A Hierarchy of Expressiveness
in Concurrent Interaction Nets

Andrei Dorman' and Damiano Mazza?

! Dipartimento di Filosofia, Universita degli Studi Roma Tre
and Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS
Andrei.Dorman@lipn.univ-parisi3.fr
2 CNRS, UMR 7030, LIPN, Université Paris 13, Sorbonne Paris Cité
Damiano.Mazza@lipn.univ-parisl3.fr

Abstract. We give separation results, in terms of expressiveness, con-
cerning all the concurrent extensions of interaction nets defined so far in
the literature: we prove that multirule interaction nets (of which Ehrhard
and Regnier’s differential interaction nets are a special case) are strictly
less expressive than multiwire interaction nets (which include Beffara
and Maurel’s concurrent nets and Honda and Laurent’s version of polar-
ized proof nets); these, in turn, are strictly less expressive than multiport
interaction nets (independently introduced by Alexiev and the second au-
thor), although in a milder way. These results are achieved by providing a
notion of barbed bisimilarity for interaction nets which is general enough
to adapt to all systems but is still concrete enough to allow (hopefully)
convincing separation results. This is itself a contribution of the paper.

Keywords: Interaction nets, Expressiveness in concurrency, Behavioral
equivalences

1 Introduction

Interaction nets were introduced by Yves Lafont [10] as a model of distributed
and deterministic computation, inspired by proof nets of multiplicative linear
logic [11]. To this date, they have earned a prominent place in the theory of
the optimal implementation of the A-calculus (as sharing graphs [13,2]) and
functional programming languages in general [15,16], as well as in the related
field known as the geometry of interaction [7], for which they are the most natural
syntax.

The main interest of interaction nets lies in the fact that they provide a simple
yet extremely powerful paradigm for representing a vast variety of computational
models, ranging from Turing machines to functional languages, passing through
cellular automata and term-graphs, all this by respecting the essential idea that
computation is local and the cost of elementary steps is bounded by a constant.
Additionally, interaction nets provide a pleasant and intuitive graphical repre-
sentation of programs, similar in style and spirit to string diagrams for monoidal
categories.

Let us define interaction nets in a nutshell. We start with an alphabet, i.e.,
a set of symbols, a, B, ..., each with a given arity. Given a denumerable set of
ports x,vy, 2, ..., the atomic components of interaction nets are:

— agents (or cells), of the form a(z;g), where z,§ are ports, with the length
of the list § matching the arity of «, and x being the principal port of the
cell;

— wires, which are multisets of exactly two ports, written [z, y].

A net is a multiset of agents and wires, in which every port appears at most
twice. We write nets as

ar(z1;91) | | (@i Om) | [21,wd] | | (20, wnl,

using a notation reminiscent of process calculi (especially the solos calculus [14]).
A port appearing exactly once in a net p is free, and fp(p) is the set of free ports
of p; all other ports are bound, and may be renamed as usual by a-equivalence.
We also equate nets obtained by “fusing” or “absorbing” wires:

[z,9] | [y, 2] = [z, 2], wlly,] = p{z/y} ify € fp(p)

(note that [z,y] | [y, x] = [z, x] are legitimate nets, that is why nets and wires
are multisets, not just sets).

An interaction net system is obtained by choosing an alphabet and fixing a
set of interaction rules of the form

a(z;g) | B(z;2) — v{g, 2},

where v{g, 2} is a net whose free ports are exactly ¢, 2. An essential requirement
is that there is at most one interaction rule for every unordered pair of symbols
«, B in the alphabet. For instance, if we take 0, s and 4 as symbols, of respective
arities 0, 1 and 2, and if we fix the rules

0(x) | +(z;9,2) = [y,2], s(w;u) | +H(z;39,2) = +(u;v,2) | s(y;v),

we obtain a simple system for unary arithmetic with sum. Indeed, if we set
n{z} = 0(vy) | s(ve;v1) | -+- | s(z;v,), we invite the reader to check that
m{z} | n{z} | +(x;y,2) =* m+n{y} in m + 1 reduction steps. Although
this particular example does not exhibit any parallelism (there is at most one
reduction possible at each step), it is easy to imagine situations in which an
arbitrary number of reductions may be fired at the same time.

We mentioned above that interaction nets have a simple and natural graph-
ical representation, owing to their kinship with proof nets. Actually, in the ex-
isting literature nets are usually presented primarily in that way [10, 15, 16]. For
instance, the rules for the above system for unary arithmetic would be defined
graphically as in Fig. 1. In this paper, we stick to a textual representation, which
has the advantage of being more concise and, we feel, more easily formalizable
(although, arguably, much less visually appealing).

As a rewriting system, interaction nets are strongly confluent: this is because
rewriting only acts on nets of the form «a(z;g) | f(x;Z2), called active pairs,

—> u—>u
&N

Fig. 1. The interaction rules for sum in unary arithmetic.

and these can never overlap (i.e., there are no critical pairs) because x already
appears twice and hence nowhere else. Strong confluence implies that Lafont’s
model is strictly deterministic. However, the parallelism of interaction nets sug-
gests that, by endowing them with some form of non-determinism, it may be
possible to obtain interesting models of concurrent computation.

The first to study such non-deterministic extensions was Vladimir Alexiev [1],
who immediately realized that there are essentially three independent ways of
altering Lafont’s definition so as to inject non-determinism in the model:?
multirules: relaxing the requirement that there be at most one rule for every

active pair;
multiwires: up to equivalence, an active pair has the form a(z,3) | B(y;t) |

[x,y]; if we allow wires connecting more than two ports, we obtain nets such

as a(z;3) | Bly;t) | v(2;@) | [2,9, 2], in which active pairs overlap;
multiports: a further alternative is allowing agents to have more than one

principal port, ¢.e., more than one port on which they may interact with
other cells. We thus obtain nets such as a(z,y;3) | 8(z;t) | v(y; @), in which

x and y are both principal for «, so one cell belongs to two active pairs.
Alexiev studied, to some extent, the inter-encodability of the various extensions,
and exhibited an encoding of the replication-free m-calculus in the multiport
variant, as proof that concurrent computation becomes possible in such extension
of interaction nets.

In the ensuing years, other people independently defined or used similar non-
deterministic variants of interaction nets, always in connection with concurrency:
Ehrhard and Regnier’s differential interaction nets [5] are in fact a special case
of multirule interaction nets, in which Ehrhard and Laurent proposed an en-
coding of the m-calculus [4]; Beffara and Maurel’s concurrent nets [3] use the
multiwire extension, which is also mentioned by Yoshida in her work on concur-
rent combinators [22] and is implicit in the formulation of polarized proof nets
used by Honda and Laurent to provide a correspondence with the asynchronous
m-calculus [9]; and multiport interaction nets were shown by the second author
to be able to encode the full 7-calculus [17], improving Alexiev’s result.

This leaves us with a natural question: are all these concurrent extensions of
interaction nets equally expressive? Although, as mentioned above, encodings of

3 Actually, Alexiev considered four extensions, but the fourth one has never been used
in the literature.

the m-calculus were proposed for each one of these extensions, such encodings
are so different in nature and their correctness is proved using such ad hoc
arguments that, up to date, the relative expressiveness of each concurrent variant
of interaction nets with respect to the others is far from clear.

The situation is further complicated by the absence, in concurrent interaction
nets, of a notion of behavioral equivalence, an essential tool for comparing con-
current calculi. This is the ultimate reason why correctness proofs must resort
to somewhat contrived arguments: in [4], correctness crucially depends on the
definition of a labelled transition system on differential interaction nets which
is quite ad hoc (if not highly questionable, see [18]); in [17], an operational
correspondence between w-calculus reduction and interaction nets reduction is
achieved through a notion of readback in interaction nets, which heavily depends
on the encoding. Finally, although the authors of [9] do not need to address the
problem because their operational correspondence is exact (i.e., it is close to an
“operational isomorphism”), the 7-calculus they consider is asynchronous, while
the other two encodings consider the synchronous one, and after Palamidessi’s
work [19] we know that the difference is not anodyne.

A comparison between the various non-deterministic extensions of interaction
nets is attempted in the already mentioned work of Alexiev [1]. His conclusion
is that the multiwire and multiport extensions are equivalent, whereas multir-
ules are strictly less expressive. However, we feel that Alexiev’s approach is not
technically satisfactory: for the positive results, the question of defining a be-
havioral equivalence on interaction nets is not addressed and the correctness of
the encodings is left unproven;* and the negative result is based on a severely
constrained definition of translation (the nature principal/auxiliary of free ports
must be preserved), which makes it less convincing than what one would hope.
Finally, Alexiev never considers divergence, which is, as we will see, a key notion
to capture the difference between multiwire and multiport nets.

In light of the above discussion, our starting point will be to propose a notion
of behavioral equivalence for concurrent interaction nets, which is based in turn
on giving a definition of “barb” in interaction nets. Our solution is to adopt a
sort of “may testing” approach: we write pl, if there exists a net o such that
fp(o) N fp(p) = {x} and such that u | o generates an “observable” computation.
Since reduction rules in interaction net systems may be virtually anything, it is
hopeless to define once and for all which computations are observable, regard-
less of the specific system. So we stipulate that observability comes with the
definition of interaction net system itself: there is a non-empty set of “observ-
able” interaction rules and an observable computation is a reduction sequence
containing an observable reduction step (furthermore, we must require that, in
i | o, such a sequence truly comes from the interaction of p and o and is not
already present in p or o alone). In other words, our barbs are parametric in a
choice of observable reduction rules.

% At p. 64 of [1], Alexiev states “[W]e don’t prove formally the faithfulness of our
translations, but we introduce them gradually and give comprehensive examples, so
we hope that we have made their faithfulness believable”.

Once barbs are given, barbed bisimulation and barbed congruence are defined
in the standard way. Then, we proceed to introduce the notion of translation
which will be the subject of our separation results. This is based on an almost
straightforward reformulation, in interaction nets, of fairly standard properties
which are asked of encodings between process algebras. We take as main reference
Gorla’s work [8], whose thorough analysis of the literature on encoding and
separation results approaches exhaustiveness. Among other papers which are a
guideline to our work we mention [20, 19].

In synthesis, the most important properties of our translations are the preser-
vation of the degree of distribution, operational correspondence (completeness
and correctness with respect to reductions, up to barbed congruence) and a
bisimulation condition which excludes trivial encodings (such as those mapping
every source net to the empty net).

Finally, our separation results technically take the the following form:

— there is a system of multiwire (or multiport) interaction net which cannot be

translated into any interaction net system using only multirules (Theorem 1);

— there is a system of multiport interaction nets which cannot be translated
into any interaction net system using only multirules and multiwires, without

introducing divergence (Theorem 2).

The key to the first result is formalizing the fact that the multirule extension
only provides interaction nets with “internal” non-determinism. For this, we
introduce must observability pl},, which is defined by the fact that, for all x’
such that p —* p’, we have p’ —* u”],. In other words, whatever happens
inside p, the port x will always be observable. Then, we verify that, in multirule
systems, must observability may not be altered by interaction with contexts: if
pll, and v does not contain z, then (u | v){},. This is false in multiwire and
multiport systems, and gives easily a separation argument.

The second result owes virtually everything to Palamidessi’s idea for separat-
ing asynchrony from synchrony in the w-calculus [19]. Indeed, the proof is more
or less a reformulation, in multiport interaction nets, of a simple leader election
problem in a symmetric network, which we show to be translatable in multiwire
systems only introducing divergence, because multiwires (and multirules) alone
are not able to synchronously “break the symmetry”.

Acknowledgments. This work was partially supported by ANR projects PANDA
(09-BLAN-0169-02) and LoGo1 (10-BLAN-0213-02). The second author wishes
to dedicate this paper to the memory of Jamey Avon.

2 Concurrent Interaction Nets

Throughout the paper, we fix a denumerably infinite set of ports, ranged over by
lowercase Latin letters. We write Z to denote a finite sequence of ports x1, ..., x,
such that every port appears at most twice in the sequence; n is said to be the
length of . If ports appear at most once, we say that T is repetition-free.

Definition 1 (Net). An alphabet is a pair X = (|X|, deg), where |X| is a set
and deg : |X| — N is the degree function.

A cell, or agent, on the alphabet X is an expression of the form «(Z), where
a € |X| and T is of length deg(a).

A k-connector is a multiset of cardinality k € N of ports, containing at most
two occurrences of every port, denoted by [Z]. A 2-connector is called a wire; a
k-connector with k =1 or k > 3 is called a multiwire.

A net on an alphabet X is a finite multiset of connectors and agents on X in
which every port appears at most twice. A net is simply-wired if it contains no
multiwire.

The set of free ports of a net i, denoted by fp(u), is the set of ports appearing
exactly once in p. The ports appearing twice in a net are called bound. We
identify any two nets which may be obtained one from the other by an injective
renaming of their bound ports (this is a-equivalence).

We denote by pu{y/x} the net p in which the only free occurrence of x is
replaced by y. The notation is extended to sequences (i.e., p{y/E}) with the
obvious meaning.

Definition 2 (Juxtaposition). Given two nets u,v, we denote by i | v the net
obtained by renaming (using a-equivalence) the bound ports of u and v so that
the two nets have no bound name in common, and by taking then the standard
multiset union.

Note that, unlike usual process calculi, the symbol | is not part of the syntax,
it is an operation defined on nets. It is obviously commutative and has the empty
net, denoted by 0, as neutral element. It is not associative in general; however,
for p| (v | p) and (p | v) | p to be equal, it is enough that fp(u) Nip(v) Nip(p) =
(). More in general, if uq,..., u, are such that, for all pairwise distinct 4, j, k,
fp(pi) Nip(p;) N Ip(p) = 0, then the expression piq | -« - | 1y, is not ambiguous.
Such a notation will always be used under this assumption in the sequel.

In the rest of the paper, by congruence on nets we mean an equivalence
relation ~ such that p ~ v implies that for every net p, p | u~ p | v.

Definition 3 (Structural congruence). Structural congruence, denoted by
=, is the smallest congruence on nets satisfying the following:

0-connector: el = w
Fusion: [Z,a] | [a,9] = [Z,7]
Wire: wlla,z] = pl{z/a} if a € fp(u)

In the wire rule, we may further suppose that a appears in a cell (and not a
connector) of u, otherwise the rule is already subsumed by fusion.

It is sometimes useful to consider the “pure” structure of a net, abstracting
from the specific names of its free ports. This is the reason behind the following
notion.

Definition 4 (Mask). We fix two infinite sequences of reserved ports (p;)ien
and (q;)ien. Any net on the alphabet X whose free ports are all reserved is called

a mask. We suppose that no net other than a mask has reserved free ports. By
p and ¢ we will mean the sequences pi,...,pm and qi, ..., qn, Tesp., with m and
n depending on the context.

Quite obviously, every net p whose free ports are in the repetition-free se-
quence T may be seen as the “instantiation” of a mask g, which is nothing but
p with its free ports suitably renamed: p = po{Z/p}. The reason why we need a
second sequence of reserved ports (¢;)ien will be clarified shortly.

—_—

In what follows, we denote by M (X') the set of finite repetition-free sequences
of masks on X. We denote by ||£]| the length of such a sequence &.

Definition 5 (Interaction scheme). An interaction scheme on an alphabet

—_~—

Y is a function > : | X| x N x | Y| x N = M(X) such that:
1. 4f ||>=(ay 4, 8,7)]| >0, then 1 <i<m=dega and 1 < j <n =degf, and
o = [implies i # j;
k
2. in that case, the k-th mask in the sequence (a4, 3, j) is denoted by oy > 3;
and, for all k, its free ports are exactly pi,...,Di—1, Dit1,Pm, Q1,---,qj—1,

qj+1s5---59n;
3. furthermore, for all (a4, B,7), || >(B, j, ., 4)|| = ||><(ax, 4, B, 7)|| and, for all

1< k< [loa(ani, 8,9)]], B 54 ai = a5 840/, B/d)-

An interaction scheme defines rules to reduce active pairs. There may be
several interaction rules for the same active pair, this is why >(a, i, 3, j) is a list
of nets, not just a net. Condition 2 says that the ports not partipating in the in-
teraction are preserved by the rules. Condition 3 states that rules are symmetric
when we swap symbols. Note that condition 1 stipulates that interaction rules
are defined only between cells carrying different symbols or between different
principal ports. This condition, which is present in the original definition of [10],
was later relaxed by Lafont himself [12]. However, in this paper we adopt the

more restrictive version, on the grounds that it is verified by all systems relevant
to our work [5,3,9,17].

Definition 6 (Interaction net system). An interaction net system (INS)
is a triple S = (Xs,s,0s) where Xs is an alphabet, s is an interaction
scheme on Xs and Os C |Xs| x N x |Xs| x N x N is non-empty and such that
(o, i, 8,4, k) € Os implies that |<(c,1,8,7)|| =1 >0 and 1 < k <, and that
(8,7, a1, k) € Os. Subscripts are omitled when clear from the context.

The set Og specifies the observable rules of S: («, 1, 8, j, k) € Os means that
the k-th rule for the interaction between port ¢ of an « cell and port j of a
cell is observable. The meaning of observable rules will be explained in Sect. 3.

Definition 7 (Reduction). The reduction relation —¢ of an INS S is defined
as follows:

o 2 B; defined

. INTERACTION
() | B(@) | [xi,y5,2] —s ai=Bi{T/p,5/q} | [2]

— / — ’ ’ ;) —
S ‘S#, CONTEXT =R B sV VEV
plv—gsp v =gV

STRUCT

We denote by —% the reflexive-transitive closure of —g. A net structurally con-
gruent to the net on the left side of the INTERACTION rule is called an (o, B;)-
active pair. Clearly, p —g v only if some (o, B;)-active pair is reduced, using

the k-th rule for (ayi, B, 7). When we need to specify it, we write p a—ik V.

In an INS S, given a € |Xs|, we say that the i-th port of « is principal if
| >as(e, i, 8,7)|] > 0 or || ><s(B, j,a,3)|| > 0 for some B € |Xs|. Otherwise, it is
called auxiliary.

To improve readability, it is convenient to assume principal ports to be
always the “leftmost” in the list of ports of a cell, and to use the notation
oz, .., Tm; Y1, - .-, Yn) for a cell whose symbol « is of degree m + n and has
m principal ports. If all ports are principal, the semicolon is omitted.

In practice, when defining an interaction net system it is convenient to specify
the interaction scheme directly by giving rewriting rules of the form

a(@) | @) = vi+-+uy

where Z, § are repetition-free, z; = y; = z for some ¢, j, and fp(v) = {Z, g} \ {z}.
k
It is then intended that «; > f; is defined and equal to v {p/Z,G/y} (and this

automatically defines also §; l>k<1 ;).
We conclude the section by introducing some terminology. An INS is:
— multiport if it has a symbol with more than one principal port; otherwise, it
is uniport;
— simply-wired if all reduction rules introduce simply-wired nets (in that case,
one usually restricts to simply-wired nets);

3 Barbs and Translations

In the following, we fix an arbitrary INS.

Definition 8 (Residue, interreduction). Given an active pair ¢ of a net p
and a reduction u — ' reducing an active pair 1, we have two possibilities:
either ¢ and v share a cell (the extreme case being ¢ = 1), or they are disjoint.
In the first case, ¢ has no residue in p'; in the second case, the cells of ¢ are left
untouched by the reduction, and p’' contains an active pair ¢’ which is “the same”
as ¢. This is its residue in yu'. The notion of residue is extended to reductions
of arbitrary length in the obvious way.

Let i be a net, and let F be a set of active pairs of u. We say that a reduction
w—* ' is F-legal if it reduces no active pair of F' nor any of their residues.

Let p,v be two nets, and let F, G be the set of all of their respective active
pairs. An interreduction of u | v is a reduction which is FUG-legal (juxtaposition
may create active pairs not in F'U G; this is why the definition is sensible).

Definition 9 (Barbed bisimilarity). Let S be an INS. We say that a reduc-

tion step p ai—ﬂ]}k v is observable if (a, 4, 3,7, k) € Os.

We write ul, if there exists a net o such that fp(u) Nfp(o) = {z} and an
interreduction of | o containing an observable step. We write pud, if p —* p'{s
and we say that o is an observer of x in L.

Let 8, T be two INSs. A (weak) barbed (S, T)-bisimulation is a binary rela-
tion BC S x T on nets s.t. B(u,v) implies

— for every port x, ul, implies v, and vl, implies pl,;

— . —g p' implies that there exists V' s.t. v =% v and B(p/',v');

— v = vV implies that there exists p' s.t. p —% p' and B(p',v').
If there exists a barbed (S, T)-bisimulation B such that B(u,v), we say that
and v are barbed bisimilar and write u s/~ v (we drop the subscripts when the
contezt is clear).

Barbed congruence for S, denoted by ~%, is the greatest congruence contained

m sés-

The above definition of barb may be applied to standard name-passing cal-
culi: there is only one reduction rule (i/o synchronization), which must be ob-
servable (by the definition, the set of observable rules is non-empty), and we
thus obtain the usual barbs. The concept of interreduction is necessary to guar-
antee that the observable reduction step does not come from active pairs already
present in p or, worse, in the observer o.

In the following definition, by “net” we mean “net or mask”.

Definition 10 (Translation). Let S, 7 be INSs. A translation from S to T is
a map [-] from nets of S to nets of T s.t., for all nets p,u’ of S:
Homomorphism: [0] =0 and [u | '] =[] | [¢'];
Port invariance: for every mask po of S, fp(Juo]) = fp(wo), and if p =

woi{Z/p} (cf. observation after Definition 4), we have [u] = [po]{Z/D};
Operational correspondence: — p —g p' implies [pu] —%~5 [1'];

— [u] =% v implies 3 a net ' of S s.t. p =% p' and v =5~ [p'];

Bisimulation: u s~ [u].
A translation does not introduce divergence if, whenever [u] diverges, u diverges.

All three properties defining translations are more or less standard [8, 20].
The homomorphism condition guarantees that the degree of distribution is pre-
served by translations and is common in separation results [19]. Port invariance
simply states that the interface of a net is preserved by a translation, and that
the translation itself does not depend on the actual names of ports. Operational
correspondence is a natural property to ask of an encoding, although we will
not use it. On the contrary, the bisimulation condition will be essential. It corre-
sponds to what Gorla [8] calls “success sensitiveness”, in that it excludes trivial
translations which would otherwise be validated by the other three conditions
(such as an encoding mapping every net with free ports x1,...,x, to the net
[1], ..., [®s]). Furthermore, bisimulation (with the homomorphism property)

implies the adequacy and relative completeness of translations with respect to
barbed congruence (of the respective systems):

adequacy: [u] ~5 [p'] implies p ~g p';
relative completeness: p ~$ ' implies V net p of S, [p] | [u] 727 [p] | [¢/]-
This is a consequence of the (easy to verify) fact that, for any three INSs S, T, U,

i s~=7 v and v 729 p implies i s~y p.

4 Multirules Alone Do Not Give Concurrency

In the following, we fix an arbitrary INS S.

Definition 11 (Must observability). A port x is said to be must-observable
in the net p if, for all p' s.t. i —=* p’, we have '\, In that case, we write pll, .

Observe that, by definition, must observability is preserved by reduction.

Lemma 1. Let x be a port and let p = ' | a(y; 2) be a net of S, with x different
from y and all of the ports in Z, and y & fp(n'). Then, pdlb, iff 4/,

Proof. The cell a(y; Z) may react only on y, but y is free in p, so the cell does
not participate in any reduction of u. a

For technical reasons, we introduce the following restricted notion of barbed
bisimulation:

Definition 12 (z-bisimulation). Let © be a port. An x-bisimulation is a bi-
nary relation B on nets of S such that, whenever B(u,v), . implies v, and
vl implies pll,, plus the usual reduction properties required by barbed bisimu-
lations (last two points of Definition 9).

In other words, an z-bisimulation is a usual barbed bisimulation in which we
content ourselves with simulating barbs on x only.

Lemma 2. Let B be an xz-bisimulation, and let B(u,v). Then, pll, iff v}, .
Proof. Immediate. ad

Lemma 3. Suppose that S is uniport and simply-wired, and let p be a simply-
wired net of S such that pll,. Then, for every simply-wired net v such that

& fp(v), (u|v)l,.

Proof. By definition, Os # 0, so let (a,1,a/,1,k) € Os. Let § be a repetition-
free sequence not containing z, of length equal to the number of auxiliary ports
of a, and consider the relation

B={(u| v.ala;) : p,v simply-wired, ull,, = & fp(v)}.

We claim that B is an z-bisimulation. Let (x| v, a(x;9)) € B. First of all, ul},
implies pll, which implies (u | v){,, and by hypothesis a(z;§)!., so the first

two properties are met. Since a(x;g) does not reduce, it is enough to show how
a(z;y) simulates a reduction p | ¥ — p. Such a reduction necessarily comes
from an active pair ¢. If ¢ is entirely contained in p or v, the definition of B
allows us to conclude immediately. So we suppose that ¢ is an active pair created
by the juxtaposition of y and v, i.e., we may assume that

p= | B(z),
v=-(z3) |V,

with z free both in p and v, because both nets are simply-wired. Then, if p’ is

either 3y ! v {t/p,i/q} or v > B1{i/p,t/G} (for some irrelevant k), we have

p=u"|p | V. But by Lemma 1, /Il , so (p, a(x;7)) € B by definition of B.
Now, obviously a(z;7){l, (as already observed, we have a(z;7)l, and the

net does not reduce), so we may conclude by Lemma 2. ad

Lemma 3 is false in presence of multiwires or multiports. For instance, con-
sider an INS in which there are two symbols «, 3, of degree 1 and 2, respectively,
with the following interaction rule (which is observable, since it is the only one):

o) | Blzsy) = aly).

If we set p = a(z) | [z,y,2], we obviously have pl}, and pll,. However, for
example, although still observable, z is no longer must-observable in p | 8(y; s),
because u | B(y;s) — «(s) | [z], in which there is no way to observe z. Similar
examples may be built with multiports.

Theorem 1. There exists an INS S which cannot be translated into any simply-
wired, uniport INS T using only simply-wired nets.

Proof. Take as S the system defined above, in which we allow nets containing
multiwires, and suppose there exists a translation [-] into a simply-wired, uniport
INS 7 whose image consists of simply-wired nets only. Let p = a(z) | [z,y, 2].

Since p & [u], we must have [u]{l_. Consider now the net p = p | 8(y;s). By
the homomorphism property, [p] = [¢] | [8(y; s)]. By port preservation, = ¢
fp([B(y; s)]), so we may apply Lemma 3 (all nets in the image of the translation
are simply wired) and infer that [p]{},. But we saw above that we do not have

plll,, contradicting the fact that p =~ [p]. o

As already mentioned, although the system S used in the proof is uniport
and uses multiwires, there is no difficulty in finding a simply-wired but multiport
system &’ for which Theorem 1 holds (with basically the same proof).

5 Comparing Multiwire and Multiport Concurrency

Definition 13 (Symmetric net). A net u is strictly symmetric if there exists
a net v whose free ports contain (but do not necessarily coincide with) §,t,a such

that
w=uv{a/s a /t,z/a} |vid' /5, a/t, @' /a}.

In that case, the free ports of p are &, &', and the pairs of ports x;,), are said to
be exchanged by the symmetry. We say that p is symmetric if p = po with pg
strictly symmetric.

Symmetric nets enjoy the following three fundamental properties: they are
preserved by translations (if they are strict), their barbs always “come in pairs”
and, if we are in a uniport system, there is no way of irreversibly breaking the
symmetry in just one reduction step.

Lemma 4. If i is a strictly symmetric net and [-] is a translation, [u] is strictly
symmetric too.

Proof. An immediate consequence of the homomorphism and port invariance
properties of translations. a

Lemma 5. Let u be a symmetric net and let x,x’ € fp(u) be exchanged by the
symmetry. Then:

= o ff pdars

= plo iff plha.
Proof. 1f §,y’ are the free ports of p, with y;, 3y, exchanged by the symmetry,
then p = u{9’'/4,35/9'}. The result then follows immediately. O

Lemma 6. Let p be a symmetric net in a uniport INS and let u — v. Then,
there exists a symmetric net V' s.t. v — V.

Proof. Let = p| p/, with p, p’ instances of the same net py as in Definition 13.
If the active pair ¢ reduced to obtain v is entirely in one of the two symmetric
components of y, it has a counterpart ¢’ in the other component, which obviously
has a residue in v (c¢f. Definition 8), by reducing which, in the same way as ¢,
we obtain a symmetric net v’. Otherwise, the active pair ¢ is created by the
juxtaposition of the two copies of pg, so we have p = p; | a(a;b), p' = B(a; V') | p}
and ¢ is composed by the o and S cells. But « # 8 (condition 1 of Definition 5)
so we must actually have pg = 7 | a(s;a) | B(t;0), i.e., there is a 8 cell in p; and
an « cell in p|. By symmetry, these form an active pair ¢’ in p which is of the
same nature as ¢. Again, ¢’ has a residue in v by reducing which (in the same
way as ¢) we obtain a symmetric net v/’ O

Lemma 6 is false in multiport systems. Consider the INS § defined as follows:
its alphabet consists of two symbols a, with two principal ports and one auxiliary
port, and v, with one principal and one auxiliary port; the reduction rules are

a(a’ S;(E) ‘ a(t,a;y) - U(:E;s) ‘ [t7y},

and any rule for «(a,t;x) | v(a;y), which is observable. The idea is that when
two « cells “meet”, one on its first and the other on its second principal port,
the one which interacts on the first principal port “wins”. Victory is represented
by the fact that its auxiliary port becomes the principal port of a v cell, which is
observable by virtue of the (otherwise irrelevant) observable rule for (a,1,v,1).

Let now
U= ala,b;z) | ab,a;y),

which is obviously strictly symmetric. We have U — v(z;y) = p, and U —
v(y; &) = py, both of p, and p, do not reduce further and neither of them is
symmetric. In fact, they are such that p1,], but .4, whereas py,l, but pyfs.

Theorem 2. There exists an INS S which cannot be translated into any uniport
INS without introducing divergence.

Proof. We take as S the multiport system just introduced above and we consider
the net we denoted by U. Let [-] be a translation of S into a uniport INS and let
vo = [U]. By Lemma 4, vy is symmetric and x,y are exchanged by its symmetry.
By the bisimulation property, we know that there exists a barbed bisimulation B
such that B(U,vp). Since U — p,, we must have vy —* v, such that B(uy, vs).
Since pgle but gy, by Lemma 5 we must have v, # vy, which means that at
least one reduction step is possible from vy. Then, we may apply Lemma 6 and
infer that vy —* v1 in at least one reduction step, with 1y symmetric. But this
implies that O —* py such that B(ui,v1). Now, pq can only be one of pg, fy
or U itself, but the symmetry of 1 and Lemma 5 rule out the first two cases,
hence B(U, v1).

The reader is invited to check that, in the above reasoning, we deduced
B(U, v1) starting from B(U, 1) using only the fact that vy is symmetric and that
its two free ports are z,y (and must therefore be exchanged by its symmetry).
These properties still hold for v, so we may apply the reasoning again and again,
obtaining a reduction sequence [U] = vy —* v1 —=* v5 —* ---, in which every
reduction v; —* v;41 is of length at least 1, so [U] diverges. O

6 Discussion

Significance. A potentially controversial point of our definition of barb is its
parametricity, which makes barbed congruence somewhat arbitrary. A possible
answer is the following: there is always a default choice, which consists in deeming
every rule observable. Concretely, a default barb ul, is equivalent to the fact
that z is a free principal port in y, i.e., p = «(Z;9) | ¢/ with z = z; for some i
and a.

Default barbed congruence is analogous to usual barbed congruence in stan-
dard process calculi, including the solos calculus [14], of which interaction nets
are strongly reminiscent.® The possibility of using smaller sets of observable rules
should only be considered in encodings: if an INS S, with its default barbed con-
gruence, is to be encoded in an INS 7, it may be reasonable to consider instead
(X7,x7, O), where we exclude from O the “administrative” rules of 7, thus

® In fact, by considering two families of symbols ty,0, with the rules tn(x;9) |
on(z;2) = [y1,21] | -+ | [Yn,2n], one basically obtains the replication-free solos
calculus with explicit fusions [21], with names represented by multiwires.

weakening barbed congruence (in the extreme case O =), which is not allowed
by our definition, barbed congruence would equate everything).

It is also interesting to consider default barbed congruence in Lafont inter-
action nets systems, i.e., the strictly deterministic kind, for which definitions of
observational equivalences already exist [6]. In this setting, we are able to prove
that, if we ignore the notion of “constructor symbol” used by Ferniandez and
Mackie (which has no counterpart in our definitions), default barbed congru-
ence coincides with their observational equivalence. So, at least in the simple
deterministic case, our definitions fall back on something already known to be
meaningful.

As far as our notion of translation is concerned, it is based on properties
which are mostly agreed upon in the literature [8,20]. The only other existing
notion of translation for interaction nets is the one mentioned above, formulated
by Lafont for his deterministic systems [10]. It is possible to show that, if we
consider default barbed congruence, a Lafont’s translation induces a translation
in our sense. Conversely, thanks to determinism, our definition does not differ
from Lafont’s one in an essential way, although it is more permissive.

Turning to our separation results, as they are technically formulated, Theo-
rem 1 and Theorem 2 may be easily criticized: even if we agree on the reasonabil-
ity of our notion of translation, the sole existence of an untranslatable system
may not be enough to convincingly separate two extensions; it all depends on
the relevance of such a system.

We believe that the relevance of the untranslatable systems is given by
Lemma 3, for Theorem 1, and Lemma 6, for Theorem 2. In both cases, there
is one “limiting” property which always holds in one extension of interaction
nets but fails in the “more expressive” ones. In the first case, the limitation
is so severe that we are led to conclude that multirules alone cannot express
concurrency: indeed, Lemma 3 is false in any standard process calculus. On the
other hand, Lemma 6 shows the same limitation pointed out by Palamidessi
for the asynchronous m-calculus: in absence of multiports, interaction nets are
unable to make certain irreversible choices in just one step (i.e., synchronously).
Instead, such choices must always involve a reversible “pre-commitment” phase.
Only once such a phase is successfully concluded may the choice be irreversibly
committed. Theorem 2 shows this for an “electoral system” with only two nodes,
but the argument scales up to arbitrarily large “leader-election” nets, as in [19].

Concluding remarks. We observe that our first separation result casts doubts on
the value of the encoding of the 7-calculus in differential interaction nets (which
are a multirule INS) given in [4]. As already pinpointed by the second author
[18], that encoding supposes a labelled semantics of differential interaction nets
which is not “realistic” in terms of concurrency.

We are also left with an interesting open question concerning the relaxation
of condition 1 of Definition 5, allowing “self-interaction”, as considered by La-
font [12]. We know that Lemma 6 fails in presence of such a relaxation. In process
calculi, this would correspond to introducing “neutral” prefixes, neither input
nor output, which may synchronously interact with each other. Palamidessi’s

symmetry argument then does not apply straightforwardly and “neutral” syn-
chronization might be as expressive as input/output synchronization.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Alexiev, V.: Non-deterministic Interaction Nets. Ph.D. Thesis, University of Al-
berta (1999)

Asperti, A., Guerrini, S.: The Optimal Implementation of Functional Programming
Languages. Cambridge University Press (1998)

Beffara, E., Maurel, F.: Concurrent nets: A study of prefixing in process calculi.
Theoretical Computer Science 356(3), 356-373 (2006)

Ehrhard, T., Laurent, O.: Interpreting a Finitary Pi-Calculus in Differential Inter-
action Nets. Information and Computation 208(6), 606-633 (2010)

Ehrhard, T., Regnier, L.: Differential Interaction Nets. Theoretical Computer Sci-
ence 364(2), 166-195 (2006)

Fernandez, M., Mackie, I.: Operational Equivalence for Interaction Nets. Theoret-
ical Computer Science 297(1-3), 157-181 (2003)

Gonthier, G., Abadi, M., Lévy, J.J.: The geometry of optimal lambda reduction.
In: Sethi, R. (ed.) Proceedings of POPL. pp. 15-26. ACM Press (1992)

Gorla, D.: Towards a unified approach to encodability and separation results for
process calculi. Information and Computation 208(9), 1031-1053 (2010)

Honda, K., Laurent, O.: An exact correspondence between a typed pi-calculus and
polarised proof-nets. Theor. Comput. Sci 411(22-24), 2223-2238 (2010)

Lafont, Y.: Interaction nets. In: Allen, F.E. (ed.) Proceedings of POPL. pp. 95-108.
ACM Press (1990)

Lafont, Y.: From proof nets to interaction nets. In: Girard, J.Y., Lafont, Y., Reg-
nier, L. (eds.) Advances in Linear Logic, pp. 225-247. Cambridge University Press
(1995)

Lafont, Y.: Interaction Combinators. Information and Computation 137(1), 69-101
(1997)

Lamping, J.: An algorithm for optimal lambda calculus reduction. In: Allen, F.E.
(ed.) Proceedings of POPL. pp. 16-30. ACM Press (1990)

Laneve, C., Victor, B.: Solos In Concert. Mathematical Structures in Computer
Science 13(5), 657683 (2003)

Mackie, I.: An Interaction Net Implementation of Additive and Multiplicative
Structures. Journal of Logic and Computation 15(2), 219-237 (2005)

Mackie, I.: An interaction net implementation of closed reduction. In: Scholz, S.B.,
Chitil, O. (eds.) Proceedings of IFL. LNCS, vol. 5836, pp. 43-59. Springer (2008)
Mazza, D.: Multiport Interaction Nets and Concurrency. In: Abadi, M., de Alfaro,
L. (eds.) Proceedings of CONCUR 2005. pp. 21-35. LNCS, Springer (2005)
Mazza, D.: The True Concurrency of Differential Interaction Nets. Mathematical
Structures in Computer Science (2013), accepted for publication. To appear.
Palamidessi, C.: Comparing the expressive power of the synchronous and asyn-
chronous pi-calculi. Math. Structures Comput. Sci. 13(5), 685-719 (2003)
Parrow, J.: Expressiveness of Process Algebras. Electronic Notes in Theoretical
Computer Science 209, 173-186 (2008)

Wischik, L., Gardner, P.: Explicit fusions. Theoretical Computer Science 340(3),
606-630 (2005)

Yoshida, N.: Graph notation for concurrent combinators. In: Ito, T., Yonezawa, A.
(eds.) Proceedings of TPPP. LNCS, vol. 907, pp. 393-412. Springer (1994)

