t, for all i ∈ N; and
t[u1 ⊗ u2/p1 ⊗ p2] := t[u1/p1][u2/p2].

We define→s (shallow reduction) and (unboxing reduction) as the smallest bi-
nary relations `Λ such that:

– (λp.t)u→s t[u/p] whenever u G p;
– if t→s t

′, then S[t]→s S[t
′] for every shallow context S;

– u u(0) for every box u.
Note that the unboxing step is not closed under any context: it applies only to a term
which is itself a box, “extracting” its first subterm. Usually, one allows reduction inside
boxes. The non-standard definition adopted here is technically simpler for our purposes.

A redex is a term of the form (λp.t)u and such that u G p. Each→s step is obviously
associated with a redex, which we say is fired by the reduction step.

Reduction is defined by→ :=→s ∪ . If 99K is any reduction relation, we denote
by 99K∗ its reflexive-transitive closure and by 99Kl the composition of exactly l ∈ N
steps of 99K. Reduction is obviously confluent and strongly normalizing. Both points
are a consequence of the affinity conditions: no redex is duplicated and the size of terms
(i.e., the number of symbols) strictly decreases with reduction.

Uniform structure. As noted above, `Λ may be seen as a subset of the set of functions
N∗ −→ Σ. If we equip Σ with the discrete uniformity,1 then we may endow terms with
the uniformity of uniform convergence on finitely branching trees (as subsets of N∗).
More explicitly, let (NN,≤,∨) be the join-semilattice of infinite sequences of natural
numbers, ranged over by ξ, with the pointwise ordering. We denote by ξi the ith element
of the sequence ξ and by n · ξ a sequence whose first element is n. We also write α ≺ ξ
if α ∈ N∗ is a prefix of ξ. The uniformity of uniform convergence on finitely branching
trees is generated by the following basis of entourages, for ξ ∈ NN:

Uξ := {(t, t′) ∈ `Λ× `Λ | ∀α ≺ ξ′ ≤ ξ, t[α] = t′[α]}.

The intuition is the following: with each ξ ∈ NN we associate an infinite but finitely
branching tree τξ, such that every node at depth i of τξ has exactly ξi + 1 siblings;
then, two terms are ξ-close (i.e., belong to Uξ) if they coincide on τξ. A basis of open
neighborhoods of t for the induced topology is Uξ(t) := {t′ ∈ `Λ | ∀α ≺ ξ′ ≤
ξ, t′[α] = t[α]}, for ξ ∈ NN, i.e., the terms coinciding with t on τξ. Observe that the

1 The word “uniformity” takes here its standard topological sense [3], which is essentially a
generalization of the concept of metric still allowing one to speak of Cauchy sequences. This,
unfortunately, is completely unrelated to the equally standard meaning more common in com-
puter science (and employed, in particular, in the title of this paper).



local basis is uncountable. In fact, one can show that no countable local basis exists for
this topology, so the space is not metrizable.

The fundamental result concerning the uniform structure on `Λ is the Cauchy-
continuity of reduction. We remind that a function between uniform spaces is Cauchy-
continuous when it preserves Cauchy nets. In particular, it is continuous. Given α ∈ N∗,
we define Rα : `Λ −→ `Λ by Rα(t) := t′ if t →s t

′ by reducing a redex at position
α, or Rα(t) := t if no such reduction applies. Similarly, we define U(t) := t′ if t t′

and U(t) := t otherwise.

Proposition 1 (Cauchy-continuity of reduction). For all α ∈ N∗, Rα is Cauchy-
continuous, and so is U .

Infinitary terms and approximations. Intuitively, Cauchy sequences in `Λ are made of
terms that coincide on wider and wider trees, such as ∆n := λx.x0〈x1, . . . , xn〉. Note,
however, that (∆n)n∈N has no limit in `Λ, showing that the space is not complete. We
denote by `Λ∞ the completion of `Λ. From now on, the word “term” will refer to an
element of `Λ∞, whereas the elements of `Λ will be called finite terms.

Indeed, the elements of `Λ∞ may be seen as infinitary terms. They still verify
the affinity constraints and we apply to them the same terminology and notations as
for finite terms (free and bound variable, subterm relation v, etc.). A typical exam-
ple of infinitary term is ∆ := λx.x0〈x1, x2, x3, . . .〉, which is the limit of (∆n)n∈N.
Apart from being infinitely wide, terms of `Λ∞ may also have infinite height, such as
〈λx.x0, λx.x0x1, λx.x0(x1x2), . . .〉. Nevertheless, one may show that they are always
well-founded.

In fact, we will mostly be interested in infinitary terms of finite height, like ∆
above, but knowing that all terms are well-founded is quite useful because it al-
lows reasoning by induction. For example, given t ∈ `Λ∞, we may define a default
sequence of finite terms converging to t, its n-th approximations btcn, as follows:
b⊥cn := ⊥; bacn := a, bxicn := xi; bλp.tcn := λp.btcn; btucn = btcnbucn;
bt ⊗ ucn := btcn ⊗ bucn; bucn := 〈bu(0)cn, . . . , bu(n)cn〉. The definition makes
sense because of well-foundedness: technically, what we are saying is that b·cn is a
function satisfying the above equalities. One may prove by well-founded induction that
such a function is well defined and unique.

Reduction may be defined for terms of `Λ∞ in the obvious way, using substitution
(which may now require infinitely many substitutions in the case t[u/x]). Nevertheless,
we stress that, from a strictly technical point of view, by Proposition 1 we do not need
an explicit definition: indeed, Cauchy-continuity is exactly the property guaranteeing
that a function on a uniform space uniquely extends to its completion.

It is worthwhile noting that reduction in `Λ∞, although still strongly confluent (a
topological proof is given in [11]), is no longer normalizing. In fact, if we set Ω :=
∆〈∆,∆,∆, . . .〉, with ∆ as above, we have Ω →s Ω.

Correspondence with a non-linear λ-calculus. For programming purposes, it will be
convenient to consider a more standard, non-linear λ-calculus. We use the same sets of
linear and non-linear variables as `Λ (ranged over by a and x, respectively) but for each
non-linear variable we also consider a corresponding §-variable denoted by x§. Patterns



p are defined as in `Λ, with the addition of §-variables. Terms and reduction contexts
are defined as follows:

M,N ::= a | x§ | x | λp.M |MN |M ⊗N | §M | !M,

R ::= • | λp.R | RM |MR | R⊗M |M ⊗R.

The affinity constraint is on linear variables and §-variables, which must occur at most
once. Non-linear variables may occur arbitrarily many times. Also, the simultaneous
presence of x§ and x in a term is excluded. In !M (resp. §M ), called !-box (resp. §-box),
we require all free variables to be non-linear (resp. to be non-linear or §-variables). The
set of terms thus defined is denoted by Λ.

Matching between terms and patterns is defined as in `Λ, with both §M G x§ and
!M G x§, and !M G x. Substitution is also extended in the obvious way: in M [§N/x§],
M [!N/x§] and M [!N/x], N is substituted to all free occurrences of x or x§ in M (so
several copies of N may be needed). Reduction, denoted by→β , is the union of→β0

and β , which are the smallest binary relations on Λ defined as follows:
– (λp.M)N →β0 M [N/p] whenever N G p;
– if M →β0 M

′, then R[M ]→β0 R[M
′];

– §M  β M .
We may represent terms of Λ in `Λ∞, as follows. Let ι : N∗ −→ N \ {0}

be an injection. If p is a pattern of Λ, we denote by p− the pattern of `Λ∞ ob-
tained by replacing every x§ with x. Given α ∈ N∗, we define JMKια by induc-
tion on M : JaKια := a; Jx§Kια := x0; JxKια := xι(α); Jλp.MKια := λp−.JMKια;
JMNKια := JMKι0·αJNKι1·α; JM ⊗ NKια := JMKι0·α ⊗ JNKι1·α; J§MKια := 〈JMKια〉;
J!MKια := 〈JMKι0·α, JMKι1·α, JMKι2·α, . . .〉.

We say that t ∈ `Λ∞ represents M ∈ Λ, and we write t J M , if there exist α and
ι as above such that JMKια = t.

Proposition 2. Let t JM and M →β M
′, then t→ t′ JM ′.

Proof. Essentially, this is one direction of the isomorphism of [11]. ut

The converse of Proposition 2 fails: let i > 0, t := (λx.xi)〈I〉 and M := (λx.x)§I;
we have t J M , yet M is a normal form whereas t →s ⊥. The perfect correspon-
dence of [11] could be recovered by modifying the syntax of `Λ (and `Λ∞) but this is
inessential for our purposes.

3 The Parsimonious Stratified Calculus

Stratification. The box-depth of a specific occurrence of subterm u in t ∈ `Λ∞, denoted
by du(t), is the number of nested boxes of t in which u is contained. For instance,
du(t) = 0 iff t = S[u] for some shallow context S (this is the reason behind the
terminology “shallow”). The box-depth of t, denoted by d(t), is the supremum of the
box-depths of its subterms. It is always finite if the height of t is finite, which will be
the case of interest to us.

The binder-relative box-depth of an occurrence xi appearing (free or bound) in t,
denoted by rdxi(t), is: dxi(t) if x is free in t; if x is bound, then there exists λp.u v t



such that x ∈ p and xi appears in u, in which case rdxi(t) := dxi(t)− dλp.u(t) (which
is easily seen to be equal to dxi(u)).

Definition 1 (Stratified term). A term t is stratified if, for all xi v t, rdxi(t) = 1.
We denote by `Λs

∞ the set of all stratified terms and by `Λs0
∞ the set of stratified terms

having no free non-linear variable.

Proposition 3 (Reduction and stratification). 1) If t ∈ `Λs
∞ and t →s t

′, then t′ ∈
`Λs
∞ and d(t′) ≤ d(t); 2) moreover, if t ∈ `Λs0

∞ and t  t′, then t′ ∈ `Λs0
∞ and

d(t′) = d(t)− 1; 3) every t ∈ `Λs0
∞ of finite height is strongly normalizing.

Parsimony. Given m,n ∈ N and t, t′ ∈ `Λ∞, we write:
– t ∼n t′ if t and t′ differ only in the indices of the bound occurrences of their non-

linear variables, and the indices vary by at most n, i.e., if xi in t corresponds to xj
in t′, then |i− j| ≤ n.

– t :<m t′ if t′ is obtained from t by replacing every free occurrence of non-linear
variable xi with xi+m.

– t :.mn t′ iff there is u s.t. t ∼n u :<m t′ iff there is u′ s.t. t :<m u′ ∼n t′ (the latter
two conditions are equivalent because the relations act on disjoint occurrences).

Definition 2 (Parsimonious term). A box u is parsimonious if there exist c, k ∈ N
such that, for all i ≥ j ≥ k, u(i) :.i−jc u(j). The smallest k ∈ N realizing the
above definition is called the non-uniformity factor of u, or n.u. factor for short. A
term t ∈ `Λ∞ is parsimonious if all of its boxes are. We denote by `Λp

∞ the set of all
parsimonious terms.

Note that, unlike stratification, parsimony is inherited by subterms. Another dif-
ference is that every finite term is parsimonious. In fact, intuitively, the structure of a
parsimonious term admits a finite description: in every box u, all u(i) ultimately have
the same “shape”. Nonetheless, the term itself may not be finitely describable at all.
For instance, if Ii := λx.xi with i ∈ {0, 1}, the term 〈Ii0 , Ii1 , Ii2 , . . .〉 is parsimo-
nious (with n.u. factor 0) regardless of the sequence in (this will be a key ingredient for
encoding infinite binary words). Moreover, we have:

Lemma 1. 1. Every parsimonious term has finite height;
2. let u be parsimonious of n.u. factor k and let x have infinitely many free occur-

rences in u. Then, for all h ∈ N, there is exactly one free occurrence xjh in u(k+h)
and jh = j0 + h.

Proposition 4 (Reduction and parsimony). If t ∈ `Λp
∞ and t→ t′, then t ∈ `Λp

∞.

Bounds on parsimonious stratified terms. By Propositions 3 and 4, parsimonious strat-
ified terms form a well defined calculus with respect to the reduction relation→.

Definition 3 (The calculus `Λps0
∞ ). We define `Λps0

∞ := `Λs0
∞ ∩ `Λp

∞.

In what follows, δd is the Kronecker symbol, equal to 1 if d = 0 and to 0 otherwise.
Let t ∈ `Λp

∞. The size of t at box-depth d is defined as follows. First, we define the
size of a pattern by setting |a| := |x| := 1, and |p ⊗ q| := 1 + |p| + |q|. Then, we set



|⊥|d := |a|d := δd; |xi|d := (1 + i)δd; |λp.t|d := δd|p| + |t|d; |tu|d := |t ⊗ u|d :=

δd + |t|d + |u|d; |u|0 := 1 and |u|d+1 :=
∑k
i=0 |u(i)|d, where k is the n.u. factor of u.

Finally, we define the size by |t| =
∑d(t)
j=0 |t|j .

Lemma 2. Let t ∈ `Λps0
∞ and let t→∗s t′. Then, for all j ≥ 1, |t′|j ≤ |t|1|t|j .

In what follows, we will make use of the n-th approximations of a term, defined
at page 5. We also introduce the following notation: given two terms t, t′ and n ∈ N,
t wn t′ just if btcn = bt′cn. It is obviously a family of equivalence relations.

Definition 4. Let t ∈ `Λ∞ and let x appear in t. Given n ∈ N, we define vx,t(n) :=
sup{i ∈ N | xi appears in btcn}.

Let now t → t′ and n ∈ N. We define mt→t′(n) ∈ N as follows. If t  
t′, mt→t′(n) := n. Otherwise, t →s t′ by firing a redex (λp.u)v such that
x1, . . . , xp are the non-linear variables appearing in p. Then, we set mt→t′(n) :=
max(n, sup{vx1,t(n), . . . , vxp,t(n)}).

Lemma 3. Let t ∈ `Λ∞ and let t → t′. Then, for all n ∈ N and for all u ∈ `Λ∞,
u wmt→t′ (n)

t implies u→ u′ such that u′ wn t′.

Lemma 4. Let t ∈ `Λp
∞ and let x be a bound variable of t. Then, vx,t(n) ≤ |t| + n,

for all n ∈ N.

Lemma 5. Let t ∈ `Λps0
∞ and let t→l t′. Then:

1. |t′| ≤ |t|2d(t)

and l ≤ (d(t) + 1)|t|2d(t) + d(t);
2. for all n ∈ N, there is m ≤ n+ l|t|2d(t) such that btcm →l t′′ wn t′.

Proof. Point 1 is proved by by induction on the number of steps in the reduction, in
a similar way as [4, 1]. In synthesis, Lemma 2 and Proposition 3 give d(t)+1 “rounds”
each squaring the size. The result follows.

For point 2, we reason by induction on l. The case l = 0 is trivial, so let t→l′ u→
t′. The induction hypothesis gives us, for all m1 ∈ N, m(m1) ≤ m1 + l′|t|2d(t) such
that btcm(m1) →l′ u′ wm1

u. We then apply Lemma 3 to obtain btcm(mu→t′ (n))
→l′

u′ → t′′ wn t′. To conclude, we need to bound m(mu→t′(n)) ≤ mu→t′(n)+ l′|t|2d(t) .
By definition, mu→t′(n) is either n, in which case we are done, or of the form vx,u(n)
for some x appearing in u. By Lemma 4, vx,u(n) ≤ |u|+n. Now, using the size bound
of point 1 (which does not depend on l′), we have |u| ≤ |t|2d(t) , which allows us to
conclude. ut

Parsimony and stratification in the non-linear calculus. In Λ, the concepts of box-
depth and binder-relative box-depth are defined just as in `Λ, with !- and §-boxes both
counting as boxes.

Definition 5 (The uniform calculus Λps0). We denote by Λps0 the subset of terms of
Λ satisfying the following requirements, which correspond to those of `Λps0

∞ : 1) occur-
rences of non-linear variables have binder-relative box-depth 1; 2) every non-linear
variable appears in at most one subterm of the form !M , in which case it occurs exactly
once in M ; 3) no §-variable or non-linear variable appears free.



Proposition 5. 1. If t JM , then M ∈ Λps0 iff t ∈ `Λps0
∞ ;

2. if M ∈ Λps0 and M →β M
′, then M ′ ∈ Λps0.

Proof. Point 1 is an immediate consequence of the definitions. Point 2 easily follows
from point 1, modulo Propositions 3 and 4. ut

4 A Characterization of P/poly

Representing basic data and languages. We consider the usual Church encodings of
Booleans and binary strings (the members of W := {0, 1}∗), adapted to `Λps0

∞ . For the
Booleans, we set tt := λa.λb.a and ff := λa.λb.b. Given w = w1 · · ·wn ∈ W, we
say that a term t is a Church encoding of w if t = λs0.λs1.〈λa.sw1

i1
(. . . swnin a . . .)〉,

with i1, . . . , in ∈ N arbitrary as long as affinity is assured. For example, the encodings
of 010 are all of the form λs0.λs1.〈λa.s0i1(s

1
j (s

0
i2
a))〉, with i1 6= i2. We denote by

w a generic Church encoding of w. Observe that, by choosing the indices as small as
possible, every w ∈W admits a Church encoding such that |w| = O(|w|2) (where |w|
is the length of the string w). On the other hand, d(w) = 1 independently of w and of
the Church encoding.

Definition 6 (The class C∞). We say that a language L ⊆ W is decidable in `Λps0
∞

(L ∈ C∞) if there exists t ∈ `Λps0
∞ such that, for all w ∈ W and for any one of its

Church encodings w, tw →∗ tt if w ∈ L, and tw →∗ ff otherwise.

Uniform programming. A good deal of the expressive power of `Λps0
∞ may be shown

using the more standard calculus Λps0. This is especially convenient because Λps0 may
be provided with a typing discipline which greatly facilitates programming.

The types are second order intuitionistic linear logic formulas, generated by
A,B ::= X | A ( B | A ⊗ B | §A | !A | ∀X.A, with X ranging over propo-
sitional variables. The usual conventions for parentheses are applied (( associates to
the right). The typing rules are a decoration of the sequent calculus for a subsystem of
intuitionistic linear logic. Typing judgments are of the form Γ ` M : A, where Γ is a
finite list of variable assignments of the form p : A. In case p = x§ (resp. p = x), we
require that A = §B (resp. A = !B). The rules are as follows:

a : A ` a : A
ax

Γ ` N : A ∆, p : A `M : C

Γ,∆ ` let p = N inM : C
cut

Γ `M : C
Γ, p : A `M : C

weak
Γ, x : !A, y§ : §A `M : C

Γ, x : !A `M [x/y§] : C
asym cntr

Γ, p : A `M : B

Γ ` λp.M : A( B
(R

Γ ` N : A ∆, p : B `M : C

Γ,∆, a : A( B ` let p = aN inM : C
(L

Γ `M : A ∆ ` N : B
Γ,∆ `M ⊗N : A⊗B

⊗R
Γ, p : A, q : B `M : C

Γ, p⊗ q : A⊗B `M : C
⊗L

−→p :
−→
B `M : A

−→x § : §
−→
B ` §let−→p = −→x § inM : §A

§
−→p :
−→
B `M : A

−→x : !
−→
B ` !let−→p = −→x inM : !A

!



Γ `M : A
Γ `M : ∀X.A

∀R (X 6∈freeΓ )
Γ, p : A `M : C

Γ, p : ∀X.A `M : C
∀L

We used the following notational conventions: in the rules cut and( L, the notation
let p = N inM stands for M [N/a] in case p = a or (λp.M)N otherwise (the obvious
n-ary generalization of this notation is used in the § and ! rules); in rule asym cntr, the
substitution M [x/y§] simply means that the unique occurrence of y§ in M is replaced
by x (of which there may already be occurrences); in the § and ! rules, −→p :

−→
B means

that the context is of the form p1 : B1, . . . , pn : Bn and, in the conclusion, −→x § : §
−→
B

(resp. −→x : !
−→
B ) means that every pi : Bi is replaced by xi§ : §Bi (resp. xi : !Bi).

The reader may check that if p1 : A1, . . . , pn : An ` M : C is derivable, then
λp1 . . . λpn.M ∈ Λps0. The system enjoys subject reduction with respect to→β0 but
not  β . This failure is to be expected and is actually rather mild: if ` M : §A and
M  β N , then ` N : A. This is enough for our purposes; subject reduction in itself is
not essential for us, because we never use typing as a means of ensuring properties.

The types of Booleans and Church strings are Bool := ∀X.X ( X ( X and
Str := ∀X.!(X ( X) ( !(X ( X) ( §(X ( X), which are adaptations of the
corresponding standard System F types. Booleans are the same as in `Λps0

∞ and Church
strings are obtained by erasing indices. In particular, each string has a unique encoding,
e.g. 010 = λs0.λs1.§(λa.s0(s1(s0a))).

Definition 7 (The class C). A language L is decidable in Λps0 (L ∈ C) if there is a
derivation `M : Str( §kBool, with §kA = § · · · §A for some k ∈ N, s.t. Mw →∗β tt
if w ∈ L and Mw →∗β ff if w 6∈ L.

By Propositions 2 and 5 we have C ⊆ C∞.
A slight variant of the type of binary strings gives us the Church numerals, i.e.,

unary integers, of type Nat := ∀X.!(X ( X) ( §(X ( X). These are of the
form n := λs.§(λa.s(. . . sa . . .)), with n occurrences of s. If a : Γ, c : A ` F : A
and b : ∆ ` Z : A, we define it(F,Z) := (λz§.§(z§Z[y§/b]))(n!(λc.F [x/a])).
It is readily verified that x : !Γ,y§ : §∆,n : Nat ` it(F,Z) : §A and that
it(F,Z)n →∗β (λc.F )(. . . (λc.F )Z . . .), the n-fold iteration of F on Z. Using itera-
tion, we may define the basic arithmetic functions, including any polynomial, by adapt-
ing the usual definitions, much as in [4, 1]. Furthermore, following [1], we may define
a type Tur of Turing machine configurations and, for any deterministic transition func-
tion, a term of type Tur ` Tur implementing it. One may also easily implement the
function building an initial configuration from a string (of type Str ` Tur), the function
telling whether a configuration is accepting (of type Tur ` §Bool) and the function re-
turning the length of a string (of type Str ` Nat). Composing all these, with the help of
iteration and the numerical functions shown above, every deterministic Turing machine
with a polynomial clock may be implemented in Λps0, showing that P ⊆ C.

The characterization. We remind that P/poly is the class of languages decided by poly-
time Turing machines with polynomial advice, or by polynomial-size Boolean circuits.

Theorem 1. C∞ = P/poly and C = P.



Proof. The inclusion C∞ ⊆ P/poly is obtained from Lemma 5, as delineated in Sect. 1:
if tw →l u, with u the encoding of a Boolean, we have buc0 = u. By Lemma 5, there
exists m ≤ (d(tw) + 1)|tw|2d(tw)+1

+ d(tw)|tw|2d(tw)

such that btwcm = btcm w →∗
u. But |tw| = 1 + |t| + |w| = O(|w|2) (by choosing the suitable Church encoding)
and d(tw) = max(d(t), 1) = O(1), so m is polynomial in |w|. From this, to prove
C ⊆ P it is enough to observe that, in case t = JMK with M in Λps0, the btcm are in
fact polytime computable (they are actually logspace computable, see Sect. 5).

For the converse, we need to encode Turing machines with advice as terms of `Λps0
∞ .

We will make the simplifying assumption that the advice strings an (where n ∈ N
is the length of the input) are “cumulative”, i.e., for all n, an is a polynomially-long
prefix of an infinite binary word A. Every polynomial advice may be transformed into
a cumulative polynomial advice, so there is no loss of generality. We will show how
to encode the infinite string A in `Λps0

∞ and how a prefix of a given length may be
extracted. This is enough to conclude, because the rest is all uniform computation which
we already know is representable in `Λps0

∞ (via Λps0): if w is the input string, the prefix
of A to be extracted is of length q(|w|) with q a polynomial, and we know that both q
and | · | are representable; the resulting advice string is then fed to the encoding of the
suitable polynomially-clocked Turing machine, together with a copy of w.

Let Aj be the j-th bit of A, and let

ZA := 〈〈ε〉〉 ⊗ 〈IA0
, IA1

, IA2
, . . .〉,

F := λw ⊗ x.〈(λf.λy.〈f0y0〉)(x0〈S0, S1〉)w0〉 ⊗ 〈x1, x2, x3, . . .〉,
extrA := λn.(λz.〈(λa⊗ b.a)(z0ZA)〉)(n〈F, F, F, . . .〉),

where, for i ∈ {0, 1}, Ii := λx.〈xi〉 and Si represent the two constructors on
Church strings (s.t. Siw →∗ iw). The reader may check that the above terms are all
in `Λps0

∞ . The term extrA takes a Church numeral n of `Λps0
∞ (which is of the form

λs.〈λa.si1(. . . sina . . .)〉, with i1, . . . , in pairwise distinct but otherwise arbitrary) and
iterates n times F on ZA. The result is a pair, of which the first component is taken
as the final result. The term ZA is where we fully exploit non-uniformity, representing
A. Finally, if we disregard boxes, F takes a pair (w, iW ), composed of a finite and an
infinite string, and returns (iw,W ). Therefore, extrA q(n)→∗ an for all n ∈ N. ut

5 Affine Lambda-Terms and Boolean Circuits

Let L ∈ P. By Theorem 1, we know that L is decided by M ∈ Λps0, so deciding
whether w ∈ L amounts to normalizing Mw, which, by Proposition 5, amounts to
normalizing JMKw (withw any encoding ofw in `Λps0

∞ ). But, for this, we know that it is
enough to normalize bJMKcm w withm polynomial in |w|. By inspecting the definition
of J·K and b·cn one may see that building bJMKcm from M may be done in logarithmic
space (in |w|), much like building the circuit representing the computation of a polytime
Turing machine from the trace of its execution on w.

We have therefore given an alternative proof of the P-completeness of the normal-
ization problem for the affine λ-calculus (given an affine λ-term, decide whether its



normal form is the Boolean tt). Mairson [10] showed this by encoding Boolean cir-
cuits in affine λ-terms. The interest of the above proof is that it is virtually identical to
the usual P-completeness proof of CIRCUIT VALUE [7], which is essentially the Cook-
Levin theorem and does not rest on the P-completeness of another problem. It is also
noteworthy that the “locality of computation” is reflected in the continuity of reduction.

The results of this paper seem to suggest the following “equation”:

affine λ-terms
(infinitary affine) λ-terms

=
Boolean circuits

Turing machines (with advice)

The relationship between Boolean circuits and affine calculi was of course already
known [10, 13]. However, we are seeing a connection here which is deeper than what
was shown by any previous result. An interesting perspective given by the above “equa-
tion” is to study the notion of uniformity of families of Boolean circuits via the unifor-
mity of the infinitary affine λ-calculus. This may be defined in a purely algebraic way:
the terms t such that t J M may be characterized by means of a partial equivalence
relation, as in [11]. This might be turned into a notion of uniform family of Boolean
circuits which is purely intrinsic, i.e., it depends only on the “shape” of the circuits in
the family and does not invoke external algorithms producing the circuits themselves.
Investigating such a notion is definitely a topic worth further investigation.

Acknowledgments. We wish to thank Kazushige Terui for discussions which greatly con-
tributed to the development of this work. We acknowledge partial support of ANR projects LOGOI

ANR-2010-BLAN-0213-02 and COQUAS ANR-12-JS02-006-01.

References
1. Asperti, A., Roversi, L.: Intuitionistic light affine logic. ACM Trans. Comput. Log. 3(1),

137–175 (2002)
2. Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the polytime func-

tions. Computational Complexity 2, 97–110 (1992)
3. Bourbaki, N.: General Topology: Chapters 1–4. Springer (1998)
4. Girard, J.Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998)
5. Jones, N.D.: Logspace and ptime characterized by programming languages. Theor. Comput.

Sci. 228(1-2), 151–174 (1999)
6. Kfoury, A.J.: A linearization of the lambda-calculus and consequences. J. Log. Comput.

10(3), 411–436 (2000)
7. Ladner, R.E.: The circuit value problem is log-space complete for P . SIGACT News 6(2),

18–20 (1975)
8. Lafont, Y.: Soft linear logic and polynomial time. Theor. Comput. Sci. 318(1-2), 163–180

(2004)
9. Leivant, D., Marion, J.Y.: Lambda calculus characterizations of poly-time. Fundam. Inform.

19(1/2) (1993)
10. Mairson, H.G.: Linear lambda calculus and ptime-completeness. J. Funct. Program. 14(6),

623–633 (2004)
11. Mazza, D.: An infinitary affine lambda-calculus isomorphic to the full lambda-calculus. In:

Proceedings of LICS. pp. 471–480 (2012)
12. Melliès, P.A.: Asynchronous games 2: The true concurrency of innocence. Theor. Comput.

Sci. 358(2-3), 200–228 (2006)
13. Terui, K.: Proof nets and boolean circuits. In: Proceedings of LICS. pp. 182–191 (2004)



A Nameless Pre-Terms

We formally introduce de Bruijn notation for pre-terms. Pattern indices and nameless pre-terms
are generated by the grammar

i ::= (n, i) | i⊗ • | • ⊗ i, t, u ::= ⊥ | i | λ.t | tu | t⊗ u | u,

where n, i ∈ N and the remaining notations are identical to the case of pre-terms. An occurrence
of index pattern i corresponds to an occurrence of variable. It contains exactly one pair of integers
(n, i); n is the actual de Bruijn index: it identifies the λ-binder in the usual way (i.e., n is the
number of binders between i and the binder of i); on the other hand, i gives information on
the nature of the variable: i = 0 means a linear variable, whereas i > 0 means that it is the
(i− 1)-th occurrence of a non-linear variable. The structure of i gives information on where the
variable is within a larger pattern. With this in mind, every pre-term induces a unique nameless
pre-term in the usual way. As an example, the de Bruijn notation for λx.λa⊗ b.〈x0(x1(b⊗ a))〉
is λ.λ.〈(1, 1)((1, 2)((• ⊗ (0, 0))⊗ ((0, 0)⊗ •)))〉.

Although practically unreadable, de Bruijn notation allows us to see pre-terms as labelled
trees: if we set Σ := {⊥, i, λ,@,⊗, !} (with i ranging over index patterns), then nameless pre-
terms are just functions N∗ −→ Σ. This is the formal description of terms that is intended to be
used in the definition of uniform structure.

B Cauchy-Continuity of Reduction

In the sequel, we denote by λp.`Λ, `Λ@ `Λ, `Λ ⊗ `Λ and !`Λ the sets of all terms of the form
λp.t, tu, t⊗ u and u, respectively. All these sets are endowed with the subspace uniformity. We
will also use the following notations:

– `Λ×aff `Λ is the set of all pairs of terms (t, u) such that tu is also a term (not just a pre-term),
endowed with the subspace uniformity of the product uniformity on `Λ× `Λ;

– (`Λ)(N) is the set !`Λ endowed with the subspace uniformity of the product uniformity on
(`Λ)N (i.e., the set of all sequences of terms).

The maps λp : `Λ −→ λp.`Λ, @ : `Λ×aff `Λ −→ `Λ@ `Λ and ⊗ : `Λ×aff `Λ −→ `Λ⊗ `Λ,
defined by t 7→ λp.t, (t, u) 7→ tu and (t, u) 7→ t ⊗ u, respectively, are obviously bijective.
Furthermore, they and their inverses are all uniformly continuous:

Proposition 6 (Isotropy). We have the following uniform homeomorphisms:
1. λp.`Λ ∼= `Λ via λp;
2. `Λ@ `Λ ∼= `Λ⊗ `Λ ∼= `Λ×aff `Λ via @ and ⊗;
3. !`Λ ∼= (`Λ)(N) via the identity.

Proof. We consider directly point 2, and start with @−1. We have to show that for all ξ′, ξ′′ ∈ NN,
there exists ξ ∈ NN such that (tu, t′u′) ∈ Uξ implies (t, t′) ∈ Uξ′ and (u, u′) ∈ Uξ′′ . It is easy
to check that setting ξ := 1 · (ξ′ ∨ ξ′′) meets the requirement. For @, we have ξ = n · ξ̂ and
must determine ξ′, ξ′′ to get the converse implication. It is easily seen that setting ξ′ := ξ′′ := ξ̂
is enough. The case of ⊗ is virtually identical. Point 1 is also similar.

Before proving point 3, let us remind that the uniformity on (`Λ)(N) is given by the following
basis of entourages: we choose a finite F ⊂ N, we chose one ξi ∈ NN for each i ∈ F , and we
define the basic entourage V(ξi)i∈F := {(u,u′) | ∀i ∈ F, (u(i),u′(i)) ∈ Uξi}. Now, in the
direction from !`Λ to (`Λ)(N), we need to prove that, for all {i1, . . . , in} ⊂ N and for every
ξi1 , . . . , ξin ∈ NN, there exists ξ ∈ NN such that (u,u′) ∈ Uξ implies (u,u′) ∈ Vξi1 ,...,ξin . We
define the integer k := max{i1, . . . , in} and the sequence of integers ξ′ :=

∨
1≤j≤n ξij . We



invite the reader to check that ξ := k · ξ′ meets the requirement. The other direction is easier: we
have ξ and we need to determine a finite F ⊂ N and ξi ∈ NN for each i ∈ F . Let ξ = n · ξ′;
then, the reader may check that it is enough to set F := {0, 1, 2, . . . , n} and ξi := ξ′ for all
0 ≤ i ≤ n. ut

In the following, given a net (tι)ι∈I , we say that a property “eventually” holds for tι if there
exists κ ∈ I such that, for all ι ≥ κ, tι verifies the property. Also, if we define some t′ι for all
ι ≥ κ by relying on the fact that tι satisfies the property, we speak of the net (t′ι)ι∈I implicitly
assuming that t′ι is fixed arbitrarily for those ι such that tι does not satisfy the property.

Corollary 1. A net (tι)ι∈I is Cauchy iff one of the following eventually holds:
1. tι = t, where t is an occurrence of variable or ⊥;
2. tι ∈ λp.`Λ and (λp−1(tι))ι∈I is Cauchy in `Λ;
3. tι ∈ `Λ@ `Λ and both (π1(@

−1(tι)))ι∈I and (π2(@
−1(tι)))ι∈I are Cauchy;

4. tι ∈ `Λ⊗ `Λ and both (π1(⊗−1(tι)))ι∈I and (π2(⊗−1(tι)))ι∈I are Cauchy;
5. tι = uι and, for all i ∈ N, (uι(i))ι∈I is Cauchy.

Proof. That all terms are eventually of the same kind (variable, abstraction, application, etc.) is
immediate. Then, case 1 is obvious, whereas the other cases follow from the isomorphisms with
product uniformities (Proposition 6). ut

In the following, we consider the functionsΠi : !`Λ −→ `Λ, for i ∈ N, defined byΠi(u) :=
u(i). We also define the set of functions F := {λp−1, πi ◦@−1, πi ◦⊗−1, Πj | i ∈ {1, 2}, j ∈
N}. Let (tι)ι∈I , (t′ι)ι∈I be two Cauchy nets. We write (tι)ι∈I @ (t′ι)ι∈I just if, eventually,
tι = ϕ(t′ι) for some ϕ ∈ F .

Lemma 6 (Well-foundedness). The relation @ is well-founded.

Proof. Assume the contrary, and let (t0ι )ι∈I A (t1ι )ι∈I A (t2ι )ι∈I A . . . be an infinite descending
chain. By definition, we have a sequence (ϕn)n∈N of functions inF such that, for all n ∈ N, there
exists κn ∈ I such that, for all ι ≥ κn, tn+1

ι = ϕn(t
n
ι ). Define ι0 := κ0 and, inductively, let

ιn+1 be an element of I which is above both κn+1 and ιn (such an element must exist because
I is directed). We set un := t0ιn . Observe that, by construction, for arbitrary n ∈ N we have
ϕn ◦ · · · ◦ ϕ0(un+1) = tn+1

ιn+1
6= ⊥. The latter disequality holds because, since ιn+1 ≥ κn+1,

tn+1
ιn+1

is in the domain of ϕn+1, which never contains ⊥.
Let us now define ξ ∈ NN by setting ξn to be: 0 if ϕn = λp−1; i − 1 if ϕn = πi ◦ @−1

or ϕn = πi ◦ ⊗−1; and i if ϕn = Πi. We denote by αn the prefix of ξ of length n + 1. We
may prove by induction on n that ϕn ◦ · · · ◦ ϕ0(un+1)[ε] = un+1[αn], for all n ∈ N. But
(un)n∈N is a Cauchy sequence (because it is the subsequence of a Cauchy net) and therefore
there exists k ∈ N such that, for all i, j ≥ k and for every n ∈ N, ui[αn] = uj [αn]. In particular,
uk[αn] = un+1[αn] 6= ⊥ for all n ≥ k, which is absurd, because uk is a finite term. ut

Lemma 7 (Substitution). Let (uι)ι∈I be a Cauchy net such that, eventually, uι G p. In that
case, if a net (tι)ι∈I is Cauchy, then so is (tι[uι/p])ι∈I .

Proof. By well-founded induction on (tι)ι∈I , using Corollary 1. ut

Given α ∈ N∗, we define Rα : `Λ −→ `Λ by Rα(t) := t′ if t→s t
′ by reducing a redex at

position α, or Rα(t) := t if no such reduction applies.

Proposition 7 (Cauchy-continuity of reduction). For all α ∈ N∗, Rα is Cauchy-continuous.



Proof. Let (tι)ι∈I be a Cauchy net, and let t′ι := Rα(tι). We need to show that (t′ι)ι∈I is
Cauchy. We do this by induction on the length of α. We start with the inductive case, which is
easy. Suppose α = n · α′. The proof depends on the value of n, but it is similar in all cases. To
give the idea, we let n = 1. Now, if we are not in one of cases 3, 4 or 5 of Corollary 1, then
eventually tι[α] = ⊥ and the result is vacuously true. Again, to show the idea, we pick case 4,
i.e., eventually tι = t′ιt

′′
ι . By Corollary 1 both (t′ι)ι∈I and (t′′ι )ι∈I are Cauchy; by the induction

hypothesis, (Rα′(t′′ι ))ι∈I is Cauchy, so (t′ιRα′(t′′ι ))ι∈I is Cauchy (again by Corollary 1). But
observe that, for all u, v, Rα(uv) = uRα′(v), hence we are done.

So we only need to prove the Cauchy-continuity ofRε. We start by defining, for every pattern
p, a finite A(p) ⊂ N∗ as follows. First, we set A−(a) := A−(x) := {ε} and A−(p ⊗ q) :=
0 · A−(p) ∪ 1 · A−(q); then, we let A(p) := 1 · A−(p). Now, observe that t is a redex (λp.u)v
precisely if: t[ε] = @; t[0] = λ; for all α′ ∈ A(p), t[α′] has a suitable value depending on p and
α′ (for instance: if p = a, there is no requirement; if p = x, then we must have t[1] = !; for more
complex patterns, we have at least t[1] = ⊗ and the rest depends on the pattern). The essence
of the above discussion is that a pattern p induces α1, . . . , αk ∈ N∗ and σ1, . . . , σk ∈ Σ such
that t is a redex of pattern p iff t[αi] = σi for all 1 ≤ i ≤ k. Therefore, by extending each αi
arbitrarily to get ξi ∈ NN and by setting ξ :=

∨
1≤i≤k ξi, we have αi ≺ ξi ≤ ξ for all 1 ≤ i ≤ k

and, whenever (t, t′) ∈ Uξ, t is a redex iff t′ is.
The above means that, by virtue of the Cauchy property, either eventually tι is a redex,

or eventually none of tι is. In the latter case, (t′ι)ι∈I is trivially Cauchy. In the former case,
eventually tι = (λp.sι)uι and uι G p. Therefore, eventually t′ι = sι[uι/p]. Now, by Corollary 1,
(sι)ι∈I and (uι)ι∈I are both Cauchy, so Lemma 7 applies, and we are done. ut

The Cauchy-continuity of unboxing reduction is trivial: an application of  is simply an
application of the uniformly continuous map we called Π0 above (remember that uniform conti-
nuity implies Cauchy-continuity).

C Proofs of Sect. 3

C.1 Proof of Proposition 3

Lemma 8. Let t, u ∈ `Λ∞, let u G p and suppose that x ∈ p and x free in t imply dxi(t) = 1 for
all i ∈ N. Then, for all v v u, dv(t[u/p]) = dv(u) (provided v is not erased by the substitution).

Proof. The proof is by induction on p. If p = a, we may assume that a is free in t, in which case
it must appear at box-depth 0, so dv(t[u/a]) = dv(u). If p = x, then u = u and v v u(i) for
some i ∈ N, which means dv(u) = dv(u(i)) + 1. But, by the hypothesis, dxi(t) = 1 (again,
we may assume that xi does appear in t), so u(i) is substituted inside exactly one box of t and
dv(t[u/x]) = dv(u(i)) + 1, as desired. The inductive case is immediate. ut

The second part is an immediate consequence of the definitions, so let us concentrate on the
first. Let xi v t′; it is enough to show that rdxi(t

′) = 1. Note that reduction does not create
occurrences of variables, so xi v t and by hypothesis rdxi(t) = 1. Let t = S[(λp.u)v] and
t′ = S[u[v/p]]. If xi is in S, then the result is obvious. Otherwise, by α-equivalence we may
assume x 6∈ p and we have two cases: either xi v u, in which case the lemma holds regardless of
stratification; or xi v v, in which case, thanks to stratification, we may apply Lemma 8 to obtain
dxi(u[v/p]) = dxi(v). If x is free in v, this is enough to conclude. Otherwise, we have λq.v′ v v
which binds x and, applying again Lemma 8, we know that dλq.v′(u[v/p]) = dλq.v′(v), which
allows us to conclude by definition of binder-relative box-depth. ut



C.2 Proof of Lemma 1

Point 1 is immediate: by well-foundedness, the only way that a term may have infinite height is
if it contains a box u such that the height of u(i), for i ∈ N, is unbounded, contradicting the
definition of parsimony.

Let us turn to point 2. First of all, it may be established by a straightforward induction that,
for all n, t ∼n t′ implies that t, t′ have the same number (including∞) of occurrences of every
free variable. Then, since u(k) ∼h u(k + h), the number of free occurrences of x is the same
in all u(k + h) for all h ∈ N. Let xj1

h
and xj2

h
be two occurrences in each u(k + h). Fix

l ∈ {1, 2} arbitrarily. We claim that the sequence (jlh)h∈N is strictly increasing. First of all,
observe that parsimony implies |jlh+1 − jlh| = 1 (because jlh+1 = jlh is impossible by affinity).
Then, the sequence is monotonic: if we had something like jlh > jlh+1 < jlh+2, we would
have jlh = jlh+2, contradicting affinity. But then the sequence must be increasing, because it is
infinite. Therefore, we have jlh = jl0 + h, for all h ∈ N. Suppose now that j1

0 < j2
0 . We would

have j1
j20−j

1
0
= j1

0 + j2
0 − j1

0 = j2
0 , contradicting affinity. A similar contradiction is obtained if

j1
0 > j2

0 , so j1
0 = j2

0 , which means there is only one occurrence. ut

C.3 Proof of Proposition 4

Thanks to the fact that parsimony is inherited by subterms, the result may be proved by a straight-
forward induction from the following substitution lemma: if t, u ∈ `Λp

∞ and u G p, then
t[u/p] ∈ `Λp

∞.
To prove the lemma, we start by establishing the following claim. Let t ∼n t′ and let u

be parsimonious with n.u. factor k. Then, if all xi occurring free in t, t′ are such that i ≥ k,
then t[u/x] ∼n t′[u/x]. The proof is a straightforward induction, the important case being
t = xi and t′ = xj , so that t[u/x] = u(i) and t′[u/x] = u(j), from which, by hypothesis, we
have u(i) ∼|i−j| u(j), which implies u(i) ∼n u(j) because the hypothesis xi ∼n xj gives
|i− j| ≤ n.

The proof of the lemma is by induction on p. The base case p = a and the inductive case are
straightforward, so we concentrate on the case p = x, in which u = u. We proceed by induction
on t. All cases are immediate except t = v. Let v′ := v[u/x]. We need to show that v′ is
parsimonious. By definition, we have v′(i) = v(i)[u/x]. If all the free occurrences of x in v
are concentrated in finitely many v(i), we conclude trivially by parsimony of v. Otherwise, there
necessarily exists k ∈ N such that, for all i ≥ k, whenever xj appears free in v(i), j surpasses
the n.u. factor of u. Therefore, by the above claim and the parsimony of v, i, i′ ≥ k implies
v′(i) ∼|i−i′| v′(i′), as desired. ut

C.4 Proof of Lemma 2

The proof of this lemma basically mimics the usual proof of the similar result for light linear
logic [4], which is done using proof nets. Here, we consider instead a variant of `Λ∞ with explicit
substitutions, following recent work of Accattoli. An explicit substitution is of the form [x := u]
where x is a non-linear variable and u is a box. We use σ to range over finite lists of explicit
substitutions (simply called substitution lists) and we denote by σσ′ the concatenation of such
lists and by ε the empty list. We define σ[u/p] by ε[u/p] := ε and ([x := u]σ′)[u/p] := [x :=
u[u/p]]σ[u/p].

Given a pattern p and a term u G p, we define t[u/p`] as follows: t[u/a`] := t[u/a],
t[u/x`] := t and t[u1 ⊗ u2/(p1 ⊗ p2)

`] := t[u1/p
`
1][u2/p

`
2]. We also define the substitu-

tion list Jp := uK as follows: Ja := uK := ε; Jx := uK := [x := u]; Jp1 ⊗ p2 := u1 ⊗ u2K :=
Jp1 := u1KJp2 := u2K.



A configuration is a pair (t, σ) where t ∈ `Λ∞ and σ is a substitution list. Configurations
will be ranged over by c. We define the following rewriting rules on configurations:

– (S[(λp.t)u], σσ′) →m (S[t[u/p`]], σJp := uKσ′) whenever u G p and no non-linear vari-
able of p appears in σ′,

– (t, σ[x := u]σ′)→e (t[u/x], σ[u/x]σ′),
where S is any shallow context. So, when a redex is fired, only the linear part of the substitution
is performed immediately, whereas the non-linear part is stored in the substitution list and may
be performed later. In fact, we obviously have that t →s t

′ implies (t, σ) →m→e (t′, σ) for all
σ. We set→c :=→m ∪ →e.

A reduction sequence c →∗c c′ is normal if it can be decomposed as c →∗m→∗e c′. It is not
hard to verify that, in `Λs

∞, →e steps may always be postponed: if t ∈ `Λs
∞ and (t, σ) →e

c1 →m c′, then there exists c2 such that (t, σ) →m c2 →e c
′. Therefore, if t ∈ `Λps0

∞ and
t→∗s t′, then (t, ε)→c (t′, ε) via a normal reduction sequence and it is enough to prove the size
bound on t′ using such a sequence.

In the sequel, in order to name bound variables unambiguously, we use Barendregt’s conven-
tion: we assume that all λ’s occurring at box-depth 0 in a term t bind distinct variables. Observe
that, since the calculus is affine, if t →s t

′ and t adheres to Barendregt’s convention, then so
does t′, without any renaming. This gives an implicit way to track residues during a reduction: an
occurrence xi in t′ is necessarily the (unique) residue of xi in t.

Definition 8 (Arity). Let x be a bound variable at box-depth 0 of t ∈ `Λp
∞, i.e., there is λp.u v t

such that x ∈ p and dλp.u(t) = 0. LetX := {i ∈ N | xi is free in u}. The arity of x in t, denoted
by ∇t(x), is defined as follows. If X is finite, then ∇t(x) := maxX . If X is infinite, then by
point 2 of Lemma 1 there is a unique box u v u containing all occurrences of x but finitely many;
more precisely, it contains (at least) xj0+h for all h ∈ N and for some j0 ∈ N unambiguously
determined by the n.u. factor of u; then, we set∇t(x) := j0.

We write x Eσ y just if σ = σ1[y := v]σ2[x := u]σ3 and there are infinitely many free
occurrences of x in v. Given c := (t, σ), we define µc(x) :=

∑
xEσy

∇t(y). Let, moreover,
σ = [x1 := u1] · · · [xn := un]. Then, we define the potential size at box-depth j ≥ 1 of c by
[c]j := |t|j +

∑n
k=1 µc(x

k)|uk|j .
One may prove that the order E is arborescent, which is an easy consequence of the fact

that there is at most one u containing infinitely many occurrences of x. In fact, the order is
dual with respect to that of the similar order relation defined in light linear logic [4] (i.e., ours
is downward-arborescent, that of light linear logic is upward-arborescent). At the level of the
dynamics of reduction, this is the main difference between our system and light linear logic. The
other key observation is that, by parsimony, if k is the n.u. factor of u, we have |u(k+ p)|j+1 ≤
(1+n)|u(k)|j+1, for all j, p ∈ N. That is, the size of terms in a parsimonious sequence increases
linearly, with multiplicative constant 1.

From here, the proof proceeds much as in [4, 1]: we consider a normal sequence (t, ε) →∗m
(t1, σ)→∗e (t′, ε) and observe that |t1| ≤ |t|; then, we observe that [(t′, ε)]j = |t′|j and we show
that, whenever c1 →e c2, one has [c1]j ≥ [c2]j . Therefore, the potential sizes of (t1, σ) bound
the actual sizes at the end of the reduction. One then concludes by observing that the potential
size verifies the bound of the statement of the lemma. ut

C.5 Proof of Lemma 3

Lemma 9. Let t wn t′. Then:
1. if n′ ≤ n, then t wn′ t′;
2. if t = ⊥, t = a or t = xi, then t′ = t;



3. if t = λp.t1, then t′ = λp.t′1 and t′1 wn t1;
4. if t = t1t2 (resp. t = t1 ⊗ t2), then t′ = t′1t

′
2 (resp. t′ = t′1 ⊗ t′2) and t′j wn tj , for

j ∈ {1, 2};
5. if t = u, then t = u′ and, for all 0 ≤ i ≤ n, u(i) wn u′(i).

Proof. All points are proved by immediate well-founded inductions. ut

First one proves that, for every pattern p containing exactly the non-linear vari-
ables x1, . . . , xp, for all terms v and w G p, for all n ∈ N and m ≥
max(n, sup{vx1,v(n), . . . , vxp,v(n)}), we have that v′ wm v and w′ wm w implies
v′[w′/p] wn v[w/p]. This is done by induction on p, the base cases being proved by well-
founded induction on v. The only interesting case is that in which p = y, v = yi and w = w.
In that case, the hypotheses and Lemma 9 give us v′ = yi and w′ = w′ such that, for all
0 ≤ j ≤ m, w′(j) wm w(j). Since vy,v(n) = i for all n ∈ N, and since by hypothesis m ≥ i,
we may conclude.

The proof of the lemma has two cases: t  t′ is immediate and t→s t
′ is a straightforward

induction on t, using the above substitution lemma in the key case t = (λp.u)v. ut

C.6 Proof of Lemma 4

If there are only finitely many occurrences of x in t, then by definition vx,t(n) ≤ |t| for all
n ∈ N. Otherwise, let k be the n.u. factor of the unique box of t containing x∇t(x)+h for all
h ∈ N. If n < k, then again vx,t(n) < |t|; if n ≥ k, then vx,t(n) ≤ |t| + n − k, which also
satisfies the requirement. ut

C.7 Proof of point 1 of Lemma 5

We reason by induction on the number of steps in the reduction. Let t →l1
s t1 be the longest

prefix of the reduction such that t1 = t′ or t1 is a box. By Lemma 2, we have |t1|j ≤ |t|1|t|j
for all j ≥ 1 and obviously l1 ≤ |t|. If t1 = t′, this is enough to conclude. Otherwise, we
have t1  t2 →l2 t′, with l = l1 + l2 + 1. Applying the induction hypothesis to the reduction
starting with t2 gives us |t′| ≤ |t2|2

d(t2)

. Observe that d(t2) = d(t1) − 1 ≤ d(t) − 1 (using
point 1 of Proposition 3). More generally, |t2|j = |t1|j+1 for all j, so the bound on the sizes of
t1 gives us |t2| ≤ |t|2. Combined with the above, this allows us to infer the desired size bound
for t′. For the bound on l, the induction hypothesis gives l2 ≤ (d(t2) + 1)|t2|2

d(t2)

+ d(t2) ≤
d(t)|t|2

d(t)

+ d(t)− 1, hence l ≤ |t| + d(t)|t|2
d(t)

+ d(t), from which we conclude. ut

D Representing Basic Numerical Functions

Successor, addition and multiplication may be represented as follows:

succ := λs.(λz§.§(λa.s(z§a)))(n!s) n : Nat ` succ : Nat

add := it(succ,m§) m§ : §Nat, n : Nat ` add : §Nat

mul := it(add[k/n], §0) k : !Nat, n : Nat ` mul : §2Nat

We may also define coercions n : Nat ` it(succ, 0) : §p+1!qNat, with p, q ∈ N. Coercions
compute the identity function (they are iterates of the successor on zero) and are useful for “strip-
ping” modalities from the types of the arguments of another term (thanks to the cut rule) with-
out altering the function computed by it. For instance, we may thus re-type multiplication as



Nat,Nat ` §3Nat (we omit the term annotations for briefness). From this, by means of a § rule,
we get §Nat, §Nat ` §4Nat, then by weak !Nat, §Nat, §Nat ` §4Nat and, after two applica-
tions of asym cntr, we get !Nat ` §4Nat. Using another coercion, we obtain a derivation of
Nat ` §5Nat whose underlying term implements the squaring function. By repeating this pro-
cesses (via cut) we may program the function n 7→ nk for any fixed integer power and, hence,
any polynomial with non-negative integer coefficients.

The presence of second order allows us to type other numerical functions which are not
representable with simple types, such as the predecessor and subtraction, in the standard way.


