Parsimonious Types and Non-uniform Computation

Damiano Mazza' and Kazushige Terui®

1 CNRS, UMR 7030, LIPN, Université Paris 13, Sorbonne Paris Cité
Damiano.Mazza@lipn.univ-parisl3.fr
2 RIMS, Kyoto University
teruilkurims.kyoto-u.ac.jp

Abstract. We consider a non-uniform affine lambda-calculus, called parsimo-
nious, and endow its terms with two type disciplines: simply-typed and with
linear polymorphism. We show that the terms of string type into Boolean type
characterize the class L/poly in the first case, and P/poly in the second. More-
over, we relate this characterization to that given by the second author in terms of
Boolean proof nets, highlighting continuous affine approximations as the bridge
between the two approaches to non-uniform computation.

1 Introduction

This paper is a contribution to the line of research known as implicit computational
complexity (ICC), whose aim is to characterize complexity classes by means of logi-
cal systems and programming languages (which are intimately related via the Curry-
Howard correspondence). Seminal work concerning this methodology includes [3, 11,
9]. The highlight of this paper consists in dealing with non-uniform complexity classes,
which very few ICC works have considered so far.

Computation is usually performed by a single machine or program which uniformly
works on inputs of arbitrary length. On the other hand, some models of computation,
such as Boolean circuits, only work for inputs of fixed length. Thus, to compute a func-
tion f : {0,1}* — {0, 1}, one needs to prepare a family (C.,)nen of Boolean circuits,
one for each input length n. The non-uniform perspective is important for hardware
design and the study of small complexity classes. Two well-known non-uniform classes
are P /poly, consisting of languages decided by families of polynomial size Boolean cir-
cuits, and L/poly, consisting of those decided by families of polynomial size branching
programs (i.e., decision trees with sharing). Such languages may well be non-recursive,
but are still useful as they capture the combinatorial essence of P or L. For instance, a
potential approach to separating P and NP is to show that NP is not included in P /poly.

We may call the above approach to non-uniform computation family approach.
There is an alternative, which consists in using a uniform machine having access to
arbitrary advice, i.e., a fixed family (wy,), e of strings. Then, P/poly (resp. L/poly) is
equivalently defined as the class of languages decided by a deterministic polytime (resp.
logspace) Turing machine aided by a polynomial advice, i.e., s.t. |w,| is polynomial in
n. We may call this the individual approach.

Non-uniform complexity has been studied in the setting of proofs and functional
programming. The second author showed in [19] that P/poly is precisely the class

of languages decided by families of polynomial size proof nets of multiplicative lin-
ear logic (family approach), whereas the first author introduced an infinitary affine
A-calculus in [13] exactly capturing the class P/poly (individual approach).

The present paper combines and extends these previous works. Our goal is twofold:
to reconcile the two approaches, and to capture also L/poly.

The starting point is the idea of seeing the exponential modality as some sort of
limit, which is quite fruitful and is at the core of several recent developments of lin-
ear logic [16,5] as well as, albeit implicitly, older work on games semantics [1, 15]
and intersection types [10]. Following this direction, in [12] the first author introduced
an infinitary affine A-calculus, in which the usual A-calculus embeds, endowed with
a topology such that finite affine terms form a dense subspace and reduction is con-
tinuous. This means that computation in the A-calculus, which is non-linear, may be
approximated arbitrarily well by computation on linear affine terms. In particular, since
data type values (such as Booleans and strings) are only approximated by themselves,
if a A-term ¢ is given in input a binary string w and ¢ w —! b (reduction in [steps) with
b a Boolean, then there exists a finite affine term ¢, such that fow —' b.

However, the “modulus of continuity” of reduction in the A-calculus is ill-behaved:
the size of ¢y may be exponential in {. The contribution of [13] was to find a subset of
(infinitary) terms, called parsimonious, on which the “modulus of continuity” is poly-
nomial. At this point, if one manages to bound / polynomially in the length of the input
w, computation falls within P/poly: the polynomially-sized approximation tq of ¢ may
be given as advice, and normalization of the finite affine term {yw may be done in deter-
ministic polynomial time. In [13], stratification (originally due to Girard [9]) was used
to obtain such a bound.

Here, instead, the bound will be enforced by types, which have the benefit of allow-
ing us to modulate computational complexity via logical complexity. More specifically,
in Sect. 2 we assign types to non-uniform parsimonious terms in two ways: with a
simply-typed system called non-uniform parsimonious logic nuPL, and with its exten-
sion with linear polymorphism nuPLy,. Let now nuPL (resp. nuPLy,) be the class of
languages decided by programs typable in nuPL (resp. nuPLyy), and let APN (resp.
APNY) be the class of languages decided by polynomial size proof nets (resp. proof nets
of bounded height). Our main result is

Theorem 1. nuPL = APN" = L/poly and nuPLy, = APN = P/poly.

The inclusion L/poly C nuPL (resp. P/poly C nuPLyy) is shown by exhibiting a
very natural encoding of branching programs (resp. Boolean circuits) as parsimonious
programs (Sect. 3), while APN® C L /poly follows from a simple observation on the
geometry of interaction (Sect. 4). The inclusions nuPL C APN® and nuPLy, C P/poly
are based on polynomial step normalization (Proposition 2) on top of continuity, as
sketched above (Sect. 5). Finally, the equality APN = P/poly was proved in [19].

Note that continuous approximation allows us to generate a family of proof nets
from a single parsimonious term. It is thus continuity that reconciles the two approaches
to non-uniformity (family and individual). From a more practical perspective, genera-
tion of proof nets from a single program is reminiscent of the work of Ghica [7], who
exhibits a way to synthesize VLSI circuits from a functional program.

Our parsimonious framework has two aspects. On the logical side, parsimonious
logic amounts to multiplicative affine logic with what we call Milner’s exponential
modality, enjoying monoidal functorial promotion and Milner’s law | A = A®!A. With
respect to the usual exponential modality, Milner’s exponential refuses digging !A —o
1A and contraction |A — A ® | A. One side of Milner’s law is an asymmetric form of
contraction !A — A ® ! A, also known as absorption, whereas its dual A @ !A — A
has a differential flavor [4]. Indeed, parsimonious logic resembles an affine subsystem
of differential linear logic, but we have not fully explored the connection.

On the computational side, the parsimonious A-calculus may be seen as an affine
A-calculus with built-in streams. This is because Milner’s law naturally makes ! A be the
type of streams on A: absorption is “pop” and coabsorption is “push”. Stream calculi
abound in the literature, also in connection with (classical) logic [18] and ICC [6, 17].
However, these are all orthogonal to the present work, both in terms of motivations
(modeling streams is not our primary concern) and technically (our streams arise from
a previously unremarked restriction of the exponential modality of linear logic).

We should also mention the companion paper [14], currently submitted, which fo-
cuses on the uniform version of the simply-typed parsimonious calculus presented here,
showing that it exactly captures L, i.e., uniform logspace. This complements in a nice
way our results but neither implies nor is implied by them, so the papers overlap but are
technically different. Also, [14] does not consider linear polymorphism.

2 The Non-uniform Parsimonious Lambda-calculus

We introduce an alternative term syntax for the infinitary parsimonious A-calculus and
its associated type system, improving on previous work [13, 14] in two respects. First,
we avoid use of indices when referring to instances of exponential variables (that are
reminiscent of indices in AJM games [1]). We instead use more conventional tools like
list and let constructs. Second, the calculus has a closer fit with the type system, i.e., the
type system is syntax-directed. This offers a better logical account of the programs, not
to mention easier type inference.
In the following, [k] stands for the set {0, ...,k — 1} for every k € N.

Terms. We let a,b,c,... (resp. x,y, z,...) range over a denumerably infinite set of
linear (resp. exponential) variables. A pattern p is either a @ bor alist ag::ay ::---
ap_1 ::x withn > 0 and ag,...,a,_1 distinct. If n = 0, the latter denotes the one
element list 2. We often use notation p(x) to indicate the last exponential variable x.
The terms are inductively generated by

ttus=Llalz|dat|tu|t@u|teu|letp=tinu|!s(ug,... up—1),

where & > 1 and f : N — [k]. The expression !¢ (uo, . .., ur—1) is called a box. We
use u to range over boxes. When k& = 1, f is obvious and we write !(ug), or even lug.
Restricting to boxes of this form yields a uniform calculus, which is the object of [14].

The box u generates an infinite stream wy(g) :: Up(1) 2 Up(g) 2 - - - . We denote the
n-th component of the stream by u(n), and the result of removing the first n elements

by u™™, so that the stream can be expressed as u(0)::u(1)::---::u(n—1) :ut™. More
precisely, u™” denotes ! f+n (ug, . . ., up—1), where fT7(i) := n + 1.

Binders behave as expected; Aa.u and (let a®b = ¢ in) bind linear variable a (and
also b in the latter case) occurring in u, while (let p =t in u) withp = ag::+ - 1ap_1 =
2 binds both linear variables aq, . . ., a,,—1 and an exponential variable x occurring in u.
We adopt the standard a-equivalence and Barendregt’s variable convention. Constant |
corresponds to coweakening in logic. It is only used for auxiliary purposes in this paper.

Informally, ¢ :: u expresses the result of pushing an element ¢ to the stream u. It is
convenient to think of pattern ag :: ---:: a,—1 :: ¢ as a “non-uniform” variable. When
“substituting” a box u for it, the first n variables ag, . . . a,,—1 are replaced by the first n
components u(0), ..., u(n — 1) (with free variables renamed), while = takes u™".

A slice of a term is obtained by removing all components but one from each box.
A term is parsimonious if (i) all its slices are affine, i.e., each variable (linear or not)
occurs at most once; (ii) box subterms do not contain free linear variables; and (iii) all
exponential variables belong to a box subterm. Thus each exponential variable corre-
sponds to an “auxiliary door” of a unique box. The set of parsimonious terms in the
above sense is denoted by nuPA.

Reduction. One-step reduction ¢ = v is defined relatively to a finite set o of the form
{b1::21,...,bg 121 }. We denote the set {b1,...,bx, 21, .., x5} by fv(c). There are
seven elementary rules, among which (beta), (com1) and (com?2) are standard:

(beta) (Ma.t)u LN t[u/a) (merge) letz =uinw LN w{u/z}
(com2) let p = CJt] inu LN Clletp=tinu] (coml) Clt]u LN Cltul
(cons) leta:p=t:vinw D tet p=wvinwlt/al
(dup) letazp=uinw = let p=ut!inw[u(0)/a
(aux) letz =t :vinwlu] = let = vin wu(0)[t/x] :: ut!]
]

where C'e] stands for a context of the form (let g = v in o). The term u(0)’ is obtained
from u(0) by replacing its free exponential variables x1, ..., Z,, (except z in (aux))
with fresh linear variables by, ..., b,,. Thus the (dup) and (aux) rules introduce new
free variables, which are recorded in o := {by :: 1, ..., by 1 2, } and are bound later.
In the (aux) rule, the notation w[u] means that w contains a box u s.t. z € fv(u).
If no such box exists, the term ¢ :: v is erased, i.e., the right hand side is w. This
rule corresponds to a cut between a cocontraction and the auxiliary port of a box in
differential linear logic. We include it for completeness but we never need it.

The substitution w{u/z} in the (merge) rule needs an explanation. Suppose that

u = !¢(uo,...,ur—1) and the variable « occurs in a box w = !4 (wo, ..., w;—1). Our
intention is to replace the stream ... w(4) ... with ... w(é)[u(¢)/z] ... To achieve this,
let vip4; = w;iu;/x] for each i € [l] and j € [k]. Then w{u/x} is the result of

replacing the box w with !, (vo, . . ., vjg—_1), where h(m) = g(m)k + f(m).
The above rules are extended contextually. We have:

¢ o oU{b::x} ,
— U — W
C[t] = Cu] let p(z) = vinw 5 let p(b::x) = vin w’

where the left rule applies when C'[¢] or C[u] does not bind any variable in fv (o).

F;A,a:AFa:Aax F;AFL:Acoweak

I'yAja: A-t: B I;AtbEt:A— B Io;AFu: A
—ol —E
AR Xat: A— B I, Io; A, Ao -tu: B
In;AHt: A Io;Axbu: B | I;AHiHt: A® B Fg;Az,a:A,b:Bl—u:C'@E
T, Ao t@u: AR B T, I A, Ak leta@b=tinu:C
Ip:A;Aa:AFt:C ;A Rt A I AsFu:lA
abs coabs
I'(a:p): A;ARL: C I, I A1, Ao b (t:u) 1A
iAFug: A - ;Akuk—ﬂAl In; At 1A Fg,p:A;Ag}—u:C’|
! IE
Al (ug, ..y up_q) s 1A I, Ip; A, Askletp=tinu:C
I'Art: A agiv(l,A) I'yA-t:Va.A Bis!-free .
v
ARt :Va A v I's A-t: A[B/a]

Fig. 1. The typing system nuPLy,. Removing the last two rules yields nuPL.

Finally we write t — w if ¢ 9, 4 holds. This is our notion of one-step reduction.
Reduction is the reflexive-transitive closure of —, denoted by —*.
For instance, if t := let a::p = lu(z) ina@vand ¢’ := let p = lu(z) in u(b) @ v,

b:: . . .
we have ¢ ﬂ t',so let x =wint — let b::x = w in t'. Thus the “uniform”

variable z is replaced by the “non-uniform” b:: z.

Reduction may be shown to be confluent. However, termination is not guaranteed:
take A := Ab.let a::x = bin alx and let 2 := A!A. These terms are parsimonious,
and we have (2 — (2, like the namesake usual A-term.

Types. We take as types the formulas of intuitionistic second order linear logic:
AB:=a|A—-B|A®B|!A|Va.A

where « is a type variable. The set of types (resp. V-free types) is denoted by Typey,
(resp. Type).

We adopt a type system with dual contexts as in [2]. Typing judgments are of the
form I'; A ¢ : A, where I is a set of assignments of the form p(z) : C, while A
consists of assignments of the form a : C. Moreover, all variables occurring in I, A are
distinct.

A term t is typable in nuPLy, if the judgment I'; A - t : A may be derived
according to the rules of Fig. 1. Likewise, ¢ is typable in nuPL if I'; A F ¢t : Ais
derived without any use of the quantifier V.

Intherule!l,if A ={b; : By,..., by : B}, then A :={y1 : B1,...,Ym : B}
with y1,...,ym fresh, and u} := w;[y1/b1,...,Ym/bm]. Notice that the rule VE is
applicable only when B is !-free. An induction on the last rule of derivations gives

Lemma 1. Suppose that ; A+t : A. Then:
1. parsimony: ¢t € nuPA;
2. typical ambiguity: ; A[B/a] -t : A[B/a] for any type B;
3. subject reduction: ¢t — t’' implies ; A+t : A.

In the sequel, we will mainly deal with simple types in Type. Polymorphic types in
Typeyy are considered only when necessary. When working with Type, it is convenient
to fix a propositional variable, which we denote by o. If A, B € Type, A[B] stands for
A[B/o]. We will even omit B, just writing A[]. This lack of information is harmless
for composition: point 2 of Lemma 1 guarantees that terms of type A[X] — B and
B[Y] — C may be composed to yield A[X[Y]] — C. The only delicate point is
iteration (see below), which requires flat terms, i.e., of type A —o A.

Examples. We set \p.t := Ac.let p = c in t with c a fresh variable, so that we have
(Aa @ b.t(a,b))u®@v =" t(u,v), Maz:zt(a,z))uszv =" t(u,v).

With this notation, the two terms implementing Milner’s law may be written as

Aa:zra®lr:!A—-oARQA, AaQbletrzr=bina:lr: ARQ!A — A

Fig. 2 shows some examples of data and functions represented in nuPL. As usual,
a natural number n is expressed by a Church numeral n of type Nat. The type Nat
supports iteration lt(n, step’, base) := n !(step’) base, typed as:

i Abstep: A—o A I'; X Fbase: A
A T X n s Nat[A] F It(n, step’, base) : A

where A’ and step’ are the results of systematically replacing linear variables by expo-
nential ones. Note that the type of step must be flat.

Since succ has a flat type Nat — Nat, it may be iterated to result in the ad-
dition function of type Nat[] —o Nat —o Nat. It is again flat with respect to the
second argument, so a further iteration leads to the multiplication function of type
Nat[] — Nat[] —o Nat. Subtraction is defined similarly.

Notably, Church numerals are duplicable and storable as shown in Fig. 2. Using
addition, multiplication, subtraction and duplication we may represent any polynomial
with integer coefficients as a closed term of type Nat[] — Nat.

Moreover, all these unary constructions can be extended to binary ones. We define
Str := (0 — 0) —o (0 —o 0) —o 0 —o 0. The Church representation for the binary
string w = by - - - b1 € {0, 1}" is given by

W= ASgiic Sy 1L ASy sk gy Ad.co(- e epord e) 2 St
where ¢; = s; or s; depending on the bit b; being 0 or 1.

For the Boolean values, we adopt the multiplicative type Bool used in [19]. Just as
numerals, words and Booleans are duplicable and storable.

An advantage of multiplicative Booleans is that they support flat exclusive-or & in
addition to flat negation —. On the other hand, conjunction and disjunction cannot be
flatly represented multiplicatively. The best we have is A : Bool[] — Bool —o Bool,
i.e., one of the arguments must be non-flat.

In contrast, A admits a flat typing in nuP Ly, by re-defining Bool := Va.aa ® o —o
a ® a. As we will see in the next section, this results in greater expressiveness. This is
the main difference between two type systems nuPL and nuP Ly,.

Let ¢t : Str[] —o Bool be a closed term typable in nuPL (resp. in nuPLyy). It
defines a language L(t) := {w € {0,1}* : tw —* tt}. Let nuPL (resp. nuPLy,) be the
class of all such languages.

Nat :=!(0 — 0) — 0 —0 0, Bool:=0®o0—0®o0

n = Aso:- - uSpo1n 2z AdSo (. Sn—1d ..) : Nat

succ = An.As:z.Ad.s(n!(z)d) : Nat — Nat

pred := An. Az d.n((Aa.a)::1z)d : Nat — Nat

dup := An.lt(n, Am1 ® ma.(succ m1) ® (succ m2),0® 0) : Nat[] — Nat ® Nat
store := An.lt(n, A\z.!(succ), 10) : Nat[] — !Nat

tt = Ac®d.c®d, ff:=Xc®dd®c : Bool

- = Ac®db(d®c) : Bool —o Bool

@ = Ab1.Ab2.Ac.bi(bac) : Bool — Bool — Bool
A =X Abalet c®d =bi(b2 @ff)inc : Bool[] — Bool — Bool

Fig. 2. Some data types and encodings

3 Expressiveness of Non-uniform Parsimonious Terms

In this section, we prove
Theorem 2. L/poly C nuPL and P/poly C nuPLy,.

An n-input branching program is a triple P = (G¥,vF vF) where: G is a finite

directed acyclic graph (dag); its nodes have out-degree 2 or 0 and are labelled in [n];
each node of out-degree 2 has one outgoing edge labelled by 0 and one by 1; and v’ v’
are the source and target node, the former having in-degree 0, and the latter having out-
degree 0. The size of P is the number of nodes of G,

A binary string w = bg---b,—1 € {0,1}"™ and an n-input branching program P
induce a directed forest P(w), as follows: take GT and, for each node v of out-degree 2
whose label is 4, erase the edge labelled by 1 — b;. Thus, P(w) is a dag of out-degree at
most 1, i.e., a forest, whose edges are directed towards the roots. We say that P accepts
w if vf is a leaf of the tree whose root is Uf ; otherwise, it rejects.

A family of branching programs is a sequence (P,)nen s.t., foralln € N, P, is an
n-input branching program. It is of polynomial size if there exists a polynomial p such
that, for all n € N, the size of P, is bounded by p(n). It is well known that L /poly is
exactly the class of languages decided by families of branching programs of polynomial
size. Therefore, to prove the first part of Theorem 2 it will be enough to encode polysize
families of branching programs, as sketched below.

Encoding a forest. We have a very simple encoding of a forest G 0\\ / 1

thanks to a flat encoding of the exclusive-or function. Suppose that 3

the nodes of G are {0, ..., m — 1} and think of a token traversing l !

G. We express the state “the token is placed at node ¢” by the term

@i := s, (ff, tt), where 6;(j) = 1 iff ¢ = j. The term Qi is of type

!Bool and expresses the stream in which only the ith component is tt and the rest is ff.
A forest is expressed by a term of type !Bool —o !Bool. For instance the forest in

Fig. 3 is expressed by the term ¢ below:

Fig. 3. A forest.

Megiieyieaniegiegies). (ffaffuffuico @ eriies ®eqica @ cyila).

This term replaces the Oth, 1st and 2nd components of a given stream with ff since
there are no edges coming into the nodes 0, 1, 2. The 3rd is the exclusive-or of the Oth

and 1st, while the 4th (resp. 5th) is the exclusive-or of the 3rd and 4th (resp. 2nd and
5th). Thus the term actually represents a graph where self-loops are added to terminal
nodes 4 and 5. As a consequence, we have lt(k, ¢, @i) —* @j iff terminal node j is
reachable from node ¢, as far as £ > 2. It is clear that the same encoding works for
arbitrary forests of arbitrary size.

Encoding a branching program. Actually the edges of a forest are to be chosen accord-
ing to the input binary string w = bg - - - b,—1 (b; € {0,1}) fed to a branching program
P,,. Hence for instance the component ¢y & c¢; above should be replaced by a term like
(bi A co) ® (—b; A 1) where b;, b; are the Boolean values of type Bool[] depending
on which the edges 0 — 2 and 1 — 2 are drawn; the former is drawn when b; = 1,
while the latter is drawn when b; = 0. This raises no typing problem since conjunction
A : Bool]] — Bool —o Bool is flat with respect to the second argument. We there-
fore obtain a term ¢, : !Bool[] — !Bool — !Bool expressing a branching program
P, = (G,,0,1) (assuming that the source and target are respectively node 0 and 1).
Converting an input string of type Str into a stream of type !Bool[] is easy.

Encoding a family of branching programs. This is not the end of the story. We cannot
store the whole family (P,),cn in a term as it is, in spite of the infinite facility of our
calculus. What we can store in a box !¢ (uo, ..., u,—1) is only an infinitary repetition
of finitely many items. We are thus led to consider an advice, a stream of instructions,
according to which each P, is “woven” step by step.

For instance, to compute the Boolean value associated to a single node k (rather
than the whole state of type !Bool) from the previous state, it is sufficient to consider
four instructions: iskip, nskip, pos, neg. Let Adv := 0* —o 0 and represent each
instruction by Aagajasas.a; with i € [4]. Then any advice can be represented by a box
!r(iskip,nskip, pos,neg) : |Adv[] with a suitable f.

We consider the following term which expects four inputs: advice (encoded by a
term of type !Adv]]), input string (!Booll]), previous state (!Bool) and temporal value of
node k (Bool), and returns the updated values of the same type.

Aa::x. Abiy. Az Ad. case a of iskip — I(z) @ (y) ® c::1(2) ® d;
nskip = (z) @ b:!(y) @ 1(2) ® d;
pos —l(z)®!l(y)@!(2) @ ((bAc)@d);
neg —l(z)@y)@(z) @ ((-bAc)®d).

The instruction iskip (resp. nskip) skips the first bit b of the input (resp. c of the
previous state). The behaviors of pos and neg are as expected. For instance, starting
from initial input string bg :: - - - :: b,,_1, previous state cp :: - - - :: ¢,;,—1 and temporal
value ff, iteration of the above term four times with advice iskip::pos::nskip: neg
yields value (b1 A cg) @ (—ba A c2) (together with the rest of input bg ::---::b,,_1 and
the rest of nodes c3::---::¢pm_1).

Actually things are more complicated, since unused values c; in the previous state
are not just thrown away but to be preserved for later use. Each bit b; of the input string
is to be used several times. Most importantly, we need to compute not just one value d
(of type Bool) but a stream expressing the next state (of type !Bool). We can manage to
do that by using more complicated instructions and types.

Ay A Arp A,
ol ax), A\ cut A @A 3,4 ®A

Fig. 4. Links (left) and cut-elimination steps (right). In the cut link, A 1 A’; e € {®,%}.

In the end, we obtain a term tp : 'Adv[] — !Bool]] — !Bool — !Bool that
“weaves” a forest P, (w) when an advice a,, of polynomial length r(n) and an in-
put string w of length n are provided. Actually the advice is given as a concatenation
of all (a;);en, from which a suitable advice for P, is extracted by skipping the first
S~ r(i) components.

So far we gave a proof sketch of the first part of Theorem 2. For the second part,
recall that nuPLy, allows us to encode not only exclusive-or, but also conjunction and
disjunction by terms of flat type Bool — Bool — Bool. Hence we may build a term
similar to tp above, which is able to “weave” a family of polynomial size Boolean
circuits. This observation immediately leads to the second part of Theorem 2.

4 Boolean Nets and Logarithmic Space

We consider here classical propositional multiplicative linear formulas, generated by
A, B:=o | OJ' | ®i§nAi | 78257“41',

where n € N (the bound n will be omitted in the sequel unless necessary). Linear
negation (-)* is defined as usual via De Morgan laws (exchanging ® and 29). The
height of a formula is its height as a tree. We will also need a more liberal notion of
duality, which we denote by A | B, defined to be the smallest symmetric relation on
formulas such that: o L ot;if Ay L By,..., A, L By, then ®;<,A; L BicpiiBi
and ;< A; L ®i<pikBi, with By, y1, ..., By arbitrary. Of course A 1 AL, Also,
it is easy to check that, if A | A’, then A, A’ have equal height.

A net is formula-labelled directed graph built by composing the nodes of Fig. 4
(left), called links. Composition must respect the orientation, and the labeling must re-
spect the constraints given in Fig. 4. Edges are allowed to have unconnected extremities.
The edges incoming in (resp. outgoing from) a link are called premises (resp. conclu-
sions) of the link. The number of premises of a @ or % link is called its arity. The
premises of ® and % links are ordered, so we may speak of “the i-th premise”. Each
edge must be the conclusion of a link. The size of a net is the number of its links.
Cut-elimination steps are defined in Fig. 4 (right).

Definition 1 (Boolean net). An n-input Boolean net 7 is a net whose conclusions have
type Bool[A;]1, ..., Bool[A,]*, Bool. The height of is the maximum height of A;. A
family of Boolean nets is sequence (7,)nen wWhere each m, is an n-input Boolean net.
A family (7,)nen accepts (resp. rejects) a string w € W if the net obtained by cutting
Tjw| With Wo, . .., W), |—1 normalizes to tt (resp. ff). We denote by APNC the class of
languages decided by families of Boolean nets of polynomial size and bounded height.

Observe that our nets differ from those of [19] because of the presence of free
weakening and because of the more liberal notion of duality. However, these features
are harmless: a Boolean proof net in the sense of [19] (with garbage disposed) is a
Boolean net in our sense; for the converse, our nets may be simulated by the nets of
[19] by adjusting the arity of links and introducing garbage (represented by weakening
in our context). Therefore, the class of problems decidable by our families of Boolean
nets of polynomial size and bounded height is exactly what [19] calls APN°.

A net m with n conclusions and |

e I [«]
k cut links has the shape given in Wv - Wv
the left hand side of Fig. 5, where o G G et

Pl PrsTls 7-{7 TR 7-]’C are trees Fig. 5. A generic net 7 and its normal form 7.
of ®, % and w links, and w consists solely of ax links. Moreover, since the leaves of
p; are labelled by atomic formulas, and since only ax and w links may have atomic
conclusions, the normal form 7’ of 7 (which exists and is unique) has the shape given
in the right hand side of Fig. 5, where the conclusions of w’ are conclusions of ax or w
links (w’ may contain irreducible cut links but this will not be important for us).

We will be interested in detecting companion leaves of p;, p; in ' (we allow i = j),
i.e., leaves which are conclusions of the same ax link of w’. The geometry of interac-
tion (Gol, [8]) gives us a way of doing this directly in 7, without applying any cut-
elimination step. The following is an immediate application of standard Gol definitions.
See Appendix A for the details.

Proposition 1. Let 7 be as in Fig. 5, of size s, and let h be the maximum height of
C1,...,Cr If e, € are two leaves of p;, pj, deciding whether e, e’ are companions in
the normal form of ™ may be done in space O(hlog s).

Theorem 3. APN° C L/poly.

Proof. Let (7,)nen be such a family, of size p(n). Since p is a polynomial, the whole
family may be encoded as advice. Deciding whether w € {0, 1}"™ is accepted amounts
to detecting whether a certain pair of leaves in m,, cut with the representations of the
bits of w are companions in the normal form, which by Proposition 1 may be done in
space O(hlogp(n)) = O(hlogn). But, by definition, the height 4 of cut formulas does
not depend on n, so we conclude. O

5 Approximations and Boolean Nets

We say that a term is finite if it contains only boxes of the form ! L. Finite terms may
be mapped to nets in a standard way, as follows. We first introduce the relation A’ C A
between classical multiplicative formulas and simple types, as the smallest such that:
oCo;if /' C Aand B' C B, then (A)t 3B C Ao Band A’ ® B'C A® B;if
Al ... Al T A, then ®,<,, A} C 1A, A straightforward induction on A gives

Lemma 2. A’ A" C Aimplies (A')+ 1 A"

Let ¢ be finite. We will map a type derivation of I'; A F ¢ : A in nuPL to a
net, which we abusively denote by [], of conclusions I, A, A’ such that (I"")+ C IT,
(A")+ € Aand A’ C A. The definition is by induction on the last rule of the derivation:

. @@ coweak : @@ @

(] (L]
™
@l ®E: T AL_TF o abs : c’
A" @ B Bi<n+14]

In the ax and coweak case, we choose I, A’ and A’ so that every ! is approximated
in the minimal way, i.e., n = 1 in the definition of C. In the cases ax and — E, 7
denotes the n-expansion net, defined as usual. In the cases — E, ®E and !E, Lemma 2
guarantees the soundness of the typing. For the rule !l, by finiteness the only possibility
is that £ = 1 and ug = L, so this case is treated as coweak. In the case abs (resp.
coabs), the net 7 represents the net [¢] (resp. [u]) from which the % (resp. ®) link
corresponding to p : A (resp. ! A) has been removed. If no such link exists, it means that
the conclusion came from a w (it cannot come from an atomic axiom), in which case
we simply add a binary % (resp. ®) link.

Note that the size of [t] is O(s - [t|), where s is the size of the types in ¢ (this is
because of the 7 nets). The following is standard:

Lemma 3. Let t be finite and typable in nuPL. Then, t — t' implies [t] —* [t'].

In what follows, for convenience we associate with each non-linear variable x a se-
quence ag, a1, ag, . . . of pairwise distinct linear variables. We further suppose that if a
(resp. b) is associated with x (resp. y), then x # y implies a # b. The n-th approxi-
mation of t € nuPA is a finite term |¢|,, defined as follows: | L |, := L; [a], = a;
|]n = L [Aat]n = Aa.|t]n; [tu]n = [tn|tns [E@uln = [t]n ® [u]n;
[t 2wl = [t = [u)ps |let a®b =wint], :=let a®b = |ul, in [t]n;
llet p(x) = wint], :=let plag :: -+ = ap—1 :: ©) = |ul, in |t],, where the a; are
associated with z; [u],, := [u(0)[@o /]|, = -+ [u(n — 1)[@n—1/7]]n :: L, where
7 are the free variables of the box and @; are associated with .

Proposition 2. Ler t : Bool in nuPLy, (or nuPL). There exists a polynomial p de-
pending solely on the types appearing in t and on its depth (the maximum number of
nested boxes) such that, ift —' b with b € {tt,ff}, then | < p(|t|). As a consequence,
there is a polynomial q (with the same dependencies) s.t. |t] ae)) =" b.

Proof. The bound on the reduction length is proved by a careful reformulation of a
standard cut-elimination argument, see Appendix B. This immediately induces the ap-
proximation bound via continuity, as proved in [13] (Lemmas 3 and 4). O

Theorem 4. nuPL C APN and nuPLy, C P/poly.

Proof. Given t : Str[A] — Bool and n € N, it is easy to obtain a term ¢’ whose
type is ;b : Bool[A — A],...,b,_1[A — A] : Bool - t/(bg,...,bn—1) : Bool. It
takes n Booleans, converts them into a string of type Str[A], and then passes it to ¢. If
w="by: by_1 € {0,1}", we have u := t'(bg, ...,by_1) =* tw —* b. By Proposi-
tion 2, we have |u], |,y —* b for p a polynomial not depending on w. But [u| = O(n)
by construction. Hence, by Lemma 3 the language decided by ¢ may be decided by the
family of Boolean nets 7, := [|t'] 4(n)] With ¢ a polynomial, so the family is of polyno-
mial size. Moreover, the conclusions of 7, are Bool[B,]*, ..., Bool[B,]*, Bool, with

B,

C A — A, whose height does not depend on 7 (only the arity). Hence the family is

also of bounded height. The second part is an immediate consequence of Proposition 2
as delineated in the introduction: the height of formulas plays no role, we normalize the
underlying untyped term. a

Acknowledgments. This work was partially supported by ANR projects LOGO1 ANR-2010-
BLAN-0213-02, CoQUAS ANR-12-JS02-006-01 and ELICA ANR-14-CE25-0005.

References

16.

17.

18.
19.

. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Comput. 163(2),

409470 (2000)

. Baillot, P., Terui, K.: Light types for polynomial time computation in lambda calculus. Inf.

Comput. 207(1), 41-62 (2009)

. Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the polytime func-

tions. Computational Complexity 2, 97-110 (1992)

. Ehrhard, T., Regnier, L.: Differential interaction nets. Electr. Notes Theor. Comput. Sci. 123,

35-74 (2005)

. Ehrhard, T., Regnier, L.: Uniformity and the taylor expansion of ordinary lambda-terms.

Theor. Comput. Sci. 403(2-3), 347-372 (2008)

. Gaboardi, M., Péchoux, R.: Upper bounds on stream I/O using semantic interpretations. In:

Proceedings of CSL. pp. 271-286 (2009)

. Ghica, D.R.: Geometry of synthesis: a structured approach to VLSI design. In: Proceedings

of POPL. pp. 363-375 (2007)

. Girard, J.Y.: Geometry of interaction I: Interpretation of system F. In: Proccedings of Logic

Colloquium 1988. pp. 221-260 (1989)

. Girard, J.Y.: Light linear logic. Inf. Comput. 143(2), 175-204 (1998)
. Kfoury, A.J.: A linearization of the lambda-calculus and consequences. J. Log. Comput.

10(3), 411-436 (2000)

. Leivant, D., Marion, J.Y.: Lambda calculus characterizations of poly-time. Fundam. Inform.

19(1/2) (1993)

. Mazza, D.: An infinitary affine lambda-calculus isomorphic to the full lambda-calculus. In:

Proceedings of LICS. pp. 471-480 (2012)

. Mazza, D.: Non-uniform polytime computation in the infinitary affine lambda-calculus. In:

Proceedings of ICALP, Part II. pp. 305-317 (2014)

. Mazza, D.: Simple affine types and logspace (2015), submitted to LICS 2015, available on

the author’s web page.

. Mellies, P.A.: Asynchronous games 2: The true concurrency of innocence. Theor. Comput.

Sci. 358(2-3), 200-228 (2006)

Mellies, P., Tabareau, N., Tasson, C.: An explicit formula for the free exponential modality
of linear logic. In: Proceedings of ICALP, Part II. pp. 247-260 (2009)

Ramyaa, R., Leivant, D.: Ramified corecurrence and logspace. Electr. Notes Theor. Comput.
Sci. 276, 247-261 (2011)

Saurin, A.: Typing streams in the lambdayu-calculus. ACM Trans. Comput. Log. 11(4) (2010)
Terui, K.: Proof nets and boolean circuits. In: Proceedings of LICS. pp. 182-191 (2004)

A The Geometry of Interaction (Proposition 1)

In the following definition, we use the wild card @ € {®, %}

Definition 2 (Interaction Abstract Machine). Given a net 7, we define an automaton
IAM(7) as follows. Its states are triples (d, e, S), where d € {1,1}, e is an edge of &
and S is a finite stack of natural numbers. Its transition relation ~> . is the smallest s.t.:
ax: (1,e,8) ~x (J,€,9) ife, & are the conclusions of an ax link;
cut: (J,e,5) ~, (1,€,8) ife, e are the premises of a cut link;

o (,e,8) ~, ({,€¢,i-S)and (1,€¢,i-5) ~, (T,¢,5) if e is the i-th premise of a

e link and €' its conclusion.

Observe that the transitions are deterministic. A sequence of transitions s ~% s of
IAM(7) is maximal if the edges of s and s’ are conclusions of T (not necessarily dis-

tinct). In that case, we write § ~7% s’

Lemma 4 (Invariance [8]). If 7 —* 7’ as in Fig. 5, then ~~"" = ~". In particular,
two leaves e, €' of p;, p; are companions in 7' iff (T, e,€) ~% (1, €, ¢).

Proposition 1. Let 7 be as in Fig. 5, of size s, and let h be the maximum height of
C1,...,Cr If e, € are two leaves of p;, pj, deciding whether e, €’ are companions in
the normal form of ™ may be done in space O((1 + h)log s).

Proof. By Lemma 4, it is enough to simulate IAM (7). For this, we need one pointer to
the edge of the current state, of size log s, plus the space to store the stack. It is easy to
see that the maximum length of the stack is reached when visiting the premise of a cut
link ¢, in which case the length equals the height of the cut formula. Now, the integers
(stored in binary) in a stack are bounded by the maximum arity of the links of 7, which
in turn is bounded by s, hence the thesis. O

B Polynomial Step Normalization (Proposition 2)

Throughout this section, we assume that every term ¢ comes equipped with a typing
derivation in nuP Ly, so that each subterm has a type in Typey,. Although a subterm
may have several types, the rank defined below will be invariant due to the restriction
of polymorphism to linear types. We omit the connective ® just for simplicity.

For each term ¢, the size |¢| is the number of nodes in its generation tree. The depth
d(t) of t is the maximum number of nested boxes (as for proof nets). Note that the depth
never increases by reduction, since parsimonious logic is digging-free. For each formula
A, the rank r(A) is defined as follows. r(a) = 0, r(A — B) = max{r(A),r(B)},
r(Va.A) = r(A), and r(!1A) = r(A) + 1. The rank r(t) of a term ¢ is the maximum
rank of types occurring in the typing derivation for £.

Let Ay, be the set of closed terms of !-free type (e.g. Bool) which is of depth < d
and of rank < r. The goal of this section is to prove

Theorem 5. Foreveryd,r € N there is a polynomial pq such that every termt € Ag ,
normalizes in pg - (|t|) steps.

To prove this, we do not use the (aux) rule. The restriction to !-free types makes it
possible.

We first introduce some concepts. A term is [-normal if the reduction rules other
than (dup) and (aux) do not apply to it. Since no duplication is involved, reduction of a
term ¢ to its I-normal form takes at most O(|¢|?) steps, which are negligible.

Given an I-normal term ¢, let L = {l1,...,l;} be the set of subterms of the form
(let p(z) = w in v) such that u : A is of maximal rank (i.e. r(A) = r(t)). We remark
that u is either a box or of the form u; :: us because the rank is maximal and the type
of ¢ is I-free. L is partially ordered by: I; < [; if I; is of the form (let p(z) = u in v)
and /; is included in a box of w. It is clear that the length of any chain in L is bounded
by d(t). Each ; involves a list p(z) of variables, whose length is denoted by m;. The
pattern size |t|,, of t is defined to be the sum m; + - - - + my,.

Suppose that t € Ag , is I-normal but not normal. We claim that there is always a
redex l; € L of the form (let a::p = u in v) such that (i) /; is <-minimal and (ii) no
free variable = of u is bound by another (dup)-redex in L (it is possible that x is bound
by a (aux)-redex in L of the form let 2 = uy :: ug in C[l;]). Now let us observe what
happens to |¢| and |¢|,, when such a redex [; is fired:

li = letazp=uinv L letp=uttinovu(0)/a = I.

The main effect is that it creates a copy u(0)’. However, the term u(0)’ does not contain
a let binder of maximal rank by condition (i). A delicate point is that it may contain some
new linear variable b of maximal rank, which is bound in a wider context, influencing
the pattern size. However by condition (ii), such a variable is propagated to a (aux)-
redex, i.e., we have:

let z = ujug in Cll;] — letbuz = uy:iug in C[l].

Then b can be immediately killed by the reduction rule (cons). Hence the new variables
in u(0)’ do not contribute to the pattern size after all. Since the variable a is killed by
the reduction, the pattern size has strictly decreased by 1.

On the other hand, the size |¢| increases at most by the size m(¢) of a maximal box
in t (the box size of t). Hence after reducing all <-minimal redexes in L, the term size is
bounded by |¢t| +m(t) - |t|, < [t]- (Jt|, + 1). The box size may increase, but is bounded
by |¢| - (Jt|, + 1). By repeating this at most d times, one can eliminate all redexes of
maximal rank, obtaining a term of size [¢| - (|t|, + 1)¢ < (J¢| + 1)?*!. Reduction to the
I-normal form only takes a quadratic number of steps.

This way the rank of a term decreases by 1. By repeating the same procedure r
times, we obtain a normal form whose size is bounded by pqy .- (|¢|), where the polyno-
mial pg is determined only by d and 7.

