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Université Paris-Sud, 91405 ORSAY�

barth,valencia � @lri.fr

Abstract

In this paper, we generalize the line-communication
model by relaxing the notion of conflictness between paths.
We show that the problem of finding optimal schedules to
route any set of messages under both our generalized line-
communication model and the bufferless routing model is
NP-hard even if restricted to binary trees. Finally, a simple
offline 2-approximation algorithm for our model on trees is
presented.

Key words: Message Scheduling, Line-Communications,
Bufferless Routing, Tree Networks, NP-completeness, Ap-
proximation Algorithms.

1. Introduction

Efficient routing of messages is a fundamental task
in parallel and distributed systems. Many theoretical
works about message routing are based on both the line-
communication model [4, 7, 11] and the bufferless routing
model [3, 12].
It is natural to divide the problem of message routing into
two parts : (i) Path selection, in which each message is as-
signed to a path along which it moves, and (ii) Scheduling
the movement of messages along the path assigned to it.
The goal of the scheduling part is to compute a schedule
for moving messages as quickly as possible. For some sim-
ple networks, such as trees, the message routing problem is
simpler, as there is always a unique path for each message
from its source to its destination. In this case, the problem
reduces to simply schedule the movements of messages.
In a bufferless routing model, the messages move along the
path step by step from the source to the destination in a
greedy manner, i.e. once any message starts moving it does
not stop along the way.
In a line-communication model, communications are sched-
uled in phases. During such a phase, some messages move

from their source to their destinations (each message fol-
lows a given path). So, In this last model, we don’t take
care of the length of the path assigned to each message.
The main constraint is that two messages can not move on
their respective assigned paths during a same phase if there
is a conflict between these paths. There are different ways
to consider a conflict between two paths. The most classi-
cal one consists in saying that two paths are in conflict if
they share some link of the network (see [4, 7, 11] and ref.).
This seems sometimes to be too restrictive, for example if
the link shared by two long paths is the first link in a path
and the last one in the other path. In this paper, we give a
natural generalization of the classical notion of conflictness
between paths. We say that two paths are in conflict if and
only if they share some link of the network which occurs in
the ����� position on one path and in the ����� position on the
other path, and if 	 ��
��
	 is smaller than some given positive
integer � . We consider this integer � , that we call the al-
lowance, as a parameter of the line-communication model.
The allowance could be an indication for the degree of asyn-
chronicity of the network. Note that in [1], the case � =1 was
studied about some emulation problems.
This paper is concerned with the question of scheduling
message movement on trees under these two communica-
tion models.
Previous and related work. The bufferless routing model is
introduced in [3]. Ranade et al. [12] give for this model, an
offline 2-approximation algorithm to the problem of mes-
sage scheduling in trees.
In the line-communication model, Kumar et al. [10] show
that the problem of finding optimal schedules in binary
trees is NP-hard, and Kaklamanis et al. [9] give a �� -
approximation algorithm for directed trees.
Our results. We generalize the line-communication model
by relaxing the notion of conflictness between paths.
We show in Section 2 that even in our relaxed line-
communication model, the problem of finding optimal
schedules to route any set of messages in binary trees is NP-
hard. We also show in this section that the message schedul-



ing problem in binary trees under the bufferless routing
model is NP-hard, which was not yet known. In Section 3
we give an offline 2-approximation algorithm for the mes-
sage scheduling problem in trees under the generalized line-
communication model.
We begin by clarifying the generalized line-communication
routing model.

1.1. Model and preliminary definitions

A routing network is a symmetric directed graph (see [2]
for classical definitions), where processors and switches are
nodes and links are modeled by two arcs in opposite direc-
tions [8]. It takes unit time to cross any arc and no two
messages may traverse the same arc at the same time.
We denote by � the collection of elementary paths asso-
ciated to a set � of messages, where each ������� has
an associated path � �
	���
 � ��� 
 � ����������� 
 � ����� , ��� ��� 	 � 	 .
So, the message ��� is transmitted along the path ��� whose
length is  � . We say that ��
 � !#"$��� 
 � !%� is the ����� arc of � � ,�&� �'�� �� .
For all ��( �*)+� �,�-� , �.� ��� 	 � 	 , we denote /0� ��( �*)+� 	 � if��( �*)+� 	1��
 � !#"$� � 
 � ! � , �+� �2�� �� .
The communication in the network is made by phases. A
communication phase is a set of directed paths pairwise non
conflicting, on which messages have to move (in the sequel,
directed paths are refered simply as paths). In other words,
during each phase, messages move along the paths with-
out buffering in the intermediate nodes. In the generalized
line-communication model with allowance �435� ( 687:9 � � �
model for short), a conflict between two paths is defined as
follows.

Definition 1 Given an integer �;3<� and any collection �
of paths on a network, there exists a � -conflict between two
paths � and �>= in � iff there exists an arc ?@�@�BAB�C= such
that ? is the ����� and � ��� arc in � and �C= respectively, and
	 � 
 � 	�D � .

Thus, during any communication phase in the 687E9 � � �
model, there exists no � -conflict between any two paths in
it.

Definition 2 Given any collection � of paths associated to
a set of messages, then the � -phases number of � under the687E9 � � � model is the minimum cardinality F of any par-
tition � � , �HG , ����� ,�8I of � such that no two paths in � ! ,�&� �'��F , have a � -conflict.

Note that, given any collection � of paths on a network J ,
if the allowance � in the 687E9 � � � model is chosen suffi-
ciently large (for example, equal to K � J � , i.e. the diameter
of J ), then the � -phases number of � is clearly at least
as large as the congestion of � (i.e. the maximum num-
ber of paths traversing any arc of the network) since no two

paths sharing an arc must be used in a same phase. When
� is small compared to K � J � , the congestion of � is not a
lower bound for the � -phases number of � . More precisely,
the maximum number of paths in � such that (i) they share a
same arc ?4�ML � J � , and (ii) they are pairwise in � -conflict,
can be considered w.l.o.g., as the maximum taken over any
position � , �N� �'��K � J � , of the number of paths that share? in a position � , �O� �MD �QP � . Therefore, we define the
� -congestion of � as follows.

Definition 3 Let � be any collection of paths on a networkJ , and let � be an integer, ��3R� . Then, the � -congestion
of � is defined byS.T�UVXW�Y Z�[#\%]^V0_2[ ` SaT�UbdcfegcCh V0_2[jiiiii
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Clearly, the � -congestion of � is a lower bound for the � -
phases number of � under the 687E9 � � � model.

2. Complexity results on trees

In this section we show that, under the 687E9 � � � model
with allowance �53�� , the problem of finding an offline
schedule to route any set of messages on trees with opti-
mal � -phases number is NP-hard even if restricted to binary
trees and � fixed. We outline a polynomial-time transforma-
tion of an instance of the EDGE-COLORING problem [5]
into an instance of the routing schedule problem on binary
trees under the 687:9 � � � model. An instance of the EDGE-
COLORING problem is given by a graph 6 	<��� ���8� with
maximum degree � . The question is whether the edges of6 can be colored with � colors such that edges are assigned
different colors if they share an endpoint. This problem is
NP-complete even for cubic graphs [6], i.e. for � -regular
graphs with � 	�� .
Theorem 1 Under the 687:9 � � � model with fixed al-
lowance ��3�� , the problem of finding an offline schedule
with optimal � -phases number on binary trees is NP-hard.

Proof :
Let � be an instance of the EDGE-COLORING problem
given by any 3-regular graph 6 	��d� �*�8� . We transform
the instance � into an instance ��= of the routing scheduling
problem on binary trees under the 687E9 � � � model, given by
a symmetric directed binary tree � and by a collection � of
paths on � . We begin by giving the principal ideas of the
transformation of the instance � into the instance �-= before
to present it in a formal manner. Such a transformation is
achieved in three parts as follows. In the first part, we con-
struct a rooted binary tree �&= whose leaves are the vertices
of 6 , with the property that no two paths on �+= beginning
at any two different leaves of � = have a � -conflict. In the



second part, we transform the rooted binary tree � = into a
binary tree � = = by replacing each leaf 
 of �&= by an isomor-
phic binary subtree rooted at 
 on 18 vertices (see Fig. 2).
Each one of these binary subtrees rooted at each leaf-vertex
 of �O= contains 9 leaves, 3 for each one of the three edges
of 6 adjacent to vertex 
 (since 6 is a 3-regular graph).
Moreover, for each edge of 6 , we add two particular paths
on �O= = to � . Finally, in the third part, in order to ensure that
each of the two paths on �&= = in � associated to each edge of6 are scheduled in the same phase of communication in any
schedule with � -phases number equal to 3, we transform the
binary tree �O= = into a binary tree � by adding new vertices
to �O= = (as will be described in the following), and adding,
for each edge of 6 , five new paths on � to � , ending the
transformation of the instance � into an instance � = .
A formal presentation of the transformation follows.

� Part I : Let
� 	�� log G 	 � 	 � and let � � � � 	��	� 
��G
����� � ,� � �4� �

. The construction of the rooted binary tree�O= in this part is made in three steps :
- step 1 : first, we consider

� PR� disjoint ordered-sets
of vertices, denoted by 987 � � � , � � �B� �

, where each
ordered-set 987 � � � is composed of � � � � different new ver-
tices. Formally, 9H7 � � � 	 ��
 ! �w� 
 !G �������u� 
 !��� !�� � , � � �+� �

,
where the ordered-set 987 � � �

represents the vertex set �
of 6 , i.e. 987 � � � 	���
�� � � 
��G ��������� 
��� 
�� � , with 
��� � � ,�.� �B� 	 � 	 . We define the vertex 
 � � ��987 � � � as the root
of � = .
- step 2 : next, for each vertex 
 !� �19H7 � � � with � even,�,� �N� �

, we construct a new directed symmetric line,
denoted by �

!� , of length / � � � 	 ��� �
" !��2�


 � (i.e., a line
with ��� �

"C!��2�
new vertices). Let �

!� and  �
!� denote the end-

vertices of the line �
!� , thus we connect the vertex  �

!� of �
!�

to vertex 
 !� .
- step 3 : finally, for each � , �M� �.� �

, and for each � ,�8� �,�!� � � � , we connect the vertex 
 !#"$�� ��987 � � 
 � � to
the vertex 
 !G#� "$� � 987 � � � and to the vertex �

! G�� of the line
�
! G#� (if �

! G#� exists).

In Figure 1 we show the construction of the binary tree�O= rooted at vertex 
 �� � 9H7 � � � from a given � -regular
graph 6 on 6 vertices, assuming � 	 � . By the construction
of the rooted binary tree �&= in the Part I, we claim the fol-
lowing (the proofs of the two claims are given in Appendix).

Claim 1 Given any vertex 
 !� � 987 � � � , � � �+� �
, �B�

�p�!� � � � , then its level in the binary tree �&= rooted at 
 � � �987 � � � (i.e. the number of arcs on the unique path from 
 !�
to 
 � � ), denoted by " �#
 !� � , is given by " �#
 !� � 	 �QP � � � 
� � � � "C!��2� .
Claim 2 Given any two paths 
 !# 
%$ & and 
 !� 
'$ (
on the rooted binary tree �&= beginning at any two vertices
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Figure 1. Construction of the rooted binary
tree � = in the Part I.


 !# � 
 !� �@987 � � � , �H� � � �
, �*)	 / , and ending at any two

vertices & � ( of � = respectively, then these two paths have
no a � -conflict.

v M
j
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j,5v M
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j,2,2v M
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Figure 2. Isomorphic binary subtree rooted at
each vertex 
��� of the Part II.

� Part II : Now, we transform the rooted binary tree �+= into a
binary tree � = = by replacing each leaf 
��� �
987 � � �

of � = ,�+� ��� 	 � 	 , by an isomorphic binary subtree rooted at 
���
on 18 vertices (see Fig. 2), 9 of which being leaves. The 9
leaves of the binary subtree rooted at each vertex 
+�� are de-
noted by 
���-, ��� 
���., G., � � 
���., G-, G � 
���-, � � 
���., /0, � � 
���., /1, G � 
���-, � � 
���., 2., � and
���-, 2., G , as is showed in Fig. 2. Moreover, we add to the
collection � of paths which is still empty, two particu-
lar paths on � = = for each edge 3 	 4 
 ! � 
 �05 of 6 , de-
noted by �76 � and �76G , which are �76 � 	 
��! , 8 
%$ 
���-, # , G and�%6G 	 
���-, # "2� 
'$ 
��! , 8 �2� , G , where the values of � (resp. / )
are selected from 9�� � � �
:<; (resp. 9�� �>=C�
?<; ) such that a dif-
ferent value of � (resp. / ) is chosen for each edge incident
to 
 ! (resp. 
 � ). In Figure 3, we show these two paths cor-
responding to an edge 3 of an underlying 3-regular graph6 , where the values of � and / are equal to 3 and 2 respec-
tively.� Part III : Finally, in order to ensure that the paths �@6 � and



� 6G on � = = in � , associated to each edge 3 of 6 , are sched-
uled in the same phase of communication (i.e. colored with
the same color) in any schedule with � -phases number equal
to 3, we transform the binary tree �+= = into a binary tree �
by adding other new vertices to �&= = , and for each edge 3 of6 , we add to � other five new paths on � as follows. Let
3 	 4 
 ! � 
�� 5 be any edge of 6 and let �76 � 	<
��! , 8 
'$ 
���., # , G
and �%6G 	 
���., # "$� 
 $ 
��! , 8 �2� , G be the paths on � = = in � as-
sociated to 3 , with � � 9�� � � �
:<; and /�� 9 � �>=C�
?<; . It is
easy to verify that, by the construction of �+= = in Part II, the
lengths of the paths �'6 � and �%6G (i.e., the number of arcs in �'6 �
and �76G respectively) are equals. Let  6 be length of the path�%6 � , then it is easy to verify that  6 is odd, with  6 3 � � P � .
Let / 6 	  6 
 � and let � 6 	 � / 6 � � � 
 � . Then, for each path� 6 � we construct a different directed symmetric line of length/ 6 , and we denote its vertices by

) 6���*) 6G �������u��) 6#�� �2� , where) 6 � and
) 6#�� �2� are the end-vertices of such a line (see Fig.

3). Next, we connect the vertex
) 6 � of such a line to vertex
��! , 8 �2� , � of �O= = . We add a new vertex denoted by � 6 and we

connect it to vertex
) 6� � of the added line. Finally, we add

to � other five new paths on � associated to edge 3 of 6 ,
which are �76� 	 �%6/ 	�
��! , 8 
 $�� 6 , �%6� 	 ) 6# � �2� 
 $�� 6 ,
and �%62 	 �%6	 	 ) 6#�� �2� 
%$ 
��! , 8 �2� , G (see Fig. 3). At the
end of this part, the binary tree � and the collection � of
paths on � constitute the desired instance �-= of the rout-
ing schedule problem on binary trees under the 687E9 � � �
model. As remarked above, the paths � 6I , � � F;��
 , are
blockers that make sure that � 6 � and �76G are scheduled in the
same phase in any schedule with � -phases number equal to
3. A � -regular graph and part of the resulting instance �-= of
the message routing schedule problem on binary trees under
the 687E9 � � � model with allowance � 	 � are sketched in
Figure 3. The vertices of the graph 6 on the left side of the
Figure 3 correspond to the black vertices of the binary tree� on the right side. The dotted edge between the nodes 
 �
and 
 / of 6 corresponds to the seven dotted paths indicated
on � . The subtrees rooted at the vertices 
+�� �
987 � � �

are
shown only for the two relevant vertices.

Now we show that there is a schedule with � -phases
number equal to 3 for � in � if and only if a proper edge-
coloring with 3 colors exists for 6 . Assume that we have
a 3-coloring for 6 . For each edge 34� � , we schedule the
paths �76 � and �%6G in the phase given by the color of the edge
3 . Since any two paths in each one of the sets 9*� 6 � � �%6� � �76/ ; ,
9*�%6G � �762 � �76	 ; , 9��%6 � � �%62 � �76	 ; and 9��%6� � �%6/ � �76� ; have a � -conflict,
then the paths �76I , � � F8��
 , are scheduled as follows. The
paths �76� and �76/ are scheduled in the two phases that are still
available. The path �76� is scheduled in the same phase that�%6 � and �76G . Finally, the paths �'62 and �76	 can be also sched-
uled in the two phases that are still available. Moreover, let
3 	 4 
 ! � 
 �.5 be any edge of 6 , thus by Claim 2, it is clear that
only the paths beginning at the leaves 
+�! , 8 (resp. 
���., � ) of
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Figure 3. Partial construction of �-= .
� , with � � 9�� � � �
:<; (resp. � � 9�� � � �
:<; ), of the subtree
rooted at 
��! (resp. 
��� ) have a � -conflict between them,
because they share in the

= ��� position, the arc that joins the
vertex 
 �! (resp. 
 �� ) to its vertex father, but they have no
� -conflict with any other path beginning at the leaves 
+�
 , I
of � , with F�� 9 � � � � : ; , of the subtree rooted at any vertex
��
 , with ? )	 � (resp. ? )	 � ), which yields a valid sched-
uled in � with � -phases number of � equal to 3.
Conversely, assume that there is a schedule in � with � -
phases number of � equal to 3. The blockers make sure
that in such a schedule the paths � 6 � and �%6G in � (for each
edge 3 of 6 ) are assigned into the same phase of communi-
cation. Let 3 	 4 
 ! � 
�� 5 , thus by the transformation of � into�w= , the paths ��� � and ��� G in � associated to any edge � of 6 ,
� )	 3 , which has as end-vertex also the vertex 
 ! (resp. 
�� )
should be assigned in a different phase of communication
of the one assigned to the paths �'6 � and �%6G , because these
paths have a � -conflict. Moreover, if � is not adjacent to
3 , by Claim 2, no any two paths in 9*��� � � ��� G � �76 � � �76G ; have a
� -conflict. As consequence, if we give to each edge 3H� �
the color corresponding to the phase assigned to the paths�%6 � and �%6G , we obtain a proper 3-coloring for the edges of 6 .
We have shown that computing an optimal schedule for� yields an answer to the NP-complete problem EDGE-
COLORING. Since the construction of � and � can be
done in polynomial time, the theorem follows. �



Theorem 2 The problem of finding an optimal offline
schedule on binary trees under the bufferless routing model
is NP-hard.

Proof : (by reduction from EDGE-COLORING).
Consider the instance � = of the routing scheduling problem
on binary trees under the 687E9 � � � model obtained in The-
orem 1. Let � 	 � and let  be the length of the longest
path in � = . We transform the instance ��= into an instance�w= = of the routing scheduling problem on binary trees under
the bufferless routing model in which all paths in it have
length equal to  as follows. Let ��� be the set of paths in�w= having as final vertex the vertex 
 of � . Construct a new
directed line and add it to vertex 
 in such a way that any
path �,� ��� can be extended in order to have a length equal
to  . It is clear that the above transformation preserves the
2-conflictness of the paths in ��= , and therefore in a similar
way as in Theorem 1, it is easy to see that there is an sched-
ule of length  'P � for the instance �-= = if and only if a proper
edge-coloring with 3 colors exists for 6 . �

3. A 2-approximation algorithm for trees

In this section, we give an offline 2-approximation al-
gorithm to compute a message scheduling problem on tree
networks under the 687E9 � � � model, for any fixed value of
� , �B35� . The main ideas of the algorithm uses an approach
similar to that used by Ranade, Schleimer and Wilkerson
[12] in the context of the bufferless routing model.

Let � be a collection of paths associated to any set �
of messages to be routed on a tree � under the 687E9 � � �
model.

Definition 4 A total order D on the paths of � is 2-entrant
if it is possible to associate to each path � of � a set
entrance(� ) of arcs lying on � such that :
(i) entrance(� ) contains at most 2 arcs and
(ii) if ��D �>= and � and �>= have a � -conflict, then some arc
in entrance(�>= ) lies on � .

Clearly, any collection of paths on a tree has a total orderD � 2-entrant as follows. Pick some node of the tree � to
be the root and for any path � ��� let its highest point be
the node on � closest to the root. Again for any path �M�M�
let entrance(� ) be the two arcs in � adjacent to the highest
point of � if such two arcs exist, otherwise let entrance(� )
be the only one arc in � beginning or ending at the highest
point of � . For any two paths � and � = in � , say � D � �>=
iff the highest point of � is higher than that of �^= , breaking
ties arbitrarily. Thus, by Definition 4, D � is a total order
2-entrant on any collection of paths on a tree.

Now we present the algorithm which uses a greedy strat-
egy as follows.

Algorithm
1. Choose a total order D � on the paths of � as it is showed
above. Initialize all paths of � to have no assigned phase
of communication.
2. Consider the paths of � in increasing order by D � and
assign to each path the smaller possible phase of commu-
nication such that there are no � -conflicts with paths that
have already been assigned a phase of communication.

Theorem 3 Let � be a collection of paths associated to any
set of messages to be routed on a tree � under the 687:9 � � �
model, with �M3 � . Let ��� be the � -congestion of � . Using
the greedy algorithm above, the � -phases number of � is at
most equal to �+��� 
 � .
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Appendix

Proof of Claim 1 :
We prove this claim showing that the level of any vertex
 !� �
987 � � � of the rooted binary tree �&= verifies the follow-
ing recurrence relation :
� " ��
 ! � � 	 �

" ��
 !� � 	 " ��
 !� "2�*� P ��� �
" !��2�

, if ��3 �
By the construction of � = in Part I (see Section 2), the above
recurrence relation is trivially true for � 	 � and for � even.
Thus, we only need to show that this recurrence relation
is true for any � odd, � 3 � . Let � be an odd integer,
��3 � , and let � 
5� 	 �����EP ����� P ����� P!�����
	

� � ��� , with
& � D &'G�D ����� D &�
 � � "$� � , where � � � 
5� � is the num-
ber of � =�� in the binary representation of the even integer
� 
 � . Let 
 8 "$�� ��987 � � 
 � � be the vertex-root of the
minimal subtree in � = containing the vertices 
 !� "$� and 
 !� ,� � � 
 � D � . Let 
 8
 and 
 8
 �2� be two consecutive
vertices in the ordered-set 987 � � � such that 
 8
 is the left
children of 
 8 "$�� . Thus, by construction of �&= , it is clear
that ? is odd and the vertices 
 8 "$�� and 
 8
 �2� are connected
by a line of length ��� �

" 8 �2� PM� . Again, by construction of�O= , since � 
�� is even and equal to ����� P �����wP ����� P �����
	 � � ��� ,
with & � D &'G+D ����� D &�
 � � "$� � , then the value of ? is equal
to
� "$�G
� � . Moreover, the vertices 
 8
 �2� and 
 !� are necessarily

connected by a line of length & � . The following relation-
ships can be easily obtained from the construction of �a= .
( F � ) � 	 � 
 & �
( F G ) " ��
 !� "$�*� 	 " �#
 8
 � P�� ���I
� � � ��� � " � !#" � � � I ���2� P�� �
( F � ) " ��
 8
 �2� � 	 " ��
 8
 � P � � �

" 8 �2�
( F / ) " ��
 !� � 	 " ��
 8
 �2��� P & �
Computing the sum of the right hand of ( FwG ), we get
( F � ) " ��
 !� "$� � 	 " �#
 8
 � P ��� �

" 8 �2� 
 ��� �
"C!��2� P & � ,

and replacing ( F � ) and ( F � ) in ( F./ ), we get " ��
 !� � 	
" ��
 !� "$� � P ��� �

"C!��2�
, which ends the proof. �

Proof of Claim 2 :
Let 
 !# 
%$ & and 
 !� 
'$ ( be any two paths on the

rooted binary tree � = constructed in Part I of the Theo-
rem 1 (see Section 2) beginning at vertices 
 !# � 
 !� ��987 � � � ,�8� �:� �

, �	)	 / , and ending at any two vertices & and (
of �O= respectively. Let 
 8
 ��987 � � � be the vertex-root of
the minimal subtree in �&= containing the vertices 
 !� and 
 !# ,
and let 
��� ��987 ��� � be an end-vertex of the first possible arc
shared for the paths 
 !# 
%$ & and 
 !� 
 $ ( respectively.
Thus, by the construction of �&= , it is sufficient to consider
only the two following cases :
- case 1 : 
��� 	 
 8
 (see Fig. 4.a). By construction of �+= ,
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Figure 4. (a) (resp. (b)) Case � (resp. � ) of
Claim 2.

it is clear that " ��
 8
 � D " �#
 !� � and " �#
 8
 � D " ��
 !# � . Let� � 	 " �#
 !# � 
!" ��
 8
 � and let � G�	 " ��
 !� � 
!" �#
 8
 � .
Assume that the paths 
 !# 
'$ & and 
 !� 
%$ ( have a
� -conflict. Thus, assuming w.l.o.g. that ��� / , the � -
conflictness between these two paths implies that � G 
� � D � , and by using the Claim 1, it is analogous to the
condition � � ��
5/ � � � " !��2� D � . However, ��
5/�3 �
and � �

"C!��2� 3 � by construction of �&= , and therefore
� � � 
�/ � � � " !��2� � � , which gives a contradiction.
- case 2 : 
��� )	 
 8
 (see Fig. 4.b). Again we assume
w.l.o.g. that ���</ . Thus, by construction of �&= , we have
that ��� � ��� , " ��
 8
 � D " �#
 !# � , " ��
 8
 � D " ��
 �� �
and " �#
��� � D " �#
 !� � . Let � � 	 " �#
 !# � 
 " �#
 8
 � ,� G,	 " �#
��� � 
 " �#
 8
 � and � � 	 " �#
 !� � 
 " �#
��� � . As-
sume that the paths 
 !# 
 $ & and 
 !� 
%$ ( have a � -
conflict. The � -conflictness of these two paths implies that� � P � G 
�� � D � . However, by construction of �&= , it is
easily verify that
( F�� ) � � 3 � 
��
( F�� ) � G 3 ��� �

"
�
�2� P��

( F � ) � � � � !#" �I!� � � � � � " � � � I � �2� P�� � 	 ��� �
"
�
�2�



��� �

" !��2� P � 
 �
Therefore, by using ( F�� ), ( F�� ) and ( F � ), we have that� � P �BG 
 � � 3 � 
 ��P �aP ��� �

" !��2�
. Moreover,

by hypothesis, � 
 �RP<��� � and � �
"C!��2� 3 � , which

implies that � � P��BG 
�� � � � , giving a contradiction to
the assumption of � -conflictness and ending the proof. �


