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Completeness every PTIME Turing 
Machine can be expressed in LALC. 

Soundness: every LALC program 
can be run in polynomial time.
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Our research question:
Can we express Algebra and Coalgebra in LALC ?
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Our contribution

LALC restrictions can be relaxed to achieve 
more expressivity for coinductive types.

Weak notions of Algebras and Coalgebras 
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an iterative function
-

! needed for duplication
§ placeholder witnessing 

duplication 
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Weak Final Coalgebra
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F(-) = 1+ (-)

F(-) = 1+ A × (-)

F(-) = 1+ A × (-) × (-)

Initial Algebra Final Coalgebra

N  N ∪ {∞}  

A* A∞

T*(A) T∞(A)

Examples
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in :  F(μa.Fa)     μa.Fa
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The modality § does not commute 
with the other type constructions!

Solution: make § to commute
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They require the evaluation of terms inside a §

Problem: this breaks polynomial time soundness.

New (quite technical) proof in the paper!
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We can encode streams and trees at every finite type 



Take out?

•Algebras and Coalgebras encodings make sense 
also for polynomial time languages,

•Due to the restrictive nature of languages for 
implicit complexity their definitions can be a bit 
more tricky,

•The expressivity may still depend on the 
restrictions of the language.
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