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Abstract. In this paper we show that the routing permutation problem
is NP-hard even for binary trees. Moreover, we show that in the case of
unbounded degree tree networks, the routing permutation problem is
NP-hard even if the permutations to be routed are involutions. Finally,
we show that the average-case complexity of the routing permutation
problem on linear networks is n/4 + o(n).
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1 Introduction

Efficient communication is a prerequisite to exploit the performance of large
parallel systems. The routing problem on communication networks consists in
the efficient allocation of resources to connection requests. In this network, es-
tablishing a connection between two nodes requires selecting a path connecting
the two nodes and allocating sufficient resources on all links along the paths as-
sociated to the collection of requests. In the case of all-optical networks, data is
transmitted on lightwaves through optical fiber, and several signals can be trans-
mitted through a fiber link simultaneously provided that different wavelengths
are used in order to prevent interference (wavelength-division multiplexing) [4].
As the number of wavelengths is a limited resource, then it is desirable to estab-
lish a given set of connection requests with a minimum number of wavelengths.
In this context, it is natural to think in wavelengths as colors. Thus the routing
problem for all-optical networks can be viewed as a path coloring problem: it
consists in finding a desirable collection of paths on the network associated with
the collection of connection requests in order to minimize the number of colors
needed to color these paths in such a way that any two different paths sharing
a same link of the network are assigned different colors. For simple networks,
such as trees, the routing problem is simpler, as there is always a unique path
for each communication request.

This paper is concerned with routing permutations on trees by arc-disjoint paths,
that is, the path coloring problem on trees when the collection of connection re-
quests represents a permutation of the nodes of the tree network.

Previous and related work. In [1], Aumann and Rabani have shown that
O(lﬂf—") colors suffice for routing any permutation on any bounded degree net-
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work on n nodes, where 3 is the arc expansion of the network. The result of



Aumman and Rabani almost matches the existential lower bound of Q(ﬁ%) ob-
tained by Raghavan and Upfal [18]. In the case of specific network topologies,
Gu and Tamaki [13] proved that 2 colors are sufficient to route any permutation
on any symmetric directed hypercube. Independently, Paterson et al. [17] and
Wilfong and Winkler [22] have shown that the routing permutation problem
on ring networks is NP-hard. Moreover, in [22] a 2-approximation algorithm is
given for this problem on ring networks. To our knowledge, the routing permu-
tation problem on tree networks by arc-disjoint paths has not been studied in
the literature.

Our results. In Section 2 we first give some definitions and recall previous
results. In Section 3 we show that for arbitrary permutations, the routing per-
mutation problem is NP-hard even for binary trees. Moreover, we show that the
routing permutations problem on unbounded degree trees is NP-hard even if
the permutations to be routed are involutions, i.e. permutations with cycles of
length at most two. In Section 4 we focus on linear networks. In this particular
case, since the problem reduces to coloring an interval graph, the routing of any
permutation is easily done in polynomial time [14]. We show that the average
number of colors needed to color any permutation on a linear network on n ver-
tices is n/4+ o(n). As far as we know, this is the first result on the average-case
complexity for routing permutations on networks by arc-disjoint paths. Finally,
in Section 5 we give some open problems and future work.

2 Definitions and preliminary results

We model the tree network as a rooted labeled symmetric directed tree T =
(V, A), where processors and switches are vertices and links are modeled by
two arcs in opposite directions. In the sequel, we assume that the labels of the
vertices of a tree T' on n vertices are {1,2,...,n} and are such that a postfix tree
traversal would be exactly 1,2,...,n. This implies that for any internal vertex
labeled by ¢ the labels of the vertices in his subtree are less than . Given two
vertices ¢ and j of the tree T, we denote by <, j> the unique path from vertex
i to vertex j. The arc from vertex i to its father (resp. from the father of i to 7)
(1 <i<n-—1)islabeled by i* (resp. i~). See Figure 1(a) for the linear network
on n = 6 vertices rooted at vertex i = 6. We want to route permutations in
Sy, on any tree T on n vertices. Given a tree T and a vertex ¢ we call T'(¢) the
subtree of T" rooted at vertex «¢.

We associate with any permutation a graphical representation. To represent
the permutation o we draw an arrow from ¢ to o(4), if ¢ # o(¢), that is, the path
<i,o(i)>, 1 < i < n. The arrow going from i to (i) crosses the arc j* if and
only if ¢ is in T'(j) and o(4) is not in 7'(j) and it crosses the arc j~ if and only
if ¢ isnot in T'(j) and o(d) isin T'(j), 1 <j<n-—1.

Definition 1. Let T be a tree on n vertices and o be a permutation in S,. We
define the height of the arc it (resp. height of the arc i~ ), 1 <i<n-—1,
denoted h}(o,i) (resp. hy(0,1)), as the number of paths crossing the arc it
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Fig. 1. (a) Labeling of the vertices and the arcs for the linear network on n = 6 vertices
rooted at vertex ¢ = 6. (b) representation of permutation ¢ = (3,1,6,5,2,4) on the
linear network given in (a).

(resp. i~ ); that is, h"T'(O', )=jeT@) | o(j) ¢ T} (resp. hy(o,i) = |{j ¢
(@) [ o(j) € T()}H)

Lemma 1. Let T be a tree with n vertices. For all o in S, and for all i €

{1,2,...,n— 1}, hif(o,i) = hy(0,i).

This lemma is straightforward to prove. It tells us that in order to study the
height of a permutation on a tree on n vertices, it suffices to consider only the
height of the labeled arcs it.

Definition 2. Given a tree T' and a permutation o to be routed on T', the height
of o, denoted hr(c), is the mazimum number of paths crossing any arc of T
hy (o) = max h} (o, ).

2

For example the permutation ¢ = (3,1,6,5,2,4) on the linear network in Figure
1(a) has height 2 (see Figure 1(b)). The maximum is reached in the arcs 4%F.

Definition 3. Given a tree T' and a permutation o to be routed on T', the col-
oration number of ¢, denoted Rr(c), is the minimum number of colors as-
signed to the paths on T associated with o such that no two paths sharing a same
arc of T are assigned the same color.

Clearly, for any permutation ¢ of the vertex set of a tree T', we have Rp (o) >
hr (o). For linear networks the equality holds, because the conflict graph of
the paths associated with o is an interval graph (see [12]). Moreover, optimal
vertex coloring for interval graphs can be computed efficiently [14]. However, for
arbitrary tree networks, equality does not hold as we will see in the Section 3.3.

3 Complexity of computing the coloration number

We begin this section by showing the NP-completeness of the routing permu-
tations problem in binary trees, and then for the case of routing involutions
on unbounded degree trees. Finally, we discuss some polynomial cases of this
problem and we show, by an exemple, that in the case of binary trees having at
most two vertices with degree equal to 3, the equality between the height and
the coloration number of permutations does not hold.



3.1 NP-completeness results

Independently, Kumar et al. [15] and Erlebach and Jansen [6] have shown that
computing a minimal coloring of any collection of paths on symmetric directed
binary trees is NP-hard. However, the construction given in [15, 6] does not work
when the collection of paths represents a permutation of the vertex set of a binary
tree. Thus, by using a reduction similar to the one used in [15,6] we obtain the
following result.

Theorem 1. Let ¢ € S, be any permutation to be routed on a symmetric di-
rected binary tree T on n vertices, then computing Ry(c) is NP-hard.

Sketch of the proof. We use a reduction from the ARC-COLORING problem
[19]. The ARC-COLORING problem can be defined as follows : given a posi-
tive integer k, an undirected cycle C), with vertex set numbered clockwise as
1,2,...,n, and any collection of paths F' on C,,, where each path <v,w> € F
is regarded as the path beginning at vertex v and ending at vertex w again
in the clockwise direction, does F' can be colored with k colors so that no two
paths sharing an edge of (), are assigned the same color 7 It is well known that
the ARC-COLORING problem is NP-complete [10]. Let I be an instance of the
ARC-COLORING problem. We construct from I an instance I’ of the routing
permutations problem on binary trees, consisting of a symmetric directed binary
tree 7" and a permutation-set of paths F’ on 7' such that F' can be k-colored if
and only if F’ can be k-colored. Without loss of generality, we may assume that
each edge of (), is crossed by exactly & paths in F'. If some edge of C), is crossed
by more than & paths, then this can be discovered in polynomial time, and it
implies that the answer in this instance I must be “no”. If some edge [i, i+ 1] of
C,, 1s crossed by r < k paths, then we can add k — r paths of the form <i,¢4+1>
(or <i, 1> if i = n) to F' without changing its k-colorability.

Let B(i) C F (resp. E({) C F) be the subcollection of paths of F' beginning
(resp. ending) at vertex i of Cy, 1 <4 < n. Thus, by the previous hypothesis, it
is easy to verify that the following property holds for instance 7.

Claim. For all vertices i of Cy, |B(¢)| = |E()].

Construction of the binary tree T of I’: first, construct a line on 2k+n vertices de-
noted from left to right by lx, lg—1,... ,{s,l1,v1,v2, ... ,v5,71,79,... 7. Next,
for each vertex I; (resp. r;), 1 < i < k, construct a new different line on 2k + 1
vertices denoted from left to right by 11}, 112, ... ¥ wl;, ri¥, rlf_l, oo, 7} (resp.
b 1?2, ek wrg, ek rrf_l, ...,rr}) and add to T the arc set {(wl;,;),

(L, wh)} (resp. {(wry, 1), (ri, wr;)}). Finally, for each vertex v, 1 < ¢ < n, if
|B(é)| > 1, then construct a new different line on a; = |B(é)|— 1 vertices denoted
by v}, v, ..., v and add to T the arc set {(v},v;), (vi,v})}.

Construction of the permutation-set of paths F’ of I’: for each path <i,j> € F,
let b; (vesp. e;) be the first vertex of T in {v;, v}, ..., v} (vesp. {vj, v]l», . ,v‘;xj})
not already used by any path in F’ as beginning-vertex (resp. ending-vertex),
then we consider the following two types of paths in F :

e Type 1 : i < j. Then add to F' the path set {<b;,e;>}.



o Type 2 : i > j. Let r, (resp. ly) be the first vertex of T'in {r1, 72, ..., 7k} (resp.
{l1,l2,. .., lx}) such that the arc (rp,wr,) (resp. (I, wly)) of T has not be al-
ready used by any path in F’ then add to F’ the path set {<b;, rr11,>, <l7°11,, rl;>,
<ll;, e;>}. In addition, for each ¢, 1 < ¢ < k, add to F’ the following path sets :

{<l rll>:2<j<k}u{<riflli>:1<s<k}and {<lr‘g,rr‘g> 12< <

2
kY U{<rri lri> 1 < s <k}. The paths <ll{,rl{> and <lr‘g,rr‘g>, 2<j <k,
1 < i < k, act as blockers. They make sure that all the three paths in F’ cor-
responding to one path in F of type 2 are colored with the same color in any
k-coloration of F’. The other paths that we call permutation paths, are used to
ensure that the path collection F’ represents a permutation of the vertex set

of T. In Figure 2 we present an example of this polynomial construction. By
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Fig. 2. Partial construction of I’ from I, where k = 3.

our construction, it is easy to check that the set of paths F on T represents a
permutation of the vertex set of 7', and that there is a k-coloring of F' if and
only if there is a k-coloring of F”. d

In the case of unbounded degree symmetric directed trees, Caragiannis et
al. [3] have shown that the path coloring problem remains NP-hard even if the
collection of paths is symmetric (we call this problem the symmetric path color-
ing problem), i.e., for each path beginning at vertex v; and ending at vertex va,
there also exists its symmetric, a path beginning at v, and ending at v1. Thus,
using a polynomial reduction from the symmetric path coloring problem on trees
[3] we have the following result which proof is omitted for lack of space.

Theorem 2. Let o € I, be any involution to be routed on an unbounded degree
tree T on n vertices. Then computing Ry (o) is NP-hard.

3.2 Polynomial cases

As noticed in Section 2, the coloration number associated to any permutation
to be routed on a linear network can be computed efficiently in polynomial time
[14]. In the case of generalized star networks, i.e., a tree network having only one
vertex with degree greater to 2 and the other vertices with degree at most equal to
2, Gargano et al. [11] show that an optimal coloring of any collection of paths on
these networks can be computed efficiently in polynomial time. Moreover, in [11]



is also showed that the number of colors needed to color any collection of paths
on a generalized star network is equal to the height of such a collection of paths.
Thus, based on the results given in [11] we obtain the following proposition.

Proposition 1. Given a generalized star network G on n vertices and a permu-
tation o € Sy, to be routed on G, the coloration number Rg (o) can be computed
efficiently in polynomial time. Moreover, Rg (o) = hg (o) always holds.

3.3 General trees

Given any permutation o € S, to be routed on a tree 7" on n vertices, the
equality between the heigth hr(o) and the coloration number Ry (o) does not
always hold. In Figure 3(a) we give an exemple of a permutation ¢ € S1g to be
routed on a tree T on 10 vertices, which height hr (o) is equal to 2. Moreover,
in Figure 3(b) we present the conflict graph G associated with o, that is an
undirected graph whose vertices are the paths on 7T associated with ¢, and in
which two vertices are adjacent if and only if their associated paths share a same
arc in T'. Thus, clearly the coloration number Rp (o) is equal to the chromatic
number of (. Therefore, as the conflict graph G has the cycle Cy as induced
subgraph, then the chromatic number of G is equal to 3, and thus Rr (o) = 3.
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Fig.3. (a) A tree T on 10 vertices and a permutation o = (5,4,8,2,6,3,9,10,7,1) to
be routed on T'. (b) The conflict graph G associated with permutation o in (a).

The best known approximation algorithm for coloring any collection of paths
with height h on any tree network is given in [7], which uses at most [3A] colors.
Therefore it trivially also holds for any permutation-set of paths with height h
on any tree.

Proposition 2. Given a tree T' on n vertices and a permutation o € S, to be
routed on T with heigth hy (o), there exists a polynomial algorithm for coloring
the paths on T associated with o which uses at most [ghT(U)] colors.

4 Average coloration number on linear networks

The main result of this section is the following:



Theorem 3. The average coloration number of the permutations in S, to be
routed on a linear network on n vertices is

%_1_ %n1/3+0(n1/6)

where A = 0.99615 .. ..

To prove this result, we use the equality between the height and the coloration
number (see Section 2). Then our approach, developed in Subsections 4.1 and
4.2,1s as follows: at first we recall a bijection between permutations in S, and
special walks in N x N called “Motzkin walks”, which are labeled in a certain
way. The bijection is such that the height parameter is “preserved”. Then we
prove Theorem 3 by studying the asymptotic behaviour of the height of these
walks. On the other hand, we get in Subsection 4.3 the generating function of
permutations with coloration number k&, for any given k. This gives rise to an
algorithm to compute exactly the average coloration number of the permutations
for any fixed n.

4.1 A bijection between permutations and Motzkin walks

A Motzkin walk of length n is a (n+1)-uple (sg, s1, ..., sp) of points in N x N
satisfying the following conditions:

— Forall 0 <i<n,s = (i,y) with y; > 0;

~ Yo =Un=0;

— For all 0 < ¢ < n, yiy1 — y; equals either 1 (North-East step), or 0 (East
step), or —1 (South-East step);

The height of a Motzkin walk w is H(w) = {(gnlax }{yi}.
1€10,1,...n

Labeled Motzkin walks are Motzkin walks in which steps can be labeled by
integers. These structures are in relation with several well-studied combinatorial
objects [8,20,21] and in particular with permutations. The walks we will deal
with are labeled as follows:

— each South-East step (¢, 4;) — (¢+1,y; — 1) is labeled by an integer between
1 and y;? (or, equivalently, by a pair of integers, each one between 1 and y;);

— each East step (¢,y;) — (1 4+ 1,;) is labeled by an integer between 1 and
Qyi + 1.

Let P, be the set of such labeled Motzkin walks of length n. We recall that
Sy, is the set of permutations on [n]. The following result was first established
by Francon and Viennot [9]:

Theorem (Francon-Viennot) There is a one-to-one correspondence between the
elements of P, and the elements of S,.

Several bijective proofs of this theorem are known. Biane’s bijection [2] is par-
ticular, in the sense that it preserves the height: to any labeled Motzkin walk of



length n and height & corresponds a permutation in S, with height & (and so
with coloration number k). We do not present here the whole Biane’s bijection;
we just focus on the construction of the (unlabelled) Motzkin walk associated
to a permutation, in order to show that the height is preserved. This property,
which is not explicitely noticed in Biane’s paper, is essential for our purpose.
Biane’s correspondence between a permutation ¢ = (o(1),0(2),...,0(n))
and a labeled Motzkin walk w = (sg, s1,...,s,) is such that, for 1 <i < n):

— step (s;_1, s;) is a North-East step if and only if (i) > i and o= (i) > i;
— step (s;_1, s;) is a South-East step if and only if o(i) < i and o= (i) < i
— otherwise, step (s;—1, s;) is an East step.

Now, for any 1 < 7 < n, the height of point s; in w is obviously equal to
the number of North-East steps minus the number of South-East steps in the
shrinked walk (sg,s1,...,s;). On the other hand, we can prove easily that the
height of arc ¢T in o is equal to the number of integers 4
j < i such that o(j) > j and ¢=1(j) > j, minus the
number of integers j < i such that o(j) < j and ad &
0~1(j) < j. This proves the property. We present in '

Figure 4 an exemple of correspondence. The above < < . <}&> V; 1> <>
description permits to construct the “skeleton” of

the permutation, in the center of the figure, given ‘

the Motzkin walk on the top. Then the labeling of @ O
the path allows to complete the permutation. This -

is described in detail in [2] and in the full version of Fig.4: From a walk to a
this paper, in preparation. permutation

4.2 Proof of Theorem 3

In [16], Louchard analyzes some list structures; in particular his “dictionary
structure” corresponds to our labeled Motzkin walks. We will use his notation
in order to refer directly to his article. From Louchard’s theorem 6.2, we deduce
the following lemma:

Lemma 2. The height Y*([nv]) of a random labeled Motzkin walk of length n
after the step [nv] (v € [0,1]) )} has the following behavior
Y*([nv]) — no(l — v)
vn

where ‘=7 denotes the weak convergence and X s a Markovian process with
mean 0 and covariance C(s,t) = 25*(1 — )%, s < t.

= X(v),

Then the work of Daniels and Skyrme [5] gives us a way to compute the maximum
of Y*([nv]), that is the height of a random labeled Motzkin walk.

Proposition 3. The height of a random labeled Motzkin walk Y™ is

max Y™ ([nv]) = %+m\/n/2+0(n1/6), (1)

v



where m is asymptotically Gaussian with mean FE(m) ~ An~Y5(1/2)1/% and
variance o*(m) ~ 1/8 and A = 0.99615 . . ..

In the formula (1) of the above Proposition 2, the only non-deterministic
part is m which is Gaussian. So we just have to replace m by E(m) to prove
Theorem 3.

4.3 An algorithm to compute exactly the average coloration
number

We just have to look at known results in enumerative combinatorics [8,21] to
get the generating function of the permutations of coloration number exactly
k, that 1s

(k,!)ZZZk
P ()P (2)

with Py(z) = 1, Pi(z) = z — by and Ppy1(2) = (t = bn) Pn(2) — Ap Pa—1(z) for
n > 1, where P* is the reprocical polynomial of P, that is P(z) = z"P,(1/z)
for n > 0.

This generating function leads to a recursive algorithm to compute the num-
ber of permutations with coloration number &, denoted by hy, ;.

Proposition 4. The number of permutations in Sy, i follows the following re-
currence

0 if n < 2k
how = § (RY)? if n= 2k
- 2222-1 p(0)hn_;  otherwise

where p(i) is the coefficient of 2% in Pr i (2)Pr(z).

From this result we are able to compute the average height of a permutation as

it is 71(71) = k>0 khn /0l

5 Open problems and future work

It remains open the complexity of routing involutions on binary trees by arc-
disjoint paths. The average coloration number of permutations to be routed
on general trees is also an interesting open problem. Computing the average
coloration number of permutations to be routed on arbitrary topology networks
seems a very difficult problem.
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