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Abstract

In this paper we first show that the permutation-path coloring problem is NP-hard
even for very restrictive instances like involutions, which are permutations that contain
only cycles of length at most two, on both binary trees and on trees having only two
vertices with degree greater than two, and for circular permutations, which are permu-
tations that contain exactly one cycle, on trees with maximum degree greater or equal
to 4. We calculate a lower bound on the average complexity of the permutation-path
coloring problem on arbitrary networks. Then we give combinatorial and asymptotic
results for the permutation-path coloring problem on linear networks in order to show
that the average number of colors needed to color any permutation on a linear network
on n vertices is n/4 + o(n). We extend these results and obtain an upper bound on
the average complexity of the permutation-path coloring problem on arbitrary trees,
obtaining exact results in the case of generalized star trees. Finally we explain how to
extend these results for the involutions-path coloring problem on arbitrary trees.

Keywords: Average-Case Complexity, Routing Permutation, Path Coloring, Tree Net-
works, NP-completeness.

1 Introduction

Efficient communication is a prerequisite to exploit the performance of large parallel sys-
tems. The routing problem on communication networks consists in the efficient allocation
of resources to connection requests. In this network, establishing a connection between two
nodes requires selecting a path connecting the two nodes and allocating sufficient resources
on all links along the paths associated to the collection of requests. In the case of all-optical



networks, data is transmitted on lightwaves through optical fiber, and several signals can
be transmitted through a fiber link simultaneously provided that different wavelengths are
used in order to prevent interference (wavelength-division multiplexing) [5]. As the number
of wavelengths is a limited resource, it is desirable to establish a given set of connection
requests with a minimum number of wavelengths.

The routing problem for all-optical networks can be viewed as a path coloring problem: it
consists in finding a desirable collection of paths on the network associated with the collec-
tion of connection requests in order to minimize the number of colors needed to color these
paths in such a way that any two different paths sharing a link of the network are assigned
different colors. For simple networks, such as trees, the routing problem is simpler, as there
is a unique path for each communication request.

This paper deals with the problem of routing a set of communication requests represent-
ing a permutation of the nodes of an all-optical tree network using the wavelength division
multiplezing (or WDM) technology. Clearly, such a routing problem can be modeled as a
permutation-path coloring problem on trees. An instance of the permutation-path coloring
problem on trees is given by a directed symmetric tree graph T on n nodes and a permutation
o of the vertex set of T'. Moreover, we associate with each pair (¢,0(¢)),7 # o(i), 1 <7 < n,
the unique directed path on 7" from vertex i to vertex o(¢). Thus, the permutation-path
coloring problem for this instance consists in assigning the minimum number of colors to
such a permutation-set of paths in such a way that any two paths sharing an arc of the
tree are assigned different colors. In fact, the colors in the latter problem represent the
wavelengths in the former one.

Related work. Using a result of Leighton and Rao [21], Aumann and Rabani [1] show that
O(logzn) colors suffice for routing any permutation on any bounded degree network on n
nodes, where 3 is the arc expansion of the network. The result of Aumman and Rabani al-
most matches the existential lower bound of Q(ﬁl—Q) obtained by Raghavan and Upfal [25]. In

the case of specific network topologies, Gu and Tamaki [17] prove that 2 colors are sufficient
to route any permutation on any symmetric directed hypercube. Independently, Paterson
et al. [24] and Wilfong and Winkler [28] show that the routing permutation problem on
ring networks is NP-hard. Moreover, in [28] a 2-approximation algorithm is given for this
problem on ring networks. Independently, Kumar et al. [19] and Erlebach and Jansen [§]
show that computing a minimal coloring of any collection of paths on binary trees is NP-
hard. Caragiannis et al. [4] consider the symmetric-path coloring problem on trees (i.e., for
each path from vertex u to vertex v, there also exists its symmetric, a path from vertex v
to vertex u) showing that this special instance is also NP-hard for unbounded degree trees,
and leaving as an open problem the complexity of such a symmetric instances on binary
trees. To our knowledge, the routing permutation problem on arbitrary tree networks by
arc-disjoint paths has not been studied in the literature.



Our results. In Section 3 we show that the symmetric-path coloring problem on binary
trees is NP-hard, answering an open question in [4]. Moreover, we extend such a result in
order to show that the permutation-path coloring problem remains NP-hard even for very
restrictive instances like involutions, which are permutations that contain only cycles of
length at most two, both on binary trees and on trees having only two vertices with degree
greater than two, and for circular permutations, which are permutations that contain exactly
one cycle, on trees with maximum degree greater or equal to 4. In Section 4 we compute a
lower bound for the average number of colors needed to color any permutation-path set on
arbitrary networks. In Section 5 we focus on linear networks. In this particular case, since
the problem reduces to coloring an interval graph [16], the routing of any permutation is
easily done in polynomial time [18]. We show that the average number of colors needed to
color any permutation-path set on a linear network on n vertices is n/4 4+ o(n). In Section
6, we extend the results obtained in Section 5, by giving an upper bound on the average
number of colors needed to color any permutation-path set on arbitrary trees, obtaining
exact results in the case of generalized star tree networks. As far as we know, this is the
first result on the average-case complexity for routing permutations on all-optical networks.
Finally we show how to extend these results to the involution problem partly studied in [20].

2 Definitions and preliminary results

We model the tree network as a rooted labeled symmetric directed tree T = (V, A) on n
vertices, where processors and switches are vertices and links are modeled by two arcs in
opposite directions. Let P be a collection of directed paths on 7. We assume that the
vertices of T are arbitrarily labeled by different integers in {1,2,...,n} and that vertex
labeled with the integer n is the root vertex of T. We denote by ¢ ~» j the unique directed
path from vertex i to vertex j in 7. The arc from vertex ¢ to its father (resp. from the father
of i tod),1 <i<n—1,is labeled by it (resp. 7). We call T'(¢) the subtree of T rooted at
vertex ¢, 1 <7 < n. See Figure 1(a) for the linear network on n = 6 vertices rooted at ver-
tex 7 = 6. Note that we will just draw an edge 7 rather than the arcs T and ¢~ in the sequel.

For any ¢, 1 < ¢ < n — 1, the load of an arc i* (resp. i~) of T, denoted by Lp(P,it)
(resp. Lp(P,i7)), is the number of paths in P using such an arc, and the mazimum load
among all arcs of T is denoted by Ly (P), i.e., Ly(P) = max;(max(Ly (P, i), Lr(P,i7))).
We call the coloring number and we denote by Ry (P), the minimum number of colors needed
to color the paths in P such that any two paths sharing an arc in T are assigned different
colors. Trivially, we have that R7(P) > Lr(P). Let S, denote the symmetric group of all
permutations on [n] = {1,2,...,n}. Let o be a permutation in S,,. Then o is called an
involution (resp. a circular permutation) if it contains only cycles of length at most two
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Figure 1: (a) Labeling of the vertices and the arcs for the linear network on n = 6 vertices
rooted at vertex ¢ = 6. (b) Representation of the permutation ¢ = (3,1,6,5,2,4) on the
linear network given in (a).

(resp. contains exactly one cycle of length n). Let I3, be the set of involutions with no fixed
point on [2n]. We say that P is a permutation-path set on T if P represents a permutation
o € S, of the vertex-set of T, where o(i) = j, ¢ # j, if and only if ¢ ~ 7 € P. In the
sequel we talk indifferently of a permutation-path set P or of the permutation o € §,, that
P represents. Thus, given a permutation o € §,, and a tree T on n vertices, the load of the
arc it (resp. i7), 1 <i < n— 1, can be expressed by Ly(o,it) = |{j € T(i) : o(j) € T(?)}]
(resp. Lr(o,i™) = [{j € T(3) : o(j) € T(0)}).

Lemma 1 Let T be a tree on n vertices. For all 0 € S, and for all i € {1,2,... ,n— 1},
Lr(o,it) = Ly(o,i7). Therefore, Ly(o) = max Ly(o,it).

Proof. We can prove this by induction on the height of the vertices. If vertex ¢ is a leaf,
we have two cases:

e o(i) =1, then Ly(o,i*) = Ly(o,i7) =0,
o(i) # i, then Ly(o,it) = Ly(o,i7) = 1.

Otherwise, let vertex ¢ be an internal vertex. Let {i1,42,...,¢;} be the sons of the vertex
i, and N (7;) be the number of vertices k € T'(¢;) such that o(k) ¢ T'(i;) and o(k) € T(z).
Then it is easy to see that Ly(o,it) and Ly (o,i™) satisfy the same recurrence relation for
any internal vertex ¢ :

Yoo Lr(o, i) = N(ix) if o(i) =1 o0r (o(i) € (l) and o~ (i) ¢ T(i))
Loo. %) — | or (o(i) ¢ T(3) and o~ (3) € 7(i))
k 1+ Eizl Ly(o, zf) — N(ig) il o(i) € T(i) and o=1(3) € T(2)
—14+ 34 Lr(oyif) — N(iy) if o(i) € T(i) and o~'(i) € T(i)

(1)
O

This lemma tells us that in order to study the load of a permutation on a tree on n vertices,



it suffices to consider the load of the labeled arcs ¢*. For example the permutation o =
(3,1,6,5,2,4) on the linear network in Figure 1(b) has load 2. The maximum is reached in
the arcs 4%,

Definition 1 Let 1" be a tree on n vertices. The average load of all permutations ¢ € S,

o |
on T, denoted by Ly, is defined as Ly = - ; Ly(o).

Proposition 1 [9] There is a polynomial-time algorithm to color any collection P of paths
on any tree T such that Ly(P) < Rp(P) < [5Lp(P)].

Given a tree T on n vertices, we denote by Ry the average number of colors needed to color
all permutations in §,, on T'. Thus, by Proposition 1, we have the following lemma.

Lemma 2 Let T be a tree on n vertices. Then Lt < Ry < gET + 1.

Proposition 2 [/] There is a polynomial-time algorithm to color any collection P of sym-
melric paths on any tree T such that Ly(P) < Rp(P) < |2Lr(P)].

Given a tree T on 2n vertices, we denote by Ry the average number of colors needed to
color all involutions in I3, on T. Thus, by Proposition 2, we have the following lemma.

Lemma 3 Let T be a tree on 2n vertices and let Ly be the average load of all involutions
in Iy, on T. Then Ly < Ry < 3L7.

Definition 2 Let T be a tree and let P be a collection of paths on T. The conflict graph,
denoted by Gp(P) = (V, E), is the undirected graph associated with T and P, where each
vertex v, € V represents a path p € P, and two verlices v, and v, are joined by an edge in
E if and only if their associated paths p and g share a same arc in T

It is straightforward to see that the coloring number R7(7P) is equal to the chromatic number
of the conflict graph Gr(P).

Definition 3 LetT be a tree and let P be a collection of paths onT. The digraph associated
with P, denoted G(P), is the digraph with vertex set V', where v € V' if and only if v is a
vertex of T' and there is at least one path in P having v as ending-vertex, and with arc setl

A'={(v,w) : v,we V' and v ~ w € P}.

A digraph G = (V, A) is said to be pseudo-symmetric, if for any vertex v € V, d*(v) = d™ (v),
where d* (v) (resp. d” (v)) denotes the out-degree (resp. in-degree) of vertex v.

Theorem 1 [11] If G is a connected pseudo-symmetric digraph, then G is Fulerian and an
Fulerian circuit of G can be found in linear time.



Let P, denote the directed symmetric path graph on n vertices. Let ST(n) denote the
directed symmetric star graph on n vertices (i.e., the tree having only one internal vertex
connected to n — 1 leaves). We call generalized star graph that we denote by GST(A), a
directed symmetric graph on n vertices having k branches connected to each other by one
vertex, where A = (Aq,...,Ag) is a partition of the integer n — 1 into k parts (k > 2) and
where )\; denotes the length of the i** branch (i.e., a branch of length J; is a path graph on
Ai + 1 vertices).

3 Complexity of computing the coloring number

We begin this section by showing the NP-hardness of the symmetric-path coloring problem
on binary trees, answering an open question in [4]. Moreover, we extend this result by
showing that the permutation-path coloring problem remains NP-hard even for very restric-
tive instances like involutions on both binary trees and on trees having only two vertices
with degree greater than two, and for circular permutations on trees with maximum degree
greater or equal to 4. Finally, we discuss some polynomial cases of this problem.

3.1 NP-hardness results

This section shows that the path coloring problem on trees is difficult even for very restrictive
cases. For this, we use a reduction similar to the one used in [8, 19] for proving the NP-
hardness of the general path coloring problem on binary trees. We remark that the reduction
used in [8, 19] cannot be directly extended to obtain NP-hardness results on the restrictive
instances of the problem that we consider in the following theorem.

Theorem 2 Let T be a directed symmelric tree and let P be a collection of directed paths
on T. Then, computing Rr(P) is NP-hard in the following cases:

(a) T is a binary tree and P is a collection of symmetric paths on T.

(b) T is a binary tree and P represents an involution of the vertices of T

(c) T is a tree with mazimum degree greater or equal to 4, and P represents a circular
permutation of the vertices of T'.

(d) T is a tree having only two vertices with degree greater than two and P represents an
involution of the vertices of T.

Proof. We use a reduction from the ARC-COLORING problem [26]. The ARC-COLORING
problem is defined as follows: we are given a positive integer k, an undirected cycle C), with
vertex set numbered clockwise as 1,2,...,n, and any collection of paths F on C),, where
each path in F from vertex v to vertex w, denoted by < v, w >, is regarded as the path
beginning at vertex v and ending at vertex w again in the clockwise direction. The question



is, can F’ be colored with k colors such that no two paths sharing an edge of C,, are assigned
the same color ? It is well known that the ARC-COLORING problem is NP-complete [14].
W.l.o.g., we assume that each edge of C), is traversed by exactly k paths in F. If some edge
[7,i41] of C), is traversed by r < k paths, then we can add k —r paths of the form < ¢,i4+1 >
(or < ¢,1 > if i =n) to I without changing its k-colorability. We assume that no path in F’
covers the cycle C), entirely. Let I be an instance of the ARC-COLORING problem defined
as above. We construct from I an instance I’ of the permutation-path coloring problem on
trees, consisting of a symmetric directed tree T, a collection of paths P on T and a positive
integer k' such that I’ verifies the constraints given in (a) (resp. (b), (¢), (d)), and such
that F is k-colorable if and only if P is k’-colorable.

Let < ¢,7 > be any path in F, thus we say that < ¢,7 > is of type 1 (resp. type 2) if
i < j (resp. ¢ > 7). In Figure 2 we give an example of these two types of paths in F.

Proof of Part (a). T is constructed as follows. First, construct a graph on n vertices
isomorphic to the path graph P, and denote its vertices by vy, vg,...,v,. Next, construct
2(n + k) different isomorphic copies of the star graph ST(4). Take n + k of these 2(n + k)
isomorphic graphs and denote their leaves by [;, s; and ¢;, and denote the leaves of the n+ k&
other ones by r;, ; and z;, 1 <4 < n+ k. Finally, connect vertex [; (resp. r;) to vertex l;14
(resp. ri41), 1 <i<n+k— 1, and connect the vertex [ (resp. r1) to vertex vy (resp. v,)
of P, (see Figure 2).
P is constructed as follows (see Figure 2). For each path < ¢,7 >€ F, if < 4,5 > is of type
1 (i.e. ©# < j), then add to P the paths A;; = v; ~» v; and B;; = v; ~» v;. Otherwise, if
< t,7 > is of type 2 (i.e. © > j), then let p (resp. ¢) be an integer in {1,2,...,k} such that
no path in P uses the vertices z,, and 2, (resp. s, and ¢,;) of T as ending vertices. Add to P
the path sets A; ; = {v; ~ 2, , @y ~ ty , 8, ~ v;}and B;; = {vj ~ s, , ty ~ T, , 2p ~ v; }.

In order to make sure that the (multi)-digraph associated to the tree and the collection
of paths (see Def. 3) is connected (property that will be used to prove Part (c)), for each
Jyk+1<j<n+k, weadd to P the sets of paths Cj_p = {s; ~> vj_p,vj_k ~ 2j1, T ~
vj/_k,vj/_k ~ t]‘} and Dj—k = {t]‘ ~ Uj’—kavj’—k ~ xj/,zj: Uik, Uj—f ™~ Sj}, where
j'=j+1if j < n+k, otherwise j' = k + 1.

In addition, for each ¢, 1 <i < n+k, we add to P 2(n + k) — 1 identical paths s; ~ ¢;
(resp. x; ~» z;) and 2(n + k) — 1 identical paths ¢; ~ s; (resp. 2z ~» z;). Finally, set
k' =2(n+ k). In Figure 2 we present an example of this polynomial construction.

By construction, it is easy to see that 1 is a binary tree and P is a collection of symmetric
paths on T'. Moreover, let < i1,j1 >, < t9,J2 >,...,< i, Jr > be the k paths of type 2
in F,and let A; ; = {vi, ~ 2, , Tp, ~ g , Sq. ~ vj,} and Bj ;. = {vj ~ 54, tg ~
Ty, , Zp, ~ ;. } be the two sets of paths in P associated with the path < i,,j, >, 1 <r <k.
Then P verifies the following properties.



Property 1 All the paths in each of the sets A;, j., Bj i, Cm, and Dy, 1 < r < k,
1 < m < n, are colored with the same color in any k'-coloring of P.

Property 2 Fach of the sels Air,jw B]-M-T, Cp, and Dy, 1 <1 <k, 1 <m < n, should be
assigned a different color in any k'-coloring of P.

Property 3 FEach path A, (resp. By o) in P associated with a path < a,b > in F of type 1,

intersects with all the paths in U*_ {t, ~ x, € B; ;} (resp. in Ur_ {z,, ~ t, € A; j}),
and with at least one of the paths in each one of the sets C,, and D,,, 1 < m < n.

F={<1,4><23><4,1><3,2>},n=4and k=2

@)

2(n+)-1 2(n+k)-1

<1,4>— Ay 4 =wvy »vgand By = vg w03

< 2,3 >— Ag 3 = vy ~ vz and B3 g = vz v U3

<4,1>— Ag1 = {vg ~ 21,21 ~ t1,81 ~ v1} and By a = {v1 ~ s1,t1 ~ 21,21 ~ va}
<3,2>— Az g = {vg ~ 22,23 ~ ta, 852 v va} and By s = {vy v s3,t3 ~ 22,23 ~ vz}

C1 = {s3 ~ v1,v1 ~ 24,24 ~ v3,v2 ~ t3} and Dy = {t3 ~ va,v2 ~ 4,24 ~ U1, V1 ~ 83}

Co = {sq4 ~ v2,v3 ~ 25,25 ~ v3,v3 ~ ta} and Dy = {tg ~ v3,v3 ~ Ty, 25 ~ U3, V3 ~ 54}

C3 = {s5 ~ v3,v3 ~ zg, Te ~ v4,Vq ~ t5} and Dz = {t5 ~ vy, vq ~ Zg, 26 ~* U3, U3 ~ S5}

Cyq = {se ~ v4,v4 ~ 23,25 ~ v1,v1 ~ te} and Dy = {tg ~» v1,v1 ~ 3,23 ~> V4, Vg ~ S}

Figure 2: Partial construction of I’ from I.



For each j, k+1 < j < n+k, let C’Jg_k (resp. C]C-l_k) be the subset of C;_; formed by
paths {s; ~ vj_g,vji_p ~ t;} (resp. {vj_p ~ zj,z; ~ vj_i}), where j' = j 4+ 1 if
j < n+k, otherwise j' = k + 1. In analogous way, let D?_k = {t; ~ vj_k,vj_ ~ s;} and
D;-l_k ={vj_k ~ xj,zjy ~ vj_1} be the subsets of D;_;. On the one hand, by construction,
the k' — 1 identical paths s; ~ ¢; (resp. t; ~ s;) and the k' — 1 identical paths z; ~ z; (resp.
zi ~ x;), 1 <1 < n+k, make sure that all the paths in each one of the sets Air,jrv Bjr,irv cs,,
C? . Dj, and DL, 1 <r <k, 1<m<n,are colored with the same color in any k’-coloring
of P. On the other hand, it is easy to see that by construction, each path z, ~»1t, € AirJr
(resp. to, ~ @, € Bj ), 1 <1 <k, intersects with all the paths in U¥ _ {z, ~ t,, €
A, it m # ) (resp. in Uﬁz:l{fqm ~ @, € B; i m#r}) and with all the paths in
U {zp,, ~ Uiy U4~ Sqn € B, i} (resp.in UE _ {v;, ~ 2, 5, > vi € Ai )
(c.f. Figure 2). Indeed, each set of paths C), (resp. D,,) intersects with all the paths in
P\NC\Q (resp. in P\ D, \ Q), where @) is the collection of all the &' — 1 identical paths
s; ~ t; (resp. t; ~ s;) and the &' — 1 identical paths z; ~ z; (resp. z; ~ x;), 1 < i <k (c.f.
Figure 2).

Suppose that P is k’-colorable and that there exists some set C;_j such that the paths
in their subsets C}L‘]—k and C']C-l_k are colored using two different colors. By construction (i.e.,

the four ended vertices of the two paths in C}L‘]—k (resp. in C’;-i_k) are pairwise different) and
by previous remarks, any proper coloring of P needs at least k' 4+ 1 colors to be colored,
which is a contradiction to the assumption that P is k’-colorable. Thus, all the paths in
each one of sets C),, 1 < m < n, are colored with the same color in any k’-coloring of P
(if there exists one). By a symmetric argument, the previous statement also holds for the
paths in each one of the sets D,,. This proves the Properties 1 and 2. Finally, Property 3
follows directly from construction.

Now we claim that there is a k-coloring of F if and only if there is a k’-coloring of P.
Assume that there is a k-coloring of F’, and let < ¢, > be any path in F colored with the
color v, 1 < v < k. Thus a k’-coloring of P can be carried out as follows: if < 4,5 > is of
type 1, then we color the paths A;; = v; ~» v; and B;; = v; ~ v; in P with colors v and
~ + k respectively. Otherwise, if < 2,5 > is of type 2, then we color all its three associated
paths in A;; (resp. in B;;) with color v (resp. v + k). Next, for each i, 1 < i < n, we
assign to all the paths in the set C; (resp. D;) the color 2k + ¢ (resp. 2k 4+ n + 7). Finally,
for each 7, 1 < i < n+k, we color the &' — 1 identical paths s; ~ t; (resp. @; ~ 2;) and the
k" — 1 identical paths ¢; ~ s; (resp. z; ~ z;) with the k¥’ — 1 available colors for each one of
these (k' — 1)-sets of paths. Thus, by Properties P1, P2, and P3, it is easy to see that such
a coloring is a proper k’-coloring of P.

Conversely, assume that there is a k’-coloring of P. By Properties P1, P2, and P3, it is
easy to deduce two proper k-colorings for F as follows: if < ¢,5 > is a path in F of type



1, we assign to < ¢,j > the color assigned to path A;; = v; ~ v; (resp. B;; = v; ~ v;)
in P. Otherwise, if < 7,7 > is a path in F of type 2, we assign to < ¢,j > the same color
assigned to the three paths in the set A;; (resp. Bj;). Thus, F is k-colorable if and only if
P is k'-colorable which ends the proof of (a).

Proof of Part (b). This follows from (a). In fact, let 7" be the binary tree and P be
the symmetric collection of paths constructed in Part (a). Let u and v be two adjacent
vertices in 7', and let i(u,v) (resp. o(u,v)) be the subset of paths in P traversing the arc
(u,v) (resp. (v,u)) and having as final-vertex (resp. initial-vertex) the vertex v. As P is

symmetric, it is clear that |i(u,v)| = |o(u,v)|. Then, replace the pair of arcs (u,v) and
(v,u) by a path graph on |i(u,v)| = « vertices. Let P, denote such a path graph, and
wy, Wy, ..., w, denote its vertices. Replace each pair of symmetric paths a ~ v € i(u,v)

and v ~ a € o(u,v) by the paths @ ~ w; and w; ~» a, where w; is a vertex of P, not yet
used by any path as initial or final vertex. Using the previous transformation on each pair
of adjacent vertices of T', we obtain an instance consisting of an extended binary tree 7’
and a set of paths P which represents an involution of the vertices of T’, which is equiva-
lent (from the coloring point of view) to the one obtained in Part (a), ending the proof of (b).

Proof of Part (c). Let 17" be the binary tree and P be the symmetric collection of paths
constructed in Part (a). Clearly, the digraph G7(P) associated with P (see Def. 3) is a
connected pseudo-symmetric digraph. First, we use a similar procedure as in Part (b) which
maintains the connectedness of the digraph associated with P as follows: for each vertex
v; in T (recall that vertex v; belongs to the initial path graph P, constructed in Part (a)),
1 < i< mn,if uis an adjacent vertex to vertex v;, and the pairs of arcs (u,v;) and (v;, u)
should be replaced by a new path graph on « vertices denoted by wy, ws, ..., w, (see Part
(b)), where wy (resp. w,) will be the new adjacent vertex to v; (resp. u), then after this
replacement we should add to P the paths w; ~ w;4q1 and wj4q ~ w; , 1 < j < a, and the
paths wy; ~ v; and v; ~ wy. It is not difficult to see that this new instance is equivalent
(from the coloring point of view) to the previous one, and that each inner vertex of the
current tree is the initial or final vertex of at most three paths. Let 7' and P’ denote the
current tree and the current symmetric collection of paths respectively, after the previous
transformation. Then, the digraph éTr(P’) is a connected pseudo-symmetric digraph, and
by Theorem 1, Gr (P') is Eulerian and an Eulerian circuit can be found in polynomial-
time. Let ay,ag,...,a,,a; be an Eulerian circuit of Gpi(P'), where p = |P'|. Note that
each pair (a;,a;+1) in the Eulerian circuit represents a path a; ~ a;41 of P’. Moreover, let
w1y, Wy, ..., w, denote the vertices of the current path graph in 7", where w; is adjacent
to vertex [{, and vertex w,s is adjacent to vertex r;. By the previous construction, each
vertex w; must be at most three times on the Eulerian circuit. Thus, following the Eulerian
circuit in the order aq,as,. .., a,, a1, for each vertex w;, 1 < i < n/, if w; is found for the
second or third time on the Eulerian circuit, we add a new vertex u; to 7’ and connect it

10



to vertex w;, and we replace the paths § ~ w; and w; ~ v in P’, by the paths § ~ w;
and u; ~ 7, where 8 and v are the immediate predecessor and successor of w; respectively,
on the Eulerian circuit. Indeed, by construction, each one of the vertices s;, t;, x;, and z;,
1 <t < n+k, is found exactly k¥’ times on the Eulerian circuit, and given that each one
of these vertices is a leal of T’, we can replace each one of these vertices by a new path
on k' vertices and arrange the &’ paths in P’ ending and beginning in each one of these in
agreement with the Eulerian circuit. Therefore, it is easy to prove that the obtained tree T’
has maximum degree at most equal to 4 and that the set of paths P’ represents a circular
permutation of the vertices of 7”. Thus, taking care of the initial paths A;; and Bj; (resp.
set of paths A; ; and Bj;;) associated with paths < ¢, j > in F of type 1 (resp. 2), we obtain
that the final circular permutation set of paths P’ on T’ is k’-colorable if and only if F is
k-colorable, which ends the proof of (c).

Proof of Part (d). This follows from (a) and (b). In fact, let T be the binary tree and P be
the symmetric collection of paths constructed in Part (a). Replace all the n 4 k isomorphic
th one has its leaves labeled by l;, s;, and ¢; (resp.
i, ¢;, and z;) by only one star ST(2(n + k) 4+ 1) having as its leaves the vertices s; and ¢;
(resp. x; and z;), 1 < i < n+k, and denote by I; (resp. 1) its only vertex of degree 2(n+k).
Next, connect the vertex [y (resp. r1) to vertex vy (resp. vy,) of P,, leaving P as in (a). Thus,
it is easy to see that this new instance is equivalent to the one obtained in Part (a) (from
the coloring point of view). Finally, using similar arguments as in Part (b), we prove the
NP-hardness for the involution case. This ends the proof of (d) and the theorem is proved. O

star subgraphs on 4 vertices, where the ¢

By Proposition 1 (resp. Proposition 2), the best known approximation algorithm for
coloring any collection of paths (resp. symmetric paths) with load L on any tree network
3

uses at most [2L] (resp. [$L]) colors. Therefore it trivially also holds for any permutation-

set (resp. involution-set) of paths with load L on any tree.

3.2 Some polynomial cases

Let P be any collection of paths on a tree network 7. If T is a linear network, then the
minimum number of colors Ry (P) needed to color the paths in P is equal to the load Ly (P)
induced by P. In fact, if T is a linear network, then the conflict graph of the paths in P
is an interval graph (see [16]). Moreover, optimal vertex coloring for interval graphs can
be computed efficiently [18]. When 7T is a star network, the equality between Rp(P) and
L1 (P) also holds because the path coloring problem on these graphs is equivalent to finding
a minimum edge-coloring of an undirected bipartite graph. Moreover, the minimum number
of colors needed to color the edges of a bipartite graph is equal to its maximum degree, and
such an edge-coloring in these graphs can be found in polynomial time [3]. Combining these
approaches for linear and star networks, Gargano et al. [15] show that if 7" is a generalized
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Figure 3: (a) A tree 7" on 10 vertices and a permutation o = (5,4,8,2,6,3,9,10,7,1) to be
routed on 7. (b) The conflict graph G associated with permutation o in (a).

star network then, an optimal coloring of P on these networks can be computed efficiently
in polynomial time, and that the equality between R7(P) and Lz (P) also holds. Note that
all the results in these three networks trivially hold when P is a permutation-set of paths.
However, by Theorem 2, it suffices that the tree network T has two vertices with degree
greater than two and the permutation-path coloring problem on these networks becomes
NP-hard. Moreover, in binary tree networks having only two vertices with degree equal to
3, the equality between the load and the minimum number of colors for a permutation-path
set does not always hold as we can see in Figure 3. In fact, Figure 3(a) shows an example
of a permutation o € S1g to be routed on a tree 7" on 10 vertices, whose load Lz (o) is equal
to 2. Figure 3(b) shows the conflict graph G = G7(0). Thus, clearly Ry(o) is equal to
the chromatic number of G. Therefore, as the conflict graph G has the cycle Cs as induced
subgraph, then the chromatic number of G is equal to 3, and thus Ryp(o) = 3.

All results obtained at present are worst-case complexity ones. However, it will be
interesting from the practical point of view to compute the average coloring number of
permutations to be routed on networks. In the following sections we study the average
complexity of the coloring number of permutations. We begin our study in Section 4 by
giving a lower bound for the average coloring number of permutations to be routed on
arbitrary topology networks. In the remaining sections, we concentrate our study on the
average coloring number of permutations on tree networks.

4 A lower bound for the average coloring number

We derive a lower bound for the average coloring number of permutations to be routed on
arbitrary networks, by giving a lower bound for the average load of permutations to be
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routed. Let G = (V, A) be a directed symmetric graph on n vertices (i.e. |V|=n) and r a
routing function in G’ which assigns a set of paths on G to route any permutation o € §,,.
Let Lg, be the average load of all permutations in S, induced by the routing function r,
and let U C V be a subset of the vertex set of . We denote by ¢(U) the cut (U, U), i.e.,
the set of arcs {(u,v) € A: we U, ve V\U}.

Proposition 3 For any graph G = (V, A) on n vertices, and any routing function r in G,

zGr>l.max(W) .

Proof. Let U C V be any subset of vertices in G and consider a permutation ¢ € S,
to be routed on G by using the routing function r. The load of all the arcs in ¢(U) in-
duced by o with the routing function r, that we denote by L.(U, o), is at least equal to
{j € U: o(j) € U}|. Thus, the global load of ¢(U), that we denote by L,.(U), is at least
equal to Y L,(U,o). In fact, for any vertex j € U and for any vertex k € V \ U, each
ocES,
permutation o € S, such that o(j) = k contributes for at least one unit to the global load of
¢(U). Therefore the average load of ¢(U) verifies L, (U) > 4 3> Y o € 8, : o(j) = k}|.
JEU keV\U
Moreover, for all pairs of vertices j and k in G, there exist (n — 1)! permutations ¢ € S,
such that o(j) = k. Therefore, L,(U) > L 3> > (n-1!=13% > 1= M
JEU keV\U JEU keV\U

Thus, for some arc a € c(U), the average load of a verifies L,(a) > %((TU)? So, ZGJ, >

1o (UL=U])
z ?S%( ). =

Let us denote by C(G) the parameter max (%) It is not difficult to see that

C(G) is equal to ﬁ, where S(G) denotes the sparsest cut of graph G. In fact, S(G)

is defined by lrpcu‘ll (%) In [23] it is shown that computing the sparsest cut of a
graph is NP-hard, which implies that computing the parameter C(G) is also NP-hard, and
so computing the best lower bound given in Proposition 3 is NP-hard. Moreover, for any
constant k, if the edge-bisection of G, i.e., a cut ¢(U) of G with minimal cardinality and

such that |[U| = [%], is at most equal to k, then the parameter C(G) can be computed

in polynomial-time. In fact, it is clear that C(G) > % Consider that there exists

n

Vi C V(G) such that MICEEAD > [EUE] . Thus, since [Vi|(n — Va) < [2]]2], we have
le(V1)| < k. So, to compute C(G) it is enough to consider all the subsets of A(G) discon-
necting G with maximal cardinality at most equal to k& — 1, i.e., a polynomial number of

such subsets. For example, for any 2d-mesh M (2n, k) with 2n lines and a constant number

k of columns, C(M(2n,k)) = k - n?, and for any ring C,, C(C,) = %
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We conclude this section by giving a lower bound on the average number of colors needed
to color any permutation ¢ € §,, on any tree on n vertices as follows.

Let T be a tree on n vertices. By Proposition 3, we can deduce that the average load
i} ) T T
of any arc it of T, 1 < ¢ < n — 1, denoted by Lp(7), verifies Ly(i) = T@I( - | (Z)l)
n

Moreover, for any vertex ¢ of T, let vyp(i) = |T(i)|/n and v7(7) = min(vr(i), 1 — vr(7)).
Let oy = max; ’5T(i); Then, it is clear that max;{Lr(i)} = nop(l — or). Indeed, it is
straightforward that Ly > max;{Lr(¢)}. Therefore, we obtain a lower bound for the average
load L.

Lemma 4 L7 > nor(1l — or).

Moreover, as Ry > L, we obtain the following lower bound on the average number of colors
needed to color any permutation ¢ € §,, on any tree T" on n vertices.

Lemma 5 Ry > nip(1 — or).

5 Average coloring number on linear networks

The main result of this section is the following:

Theorem 3 The average coloring number of the permulatlions in S, to be rouled on a linear
network on n verlices is

A
g—l— 5711/3 —I—O(nl/G), n — o0

where X = 0.99615. ...

To prove this result, we use enumerative and asymptotic combinatorial techniques. Our
approach first uses the same methodology as Lagarias et al. [20] who studied involutions
with no fixed point routed on the linear network. At first we recall in Subsection 5.1 a
bijection between permutations in &, and special walks in N x N, called “Motzkin walks”
[2]. The bijection is such that the height of the walk is equal to the load of the permutation.
We get in Subsection 5.2 the generating function of permutations with coloring number £,
for any given k. This gives rise to an algorithm to compute exactly the average coloring
number of the permutations for any fixed n. Then we are able to combine these enumerative
results with random walks techniques developped by Louchard [22] and Daniels and Skyrme
[7] to prove Theorem 3. Note that this “random walk” approach was not developed in [20]
and we therefore extend our results for permutations to involutions with no fixed point in
Section 7.
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5.1 A bijection between permutations and Motzkin walks

A Motzkin walk on N x N of length n is an n-tuple w = (wq, wy, ... ,w,) of unitary steps
(North-East, South-East or East). Let h; be the height of the i step that is the difference
between the number of North-East and South-East steps in (wy,wsq,...,w;), 1 < i < n.
Then the walk must satisfy the following conditions:

e h; >0,1< 1< m;
e h, =0;
The height of a Motzkin walk w is H(w) = {max , {hi}.
1€4{0,1,....,n

Given two infinite sequences {), },>1 and {b,},>0, a labeled Motzkin walk of length
n has the shape of a Motzkin walk and the South-East steps starting at height ¢ can be
labeled from 1 to A; and the East steps of height ¢ can be labeled from 1 to b;. Moreover,
given two sequences {A, },>1 and {b,},>0, let M,, be the number of labeled Motzkin walks
and M(z) =), 5o M,z2" the associated generating function.

Proposition 4 [10, 27] The generating function M(z) is a continued fraction. Its expres-
ston s

Labeled Motzkin walks are in relation with several well-studied combinatorial objects
[10, 27] and in particular with permutations. The walks we will deal with are labeled as
follows:

o cach South-East step starting at height ¢ is labeled by an integer between 1 and 2 (or,
equivalently, by a pair of integers, each one between 1 and i);

e cach East step of height ¢ is labeled by an integer between 1 and 2¢ + 1.

In Figure 4 we present an example of the labeled Motzkin walks we consider.
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Figure 4: Example of a labeled Motzkin walk of length 11 and height 3.

Let W, be the set of such labeled Motzkin walks of length n. We recall that S, is the set
of permutations on [n]. The following result was first established by Francon and Viennot
[12]:

Theorem (Francon-Viennot) There is a one-to-one correspondence between the elements of
W, and the elements of S,.

Several bijective proofs of this theorem are known. Biane’s bijection [2] is particular, in the
sense that it preserves the height: to any labeled Motzkin walk of length n and height k&
corresponds a permutation in S, with load k (and so with coloring number k). We present
in what follows another version of Biane’s bijection in order to understand the relationship
between the height of the labeled Motzkin walks and the load of the permutations.

The bijection We will explain the mapping ¢ from the labeled Motzkin walks of length
n to the permutations in &, on the linear network on n vertices. The reverse is easy and
left to the reader, see [2] for more details. Consider a linear network P, on n vertices such
that the vertices are labeled from left to right from 1 to ». Thus, Biane’s correspondence
between a labeled Motzkin walk w = (wy,ws,...,w,) and a permutation ¢(w) = o =
(¢(1),0(2),...,0(n)) on P, is such that, for 1 << n:

e w; is an East step of height j and is labeled 25 + 1 if and only if o(¢) = 1.

e w; is an East step of height j and is labeled { with 1 <1 < j if and only if e71(4) < 4
and o(z) > 1.

e w; is an East step of height 7 and is labeled [ with 7+ 1 < [ < 25 if and only if
o) > i and o(7) < i.

e w; is a North-East step if and only if o(i) > 7 and o7 (i) > 1.

e w; is a South-East step if and only if (i) < ¢ and o71(4) < 1.
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Figure 5: From the shape of the path to the shape of the permutation

The previous correspondence automatically gives us that the height of each step w; is
equal to Lp,(0,it) for 1 < ¢ < n — 1. In fact, by previous correspondence, we have that
Lp,(0,iT) is equal to the number of integers j < i such that o(j) > j and 0=1(5) > j, minus
the number of integers j < i such that o(j) < j and o7!(j) < j, which corresponds exactly
with the Equation (1) obtained in the proof of Lemma 1 (see Section 2).

Given a labeled Motzkin walk, it is easy to draw the shape of the permutation o (be-
ginning and end of the path ¢ ~ o(¢), 1 < ¢ < n), using the previous correspondence. The
beginning of the path 7 ~» (i) uses arc ¢* in P, if and only if w; is a North East step or an
East step at height j with a label between 54 1 and 2j. The beginning of the path ¢ ~ o(¢)
uses arc (¢ — 1)” in P, if and only if w; is a South East step or an East step at height j
with a label between 1 and j. The end of the path o=!(4) ~ 7 uses arc ¢~ in P, if and only
if w; is a North East step or an East step at height j with a label between 1 and j. The
end of the path o=1(¢) ~ ¢ uses arc (i — 1)T in P, if and only if w; is a South East step
or an East step at height 7 with a label between 7 + 1 and 2j. An example is illustrated
in Figure 5. Now we label the shape of the permutation to keep all the information of the
labeled Motzkin path. For ¢ from 2 to n, if w; is a South-East step with label (z,y) then
we label the end of the path ¢71(i) ~ 7 by z and the beginning of the path i ~ & (i) by
y. For ¢ from 2 to n, if w; is an East step of height j labeled by [; if 7+ 1 <1 < 25 then
we label the beginning of the path ¢ ~ o(7) by { — j; if 1 <[ < j then we label the end
of the path c=1(¢) ~ 7 by I. See Figure 6 for an example of labeling. Finally we associate
free beginnings and ends of paths going from left to right. For any free end of a path (resp.
beginning of the path) labeled z, we associate with it the z** free unlabeled beginning of a
path (resp. unlabeled end of a path) starting from the left. See Figure 6 for an example of
the construction of the permutation. [
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Figure 6: From a labeled Motzkin walk to a permutation

5.2 An algorithm to compute exactly the average coloring number

From Biane’s bijection and Proposition 4, we can directly get the generating function of the
permutations in &, of coloring number at most k, to be routed on a linear network on n

vertices,

Hep(z) =3, >, &

nZO 0'657173;C
that is
1
1 -
J— Z —
4 2
1-32— z
T 1- (2k— 1) k2
T 1—-(2k+ 1)z

Note that this generating function is rational for any fixed k. We can also use known
results in enumerative combinatorics [10, 27] to get the generating function of the permu-

tations of coloring number exactly k,

Hi(z) = Z Z 2"

n>00€Sy,

18



[o [0 [ o [ 700 [ o[BG [ [ 500 o [ R0 ]
110 9 2.60 || 17 | 4.83 || 25 | 7.00 || 33 | 9.13
2105 10 | 2.88 || 18 | 5.10 || 26 | 7.27 || 34 | 9.40
31083 || 11]3.16 || 19| 5.37 || 27 | 7.53 || 35 | 9.66
4 1 1.12 || 12 | 3.44 || 20 | 5.65 || 28 | 7.80 || 36 | 9.93
51143 || 13| 3.72 || 21 | 5.92 || 29 | 8.07 || 37 | 10.19
6 | 1.73 || 14 | 4.00 || 22 | 6.19 || 30 | 8.33 || 38 | 10.46
71202 || 15| 4.27 || 23| 6.46 || 31 | 8.60 || 39 | 10.72
8 1231 || 16 | 4.55 || 24 | 6.73 || 32 | 887 || 40 | 10.99

Table 1: Average coloring number of permutations in §,,.

that is

(k!)QZQk
Pk*-|-1(Z)Pk*(Z)

with Py(2) = 1, Pi(2) = 2 — 1 and Poy1(2) = (2 — 2n — 1) P,(2) — n?P,_y(2) for n > 1,
where P* is the reciprocal polynomial of P, that is P} (z) = 2" F,(1/z) for n > 0.

This generating function leads to a recursive algorithm to compute the number A, j of
permutations with coloring number k.

Proposition 5 The number of permutations in S, to be routed on a linear network on n
vertices with coloring number k, satisfies the following recurrence

if n < 2k

0
hg =< (k!)? if n =2k
— S pihy_ig  otherwise

where p; is the coefficient of z* in Py (2)P;(2).

From this result we are able to compute the average coloring number A(n) of permutations
in S, to be routed on a linear network on n vertices, that is ), oo khyr/n!. The first values
are presented in Table 1. B

5.3 Proof of Theorem 3

In [22], Louchard analyzes some list structures; in particular his “dictionary structure”
corresponds to our labeled Motzkin walks. We will use his notation in order to refer directly
to his article. All the results of this section are asymptotic. Restating Louchard’s Theorem
6.2, we get the following lemma:
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Lemma 6 Let P, be the path graph on n vertices and let o* be a permutation in S,. The
load Lp, (c*, |nv]) of any arc |nv| of P, (v € [0,1]) induced by o* has the following behavior

Lp,(c*, |nv]) =nv(l —v) + X(v)v/n+0(1), n— o
where X is a Markovian process with mean 0 and covariance C(s,t) = 2s*(1 — )%, s < t.

The works of Daniels and Skyrme [7] and Daniels [6] give us a way to compute the
maximum of Lp, (6%, |nv]), that is, the load of a random permutation. These results have
been applied in [13]. Let us now present them.

Let X (v) be a Gaussian process with mean 0 and covariance C'(s,t) superposed on a
curve §(v). Assume that §(v) is given by /ny(v), n > 1 and that it has a unique maximum
at v. It is equivalent to look for its maximum m = max[X (v) + ¢(v)] and the time v*
at which this maximum occurs, or to search for the hitting time of X (v) to the absorbing
boundary. Daniels and Skyrme [7] have computed the asymptotic hitting time and place
density. In the gaussian process case with covariance C'(s,t), s < ¢, Daniels [6] has matched
the local behavior of C'(s,t) with the Brownian motion (or one of its variants) covariance
near . We can deduce the density of the maximum m and time v* from Equation (3.8) of
[6] and Equation (5.9) of [6]. We first need to introduce some notations :

oC ,_ oC

6= 8—8(@, v), c= E('ﬁ, v), c¢=C(v,0) (2)
vo=0—c/cr, vo+V =v+c¢/lcz], V =cA/(c1]ea]) (3)
A=ci+]|ca], B=—y"(t), u=n'BA73B3* —p) (4)

Let also R(z) = exp(z>/6)H (z) with :

1 too ds
H(z) = 2—1/3—/ st 7
() 271 J_ o ‘ A;(21/3s)]

A; is the classical Airy function. Let f(z) = 2R(z)R(—z) and v(z) = H'(z)/H (z); R and
v are tabuled in Daniels [6]. Note that f’(0) = 0. Finally define :

+co
A= / [R(z) — 27]dz = 0.99615 ...,

The results of Daniels and Skyrme are :
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Theorem 4 The random variable m = max,(g(v) + X (v)) is asymptotically Gaussian with
mean and variance

E(m) ~ AnY6A2BB73 0 6 m) ~ . (5)
The conditioned mazimum m|v* is asymptotically gaussian with mean and variance
E(m|v*) ~ An~YO AT [eyu(—u) + |eg|v(w)] BV, o (m|v*) ~ e. (6)

The joint density of m and v* is given by

¢(m,u)dm du = 2 %e‘”ﬂ/(?c) (@ + 0~ 8 A= B= B ey (m, u) + O(n_1/3)> dm du
e
(7)
with
1, A 1 ‘1 R (e
() 2+ R )R 4 B R (1)

and where u has density f(u). All expectations and densities have relative errors of order

O(n=1/3).

p1(m,u) = —

Let us now apply this theorem to our purpose. From Louchard’s result we know that

Lp, (0", |nv]) = v (Vito(1 - v) + X (v)) + O(L).

Therefore we have y(v) = v(1 — v) and the unique maximum is attained at v = 1/2. The
covariance of our Gaussian process is C'(s,t) = 2s*(1 — t)2. We then obtain :

c:1/87 01:1/2, 02:—1/27 B=2, A=1. (8)
We can state now our result.

Proposition 6 The coloring number of a random permutation ¢* € S,, routed on P, is :
max Lp, (o, [nv]) = % + my/n + O(n'/%), (9)

where m is asymptotically Gaussian with mean E(m) ~ An~'/%/2 and variance o?(m) ~
1/8. The variable m is characterized by (2)-(7). The arc |nv*| where the mazimum occurs
is a random variable characterized by (6) and (7). The constants are given in (8).

In the Equation (9) of Proposition 6, the only non-deterministic part is m which is
Gaussian. So we just have to replace m by E(m) to get the average of the coloring number
and hence to prove Theorem 3, which states that the average of the coloring number of the
permutations in S, to be routed on a linear network on n vertices is n/4 + ©(n'/?) when n
goes to infinity. We can also get directly the variance.
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Theorem 5 The variance of the coloring number of the permutations in S, lo be rouled on

a linear network on n vertices is %.

Proof. The variance of max Lp, (6%, |nv]) is just no?(m). O

6 Average coloring number on arbitrary tree networks

In this section, we extend the average complexity results on linear networks obtained in
Section 4 to arbitrary tree networks. Given a tree T" on n vertices, by Theorem 2, we know
that it is NP-hard to compute Rp(co) for a permutation o even if 7" is a binary tree and o is
an involution. By Proposition 1, we know that computing Rr(¢) is 5/3—approximable. The
aim of this section is to find the average coloring number required for this approximation
algorithm.

By Lemma 2, we know that Ly < Rr < gET + 1. Therefore, we will compute the
average load Lt for any tree T" and will obtain bounds on Rr, the average number of colors
needed to color any permutation-path set on 7. In Section 6.1 we present an upper bound
for the average coloring number on tree networks. In Section 6.2 we obtain exact results on
the average number of colors needed to color any permutation-path set on generalized star
tree networks.

6.1 Upper bound

Let us remark that for any tree 7" on n vertices and for each vertex ¢ of T, there exists
a relabeling of the vertex set of T such that, for any permutation o € S,, Lr(o,it) =
Lp,(0,|T(7)]). The vertices of T'(i) are relabeled with integers in {1,2,...,|7(¢)|}, and the
vertices in 1"\ T'(z) are relabeled with integers in {|7'(¢)| + 1,...,n}. Therefore, Lemma 6
can be rewritten as follows.

Lemma 7 Let T be a tree on n vertices and let ¢* be a random permutation in S,. The
load of any arc it of T induced by o*, denoted by Lr(c*, %), has the following behavior

Le(o™,i%) = nor (i) (1 - vr () + X (vr(i))va + O(1),

where X is a Markovian process with mean 0 and covariance C(s,t) = 2s*(1 — t)?, s < t,
and where vp(i) = |T(7)|/n.

As X is a Gaussian process with mean 0 and covariance C(s,t) = 2s*(1 — t)?, we get

easily that Ly(c*,it) = nup(:)(1 — vp(i)) + O(y/n) for any random permutation ¢*. This
means that Ly (o*) = nor(1 — or) + O(y/n) for any random permutation o*. As defined
before, for any vertex ¢ of T, o7 (i) = min(vr(7),1 — vy (7)) and o7 = max; o7 (¢). Thus, we
obtain the following theorem :

22



Theorem 6 The average load induced by all permutations c € S, on T is
ET = 'n'ﬁT(l — TNJT) + O(\/ﬁ)

From Lemma 2 and Theorem 6, we obtain the following upper bound on the average
number of colors needed to color any permutation ¢ € S,, on any tree T' on n vertices.

Theorem 7 For all €, there exists ng = ng(e€) such that, for all n > ng and any tree T' on
n verlices, the average number of colors Rt needed lo color any permutation o € S, on T

verifies Rt < (% + e) nor (1 — o).

6.2 The average number of colors in generalized star trees

Let k be a fixed integer, A be a partition of n — 1 in &k parts and GST(A) be the associated
generalized star tree on n vertices. In this case, we have 6GgT(y) = min(|n/2], A\1). More-
over, Gargano et al. have shown in [15] that for any collection of paths P on a generalized
star GST(X), RGsToy (P) = LasTy (P). Therefore, we can now apply the results of the

previous subsection to get :

Theorem 8 The average number of colors needed to color any permutation o € S, on a
generalized star tree GST(X) having n vertices is

RGST(/\) = ni 5Ty (1 = asTy) + O(Wn).
In particular we obtain the following result. Let k& be a fixed integer greater than 2.

Theorem 9 The average number of colors needed to color any permutation ¢ € Spp+1
on a generalized star tree GST(X) having nk + 1 vertices and k branches of length n is

n(k - 1)/k+ O (V).

7 Average coloring number for involutions

Given a tree T' on 2n vertices, by Theorem 2, we know that it is NP-hard to compute Ry (o)
for an arbitrary involution ¢ in Iy, even if T is a binary tree. By Proposition 2, we know
that computing Ry (o) is 3/2—approximable. The aim of this section is to find the average
coloring number required for this approximation algorithm in the case of involutions with no
fixed points and therefore to complete the work initiated in [20]. We compute the average
load ]ET for any tree T" and will obtain bounds on the average number fm’T of colors needed
to color any involution-path set on 1.

We can compute easily the average load of any arc it of 7,1 <4< 2n—1 : f/T(z) =
|T(i)|(2n — |T(4)])/(2n—1). Therefore, we obtain a lower bound for the average load Ly and
the following lower bound on the average number of colors needed to color any involution
o € Iy, on any tree T on 2n vertices.
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Lemma 8 Rp > 2nor(1 — o).

By using a bijection between the involutions in Iy, and the set V5, of special walks on N x N
called labeled Dyck walks of length 2n [20, 27] that preserves the load as Biane’s bijection
does, and by Louchard’s Theorem 5.3 [22], we get the following results that can be obtained
by the same methods as in the previous sections for arbitrary permutations. Restating
Louchard’s Theorem 5.3, we get the following lemma :

Lemma 9 Let Py, be the path graph on 2n vertices and let o* be a random involution with
no fized points in Iy,. The load Lp, (0, |2nv]|) of any arc |2nv| of Py, (v € [0, 1]) induced
by o* has the following behavior

Ly, (0, [200]) = 200(1 = 0) + X (0)v/T+ O(1),
where X is a Markovian process with mean 0 and covariance C(s,t) = 2s*(1 — t)?, s < t.

Now we use Daniels and Skyrme’s result [7] :

Theorem 10 The average coloring number of involutions with no fized points in I, to be
routed on a linear network Py, on 2n verlices is Rp,, = n/2 4+ 0(n'/3).

Theorem 11 The variance of the coloring number of involutions with no fized points in
15, to be routed on a linear network Py, on 2n vertices is n/4.

Note that the average complexity for involutions is the same as for permutations. We
apply the relabeling argument used in Section 6.1 to generalize these results to any arbitrary
tree.

Lemma 10 Let T be a tree on 2n vertices and let o* be a random involution in I3,. The
load of any arc it of T induced by o*, denoted by Lr(c*,iT), has the following behavior

Lr(o*,i*) = 2nvp(i) (1 — vp(i)) + X (vr(i))vn + O(1),

where X is a Markovian process with mean 0 and covariance C(s,t) = 2s?(1 — )%, s < ,
and where vp(i) = |T'()|/2n.

Thanks to this lemma we compute the average load and the upper bound of the coloring
number :

Theorem 12 Let T be a tree on 2n vertices. The average load induced by all involulions
with no fized points o € Iy, on T is Ly = 2nop(1 — o) + O(/n).
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Theorem 13 For all €, there exists ng = ng(€) such that, for all n > ng and any tree T on
2n verlices, the average number of colors Ry verifies, R < (% + e) 2nor(1 — o7).

We simply apply Theorem 12 to get the average coloring number for involutions with
no fixed points on generalized star tree networks obtaining exactly the same asymptotic
behavior as for arbitrary permutations. Let k be a fixed integer greater than 2 and A =
(A1,..., Ak) a partition of 2n — 1 into k parts.

Corollary 1 The average coloring number of the involutions in Iy, to be routed on a

generalized star network GST(X) is RGST(A) = 200971 — TGsTy) + O(v/n), with
UGSTO) = min(n, Aq).

8 Open Problems

The complexity of routing circular permutations on both binary trees and on trees having
exactly two vertices with degree greater than two is open. Another interesting open problem
is to derive (whenever possible) a polynomial-time approximation algorithm for the general
path coloring problem on directed symmetric trees with a better ratio than 5/3. Computing
the average coloring number of permutations to be routed on arbitrary topology networks
seems a very difficult problem. In fact, the results we obtain on the average coloring number
of permutations to be routed on tree networks use a nice property of bounded ratio (less
than 2) between, the coloring number and the load induced by a permutation-path set. As
far as we known, in the case of arbitrary topology networks there is no result about such a
ratio. Thus, studying the behavior of the ratio between the coloring number and the load
induced by any permutation-path set on an arbitrary network can help us to derive a general
approach to analyze the average behavior of the coloring number of routing permutations
on networks.
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