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Abstract

A b-coloring of a graph G by k colors is a proper k-coloring of the vertices of G such
that in each color class there exists a vertex having neighbors in all the other £ — 1
color classes. The b-chromatic number x;(G) of a graph G is the largest integer
k such that G admits a b-coloring by k colors. We present some lower bounds
for the b-chromatic number of connected bipartite graphs. We also discuss some
algorithmic consequences of such lower bounds on some subfamilies of connected
bipartite graphs.
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1 Introduction

We consider finite undirected graphs without loops or multiple edges. A col-
oring (i.e. proper coloring) of a graph G = (V, E) is an assignment of colors to
the vertices of GG, such that any two adjacent vertices have different colors. A
coloring is called a b-coloring, if for each color 7 there exists a vertex x; of color
i such that for every color j # i, there exists a vertex y; of color j adjacent to
x; (such a vertex x; is called a dominating vertex for the color class 7). The
b-chromatic number x,(G) of a graph G is the largest number k such that G
has a b-coloring with &k colors. The b-chromatic number of a graph was intro-
duced by R.W. Irving and D.F. Manlove [1] when considering minimal proper
colorings with respect to a partial order defined on the set of all partitions of
the vertices of a graph. They proved that determining y,(G) is NP-hard for
general graphs, but polynomial-time solvable for trees. Kratochvil et al. [2]
have shown that determining x,(G) is NP-hard even for connected bipartite
graphs. Some bounds for the b-chromatic number of a graph are given in [1,3].
Our paper is organized as follows. In the next section we introduce some def-
initions. In Section 3, we give two lower bounds for the b-chromatic number
of connected bipartite graphs. We also discuss some algorithmic consequences
of such lower bounds on some subfamilies of connected bipartite graphs.

2 Preliminaries

Let G = (V,E) be a graph and let W C V be a subset of vertices. The
subgraph of G induced by W is denoted by G[W].

Let K, denote a complete bipartite graph on 2p vertices, that is, a bipartite
graph G = (AU B, E), where |A| = |B|=pand F = {{z,y} : v € A,y € B}.
We denote by K, ;,‘4 a complete bipartite graph K, without a perfect match-
ing M.

Let G = (AU B, E) be a bipartite graph. Let = be a vertex in G. We denote
by N(x) the set of neighbors of z, that is, N(z) = {y : zy € E}. More-
over, if z € A (resp. = € B), we denote by N(z) the set of non-neighbors
of z in B (resp. in A), that is, N(z) = {y : y € Band 2y ¢ E} (resp.
N(z)={y:y € Aandzy ¢ E}).

Let G = (AUB, E) be a bipartite graph. Let A = AjUA; and let B = ByUBy,
where Ag N A; = BoN By = (. We say that A; dominates By (resp. By domi-



nates Ap) if there exists at least one vertex x € A; (resp. y € By) such that
By € N(x) (resp. A9 € N(y)). Finally, we say that an edge zy € E is a
dominating edge in G if N(z) UN(y) = AU B.

The following result is easy to deduce.

Remark 2.1 Let G be a connected bipartite graph. If G has a dominating
edge, then x,(G) = 2.

So, in the sequel we consider only connected bipartite graphs without
dominating edges.

3 Main results

3.1 First lower bound
Theorem 3.1 Let G = (AU B, E) be a connected bipartite graph. If there
are subsets Ay C A and By C B such that :

(¢1) the induced subgraph G[Ao U By is isomorph to K, for some positive
integer p,
(ca) A\ Ap does not dominate By or B\ By does not dominate Ay,

then x»(G) > p.

Proof. Assume G = (AU B, E) verifies Conditions (¢1) and (c2). So, there
are subsets A9 C A and By C B such that, by Condition (¢;), G[Ay U By|

is isomorph to K z])/[ for some positive integer p. Let A; = A\ Ay and
B, = B\ By. By Condition (c2), we have that A; and B; does not domi-
nate simultaneously By and A respectively. Now, let Ay = {z1,22,...,2,}

and let By = {y1,¥2,...,Yp}. We want to construct a b-coloring of G with
at least p colors. For this, we assign to vertices z; and y; the color ¢ for each
1 = 1,2,...,p. In order to complete the coloring, we need to consider the
following cases :

- Case 1 : B; dominates Ag. We color the vertices in B; with color p + 1.
By Condition (cg), we have that A; does not dominate By which implies
that we can assign to each vertex in A; the color of one of its non-neighbor
vertices in By. Let v € By be a vertex adjacent to all vertices in Agy. Clearly,
the previous coloring is a b-coloring of G with p+1 colors, being the vertices
Z1,T2,...,Tp, v the dominant vertices for the color classes 1,2,...,p,p+1
respectively.



- Case 2 : A; dominates By. This case is analogous to the previous one.

- Case 3 : A; does not dominate By and By does not dominate Ag. We assign
to each vertex in A; the color p + 1 and each vertex v € B; is colored with
the smallest integer i € {1,2,...,p} such that v has no neighbors in Ay
colored with color 7. At this point, the previous coloring is proper but not
necessarily it is a b-coloring. Therefore, we consider the following cases :

* Case 3.1 : the color class p + 1 has no dominant vertex. This means
that each vertex in A; misses at least one color in the set {1,2,...,p}.
Therefore, we can recolor each vertex in A; with one of its missing colors
in {1,...,p}, converting the previous coloring into a new coloring using
p colors. Notice that after such recoloring, each vertex z; is a dominant
vertex for the color class i, for i =1, ..., p, which is a b-coloring of G’ with
p colors.

* Case 3.2 : the color class p+ 1 has at least one dominant vertex. Consider
the following process :

(a) Let ¢ be the smallest positive integer, with 1 < i < p, such that
vertex y; € By has no neighbors in A;. Notice that if such i does not
exist, then the current coloring is a b-coloring with p + 1 colors. In fact,
let v € A; be a dominant vertex for the color class p+1. Then, the vertices
Y1, Y2, - - -, Yp, v are dominant vertices for the color classes 1,2,...,p,p+1
respectively. So, assume that such ¢ < p exists. Let W; C B; be the
subset of vertices in B; colored with color ¢ and such that each one of
them has at least one neighbor in the set A;. Clearly, |W;| > 0 because,
there is at least one dominant vertex in A; for the color class p + 1 and
thus, it has at least one neighbor in By colored with color i. Now, if there
is a vertex w € W; such that Ay \ {z;} € N(w), then we swap vertices y;
and w and we repeat Step (a). Otherwise, we have that :

(b) Each vertex wy, € W; is non-adjacent to at least one vertex of Ay \ {x;},
say x¢,. S0, recolor wy with color t, for each wy € W;. Notice that at
this point, no vertex in A; has a neighbor colored with color i. The last
fact implies that there is no dominant vertex for the color class p + 1.
Therefore, we can recolor each vertex in A; with a missing color in the set
{1,2,...,p}, obtaining in this way, a b-coloring with p colors.

In all cases, we obtain a b-coloring of G with at least p colors. O

3.2 Second lower bound

Definition 3.2 Let G = (AU B, E) be a connected bipartite graph. Let
S = (a1, B1), ..., (ap, By) be a sequence of vertices in AU B, with a; € A,



B; C B, where a; # a; and B; N B; = () whenever i # j, constructed as
follows :

(i) ay € A is such that |N(ay)| = min{|N(a;)| : a; € A}. Set By := N(ay).
(ii) Assume that we have chosen (a1, By),. .., (a;, B;). We choose (a;+1, Bit1)
as follow§ :
° BJ Z N(CLZ'_H), for allj S 1.
* |N(ai11) \ Uj=; Bj| is minimum and not equal to zero. Set Bj,; :=
N(aiy1) \ Ui, B;.

Then, we say that S is a good-sequence of size p for G.

Theorem 3.3 Let G = (AU B, E) be a connected bipartite graph without
dominating edges. Let (a1, By), ..., (a,, By) be a mazimal good-sequence of
size p > 2 for G. Then, xp(G) > p.

Proof. We will construct a b-coloring of G with at least p colors. For this,
for each ¢ = 1,...,p, we color the vertices in {a;} U B; with color i. Let

=A\{ai,...,a,} and B'= B\ U/_; B;. Given such a precoloring, we will
extend it to the whole graph G as follows. If B’ # () then, we color each vertex
in B’ with color p + 1. Notice that, by construction, {ay,...,a,} € N(z), for
all x € B’. In fact, suppose that x € B’ is non-adjacent to some a;. Then,
x should be in B;, as = ¢ Ul . B;, a contradiction. Before extending such a
precoloring to the vertices in A’ we will show that vertices a; are dominating
vertices for the color 4, with 1 < i < p. Clearly, each vertex in B’ is a
dominating vertex for the color p + 1. By construction, there exists » € B;
adjacent to a;, for all j < 4, and also, B\ U;’:l B; € Nf(a;). Therefore,
vertex a; is a dominating vertex for color i. Now, let a € A’. As there is no
dominating edge in G, N (a) is not empty. We need to consider the following
cases :

e There exists B;, with 1 <7 < p, such that B; C N(a).
In such a case, we color vertex a with color .

e For all 4, with 1 <i < p, B; Z N(a).
In such a case, by maximality of the good-sequence, |N(a) \ U’_,B;| = 0.
Moreover by hypothesis, N(a) N B; # 0, for all 1 < i < p. Let jo = min{j :
N(a) C U_,B;}. Clearly, 1 < jo < p. However, |N(a)\ U "B;| # 0 and
N(a )mBJO # (). Therefore, |N(a) \ U,'B;| < |N(a]0)\u” 1B| which is
a contradiction with the choice of a;, instead of a in the construction. So,
this case there does not exist.

As all the cases have been considered, we have that G admits a b-coloring



with at least p colors. O
The following results are direct consequences of Theorem 3.3.

Corollary 3.4 Let G = (AU B, E) be a connected d-regular bipartite graph,
with |A| = |B] =n and d < n. If n—d is equal to a constant ¢ > 1 then, there
s a c-approximation algorithm for b-coloring G with the maximum number of
colors.

Proof. Let (a1, By), ..., (apy, By) be a maximal good-sequence of G constructed
as in Definition 3.2. Notice that |By| = n—d and |B;| < n—dfori € {2,...,p}.
Therefore, p > 2= =2 > %. By using Theorem 3.3, we know that we can
construct in polynomial time a b-coloring of G with at least p colors. There-
fore, xp(G) > p > d—ch > dicl. Indeed, it is easy to deduce that x,(G) < d+1,
which proves the result. g

Corollary 3.5 Let G = (AUB, E) be a connected bipartite graph, with |A| =
|B| = n. Let ¢ (resp. A) be the minimum (resp. mazimum) degree of G,
with 6 < A < n and n — 6 equal to a constant ¢ > 1. Then, there is a c-
approximation algorithm for b-coloring G with the maximum number of colors.

Proof. Let (a1, By), ..., (apy, By) be a maximal good-sequence of G constructed
as in Definition 3.2. Clearly, |B;| =n—A and |B;] <n—Afori € {2,...,p}.
Therefore, p > 25 > = =2 Indeed, as A <n—1and x,(G) <A+1<n
then, by using Theorem 3.3, the result holds. O
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