
Algebra and Coalgebra
in the

Light Affine Lambda Calculus

Marco Gaboardi
Suny Buffalo

Romain Péchoux
Université de Lorraine

Computability
Complexity

Turing
Machines

Lambda
Calculus

Computability
Complexity

Turing
Machines

Lambda
Calculus

PTIME NPTIME

PSPACE

LOGSPACE

BPP

LALC

STAINTML

DLAL

RSLR

Computability
Complexity

Turing
Machines

Lambda
Calculus

PTIME NPTIME

PSPACE

LOGSPACE

BPP

LALC

STAINTML

DLAL

RSLR

Computability
Complexity

Implicit Complexity

Turing
Machines

Lambda
Calculus

PTIME NPTIME

PSPACE

LOGSPACE

BPP

LALC

STAINTML

DLAL

RSLRLALCPTIME

Computability
Complexity

(Light Affine Lambda Calculus)

LALC

PTIME

Where these languages could help?

Where these languages could help?

Resource
Analysis

Where these languages could help?

Resource
Analysis

Efficient arithmetic
implementation

Where these languages could help?

Computational
Indistinguishability

Resource
Analysis

Efficient arithmetic
implementation

Completeness every PTIME Turing
Machine can be expressed in LALC.

Soundness: every LALC program
can be run in polynomial time.

PTIME LALC

Completeness every PTIME Turing
Machine can be expressed in LALC.

Soundness: every LALC program
can be run in polynomial time.

Expressivity?

PTIME LALC

Our research question:
Can we express Algebra and Coalgebra in LALC ?

Our contribution

Our contribution
Weak notions of Algebras and Coalgebras
can be encoded in LALC.

1 -

Our contribution
Weak notions of Algebras and Coalgebras
can be encoded in LALC.

1 -

Data types:

✔ Inductive types
✗ Coinductive types

2 -

Our contribution

LALC restrictions can be relaxed to achieve
more expressivity for coinductive types.

Weak notions of Algebras and Coalgebras
can be encoded in LALC.

1 -

Data types:

✔ Inductive types
✗ Coinductive types

2 -

3 -

LALC ⊂ Linear (Affine) System F

Light Affine Lambda Calculus - LALC

LALC ⊂ Linear (Affine) System F

 !A §B

 A B

A → B =

⊸

Main Idea

⊸

Light Affine Lambda Calculus - LALC

LALC ⊂ Linear (Affine) System F

 !A §B

 A B

A → B =

⊸

Main Idea

⊸

Light Affine Lambda Calculus - LALC

A non iterative function

-
A function using its
argument only once

LALC ⊂ Linear (Affine) System F

 !A §B

 A B

A → B =

⊸

Main Idea

⊸

Light Affine Lambda Calculus - LALC

an iterative function
-

! needed for duplication
§ placeholder witnessing

duplication

Iterators in LALC

IT : ∀a.!(a a) §(a a)IT : ∀a.!(a a) §(a a)IT : ∀a.!(a a) §(a a)IT : ∀a.!(a a) §(a a)⊸ ⊸ ⊸

Iterators in LALC

IT A (step: A A)✔

IT : ∀a.!(a a) §(a a)IT : ∀a.!(a a) §(a a)IT : ∀a.!(a a) §(a a)IT : ∀a.!(a a) §(a a)⊸ ⊸ ⊸

⊸

Iterators in LALC

IT A (step: A A)✔

IT : ∀a.!(a a) §(a a)IT : ∀a.!(a a) §(a a)IT : ∀a.!(a a) §(a a)IT : ∀a.!(a a) §(a a)⊸ ⊸ ⊸

⊸

✗ IT A (step: !A §A)⊸

Algebras and Coalgebras

AFA fA FBB
g B

Algebra Coalgebra

μX.FXFμX.FX in

AFA fA

Fh h

Weak Initial Algebra
∀A, ∃ h

Algebras and Coalgebras

AFA fA FBB
g B

Algebra Coalgebra

μX.FXFμX.FX in

AFA fA

Fh h

Weak Initial Algebra
∀A, ∃h

FBB
g B

νX.FX
out

h Fh

Weak Final Coalgebra
∀B, ∃h

FνX.FX

Algebras and Coalgebras

AFA fA FBB
g B

Algebra Coalgebra

F(-) = 1+ (-)

F(-) = 1+ A × (-)

F(-) = 1+ A × (-) × (-)

Initial Algebra Final Coalgebra

N N ∪ {∞}

A* A∞

T*(A) T∞(A)

Examples

(co)algebras in System F

Theorem [Reynolds, Plotkin, Geuvers, …]:
Given F expressible in the polymorphic LC:
 :- there exists a weakly initial F-Algebra

- there exists a weakly final F-Coalgebra

(co)algebras in System F

Theorem [Reynolds, Plotkin, Geuvers, …]:
Given F expressible in the polymorphic LC:

- there exists a weakly initial F-Algebra

- there exists a weakly final F-Coalgebra

Wraith-Wadler encoding:

μa.Fa = ∀a.(Fa → a) → a

�a.Fa = ∃a.(a → Fa) * a

(co)algebras in System F

Theorem [Reynolds, Plotkin, Geuvers, …]:
Given F expressible in the polymorphic LC:

- there exists a weakly initial F-Algebra

- there exists a weakly final F-Coalgebra

Wraith-Wadler encoding:

μa.Fa = ∀a.(Fa → a) → a

�a.Fa = ∃a.(a → Fa) * a

F-algebra!

(co)algebras in System F

Theorem [Reynolds, Plotkin, Geuvers, …]:
Given F expressible in the polymorphic LC:

- there exists a weakly initial F-Algebra

- there exists a weakly final F-Coalgebra

Wraith-Wadler encoding:

μa.Fa = ∀a.(Fa → a) → a

�a.Fa = ∃a.(a → Fa) * a

F-algebra!

F-coalgebra!

Wraith-Wadler encoding
μa.FaF(μa.Fa) in

BFB f

F (fold f) fold f

in : F(μa.Fa) → μa.Fa
in = λs.λk.k (F (fold k) s)

fold : ∀b. (Fb → b) → μa.Fa → b

fold = λf.λt. t f

μa.Fa = ∀a.(Fa→a)→a

in : F(μa.Fa) → μa.Fa
in = λs.λk. k (F (fold k) s)

fold : ∀b. (Fb → b) → μa.Fa → b
fold = λf.λt. t f

μa.Fa =∀a. (Fa → a) → a

Wraith-Wadler encoding in LALC

in : F(μa.Fa) → μa.Fa
in = λs.λk. k (F (fold k) s)

fold : ∀b. (Fb → b) → μa.Fa → b
fold = λf.λt. t f

μa.Fa =∀a. (Fa → a) → a
k need to be
duplicated!

Wraith-Wadler encoding in LALC

in : F(μa.Fa) μa.Fa
in = λs.λk.§k (F (fold !k) s)

fold : ∀b.!(Fb b) μa.Fa §b
fold = λf.λt. t !f

μa.Fa =∀a.!(Fa a) §a

Let’s change the type!

Wraith-Wadler encoding in LALC

⊸

⊸ ⊸

⊸ ⊸ ⊸

μa.FaF(μa.Fa) in

§BF§B
???

F (fold !f) fold !f

in : F(μa.Fa) μa.Fa

fold : ∀b.!(Fb b) μa.Fa §b

⊸

Wraith-Wadler encoding in LALC

⊸ ⊸ ⊸

μa.FaF(μa.Fa) in

§BF§B
§f

F (fold !f) fold !f

in : F(μa.Fa) μa.Fa
LF : ∀b. F§b §Fb
fold : ∀b.!(Fb b) μa.Fa §b

§FB
LF

Weakly-Initial algebra under §

⊸
⊸

⊸ ⊸ ⊸

μa.FaF(μa.Fa) in

§BF§B
§f

F (fold !f) fold !f

in : F(μa.Fa) μa.Fa
LF : ∀b. F§b §Fb
fold : ∀b.!(Fb b) μa.Fa §b

§FB
LF

Weakly-Initial algebra under §

Left distributivity

⊸
⊸

⊸ ⊸ ⊸

out : �a.Fa F(�a.Fa)

RF : ∀b. §Fb F§b

unfold:∀b.!(b Fb) §b �a.Fa

F(�a.Fa)�a.Fa out

F§B§B
§f

unfold !f F(unfold !f)

§FB
RF

�a.Fa = ∃a.!(a Fa)⨂§a

Weakly-Final coalgebra under §

⊸
⊸
⊸ ⊸ ⊸

⊸

out : �a.Fa F(�a.Fa)

RF : ∀b. §Fb F§b

unfold:∀b.!(b Fb) §b �a.Fa

F(�a.Fa)�a.Fa out

F§B§B
§f

unfold !f F(unfold !f)

§FB
RF

�a.Fa = ∃a.!(a Fa)⨂§a

Weakly-Final coalgebra under §

Right distributivity

⊸
⊸
⊸ ⊸ ⊸

⊸

Expressivity?

F(-) = 1 ⊕ -

F(-) = 1 ⊕ A ⨂ -

F(-) = 1 ⊕ A

•Which Functor satisfies L F:∀b. F§b §Fb ?⊸

⨂ - ⨂ -

Expressivity?

F(-) = 1 ⊕ -

F(-) = 1 ⊕ A ⨂ -

F(-) = 1 ⊕ A

•Which Functor satisfies L F:∀b. F§b §Fb ?⊸

⨂ - ⨂ -

provided ⊢A §A⊸

✔

✔

✔

Expressivity?

F(-) = 1 ⊕ -

F(-) = 1 ⊕ A ⨂ -

F(-) = 1 ⊕ A

•Which Functor satisfies R F ⊸

⨂ - ⨂ -

: ∀b. §Fb F§b

Expressivity?

F(-) = 1 ⊕ -

F(-) = 1 ⊕ A ⨂ -

F(-) = 1 ⊕ A

•Which Functor satisfies R F ⊸

⨂ - ⨂ -

: ∀b. §Fb F§b

✗

✗

✗

Where is the problem?

The modality § does not commute
with the other type constructions!

Where is the problem?

The modality § does not commute
with the other type constructions!

Solution: make § to commute

We can add to LALC the following terms:

dist⊕ : §(A ⊕ B) §A ⊕ §B

dist⨂ : §(A ⨂ B) §A ⨂ §B

⊸ dist⊕ §(inj t) → inj §t

dist⨂ §(<t1,t2>) → <§t 1,§t2>

Adding terms for distributivity

⊸

We can add to LALC the following terms:

dist⊕ : §(A ⊕ B) §A ⊕ §B

dist⨂ : §(A ⨂ B) §A ⨂ §B

⊸ dist⊕ §(inj t) → inj §t

dist⨂ §(<t1,t2>) → <§t 1,§t2>

Adding terms for distributivity

⊸

They require the evaluation of terms inside a §

Problem: this breaks polynomial time soundness.

We can add to LALC the following terms:

dist⊕ : §(A ⊕ B) §A ⊕ §B

dist⨂ : §(A ⨂ B) §A ⨂ §B

⊸ dist⊕ §(inj t) → inj §t

dist⨂ §(<t1,t2>) → <§t 1,§t2>

Adding terms for distributivity

⊸

They require the evaluation of terms inside a §

Problem: this breaks polynomial time soundness.

New (quite technical) proof in the paper!

Expressivity?

F(-) = 1 ⊕ -

F(-) = 1 ⊕ A ⨂ -

F(-) = 1 ⊕ A

•Which Functor satisfies R F ⊸

⨂ - ⨂ -

: ∀b. §Fb F§b

Expressivity?

F(-) = 1 ⊕ -

F(-) = 1 ⊕ A ⨂ -

F(-) = 1 ⊕ A

•Which Functor satisfies R F ⊸

⨂ - ⨂ -

: ∀b. §Fb F§b

provided ⊢§A A⊸

✔

✔

✔

Expressivity?

F(-) = 1 ⊕ -

F(-) = 1 ⊕ A ⨂ -

F(-) = 1 ⊕ A

•Which Functor satisfies R F ⊸

⨂ - ⨂ -

: ∀b. §Fb F§b

provided ⊢§A A⊸

✔

✔

✔

We can encode streams and trees at every finite type

Take out?

•Algebras and Coalgebras encodings make sense
also for polynomial time languages,

•Due to the restrictive nature of languages for
implicit complexity their definitions can be a bit
more tricky,

•The expressivity may still depend on the
restrictions of the language.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

