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Abstract

We study the independence number of a product of Kneser graph K(n, k) with it-
self, where we consider all four standard graph products. The cases of the direct, the
lexicographic and the strong product of Kneser graphs are not difficult (the formula for
α(K(n, k) �K(n, k)) is presented in this paper), while the case of the Cartesian prod-
uct of Kneser graphs is much more involved. We establish a lower bound and an upper
bound for the independence number of K(n, 2)2K(n, 2), which are asymptotically tend-
ing to n3/3 and 3n3/8, respectively. The former is obtained by a construction, which
differs from the standard diagonalization procedure, while for the upper bound the
`-independence number of Kneser graphs can be applied. We also establish some con-
structions in odd graphs K(2k+ 1, k), which give a lower bound for the 2-independence
number of these graphs, and prove that two such constructions give the same lower
bound as a previously known one. Finally, we consider the s-stable Kneser graphs
K(ks + 1, k)s−stab, derive a formula for their `-independence number, and give the
exact value of the independence number of the Cartesian square of K(ks+ 1, k)s−stab.
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1 Introduction

The Kneser graph, K(n, k), where n, k are positive integers such that n > k, has as the
vertices the k-subsets of an n-set, and two k-subsets are adjacent in K(n, k) if they are
disjoint. By the famous Erdős-Ko-Rado theorem [5], the independence number α(K(n, k))
of the Kneser graph K(n, k), where n ≥ 2k, equals

(
n−1
k−1
)
. The result was proven in the

language of sets (or hypergraphs), showing that
(
n−1
k−1
)

is the largest number of k-subsets of
an n-set that are pairwise non-disjoint. This note is motivated by various related questions
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that can be posed in different products of two Kneser graphs, or, in other words, in the
Cartesian product of families of k-subsets of an n-set.

Recall that for all of the standard graph products, the vertex set of the product of
graphs G and H is equal to V (G) × V (H) while their edge-sets are as follows. In the
lexicographic product G ◦ H (also called the composition and denoted by G[H]), vertices
(g1, h1) and (g2, h2) are adjacent if either g1g2 ∈ E(G) or (g1 = g2 and h1h2 ∈ E(H)). In
the strong product G � H of graphs G and H vertices (g1, h1) and (g2, h2) are adjacent
whenever (g1g2 ∈ E(G) and h1 = h2) or (g1 = g2 and h1h2 ∈ E(H)) or (g1g2 ∈ E(G) and
h1h2 ∈ E(H)). In the direct product G × H of graphs G and H two vertices (g1, h1) and
(g2, h2) are adjacent when g1g2 ∈ E(G) and h1h2 ∈ E(H). Finally, in the Cartesian product
G2H of graphs G and H two vertices (g1, h1) and (g2, h2) are adjacent when (g1g2 ∈ E(G)
and h1 = h2) or (g1 = g2 and h1h2 ∈ E(H)). For a comprehensive survey on graph products
cf. the monograph [10].

Let Kn,k represent the family of k-subsets of a given n-set. One can consider the following
questions about the ordered pairs of sets in Xn,k (= Kn,k ×Kn,k):

(a) What is the largest number of ordered pairs of sets (A,B) ∈ Xn,k such that for any two
pairs (A1, B1) and (A2, B2), we have either A1 = A2 and B1 ∩B2 6= ∅, or A1 6= A2 and
A1 ∩A2 6= ∅?
In other words, determine α(K(n, k) ◦K(n, k)).

(b) What is the largest number of ordered pairs of sets (A,B) ∈ Xn,k such that for any two
distinct pairs (A1, B1) and (A2, B2), we have A1 6= A1 ∩A2 6= ∅ or B1 6= B1 ∩B2 6= ∅?
This question can be restated as determination of α(K(n, k) � K(n, k)). Indeed, two
vertices (A1, B1) and (A2, B2) are non-adjacent in K(n, k) �K(n, k) if at least one of
the following is true:

• A1 6= A2 and A1A2 /∈ E(K(n, k)), or

• B1 6= B2 and B1B2 /∈ E(K(n, k))

This is in turn equivalent to A1 ∩A2 6= ∅ and A1 6= A2, or B1 ∩B2 6= ∅ and B1 6= B2.

(c) What is the largest number of ordered pairs of sets (A,B) ∈ Xn,k such that for any two
distinct pairs (A1, B1) and (A2, B2), we have A1 ∩A2 6= ∅ or B1 ∩B2 6= ∅?
In other words, determine α(K(n, k)×K(n, k)).

(d) What is the largest number of ordered pairs of sets (A,B) ∈ Xn,k such that for any
two distinct pairs (A1, B1) and (A2, B2) at least one of the three conditions holds:
A1 6= A1 ∩A2 6= ∅, or B1 6= B1 ∩B2 6= ∅ or (A1 ∩A2 = ∅ and B1 ∩B2 = ∅)?
This question can be restated as determination of α(K(n, k)2K(n, k)). Indeed, note
that two vertices (A1, B1) and (A2, B2) are non-adjacent in K(n, k)2K(n, k) if at least
one of the following is true:

• A1 6= A2 and A1 ∩A2 6= ∅, or

• B1 6= B2 and B1 ∩B2 6= ∅, or
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• A1 ∩A2 = ∅ and B1 ∩B2 = ∅.

The question (c) was resolved completely in [21], where it was shown that α(G ×H) =
max{α(G)|V (H)|, α(H)|V (G)|}. The question (a) can be easily answered even in the con-
text of general graphs, notably α(G◦H) = α(G)α(H) for any two graphs G,H, see e.g. [10].
In this paper we solve the problem (b), and shed some light on the problem (d). In particu-

lar, we show that α(K(n, k)�K(n, k)) =
(
n−1
k−1
)2

(see Section 3), while for the case of Carte-
sian products, we present some upper and lower bounds for α(K(n, 2)2K(n, 2)) (see Sec-
tion 4). For the lower bound, which is asymptotically n3/3, we present a construction, which
is different from standard constructions using diagonalization procedures, cf. Klavžar [11].
As it turns out, the problem of bounding the independence number of K(n, k) 2 K(n, k)
from above is closely related to determination of the so-called `-independence number α`
of K(n, k), which is the size of a largest subset of vertices that induces an `-colorable sub-
graph of K(n, k). A formula for α`(K(n, k)) was established by Erdős [4] in the case when
n is sufficiently large, and was later refined by Frankl and Füredi [6] and others, but the
complete description is still open. Therefore in Section 5 we consider this number, and in
the case of odd graphs present two constructions, which both give the same lower bounds
for α2(K(2k + 1, k)), which is in turn the same as the lower bound presented in the recent
book of Godsil and Meagher [7] (it is non-trivial to establish the equality of these bounds,
and we spend a good part of this section to do this). Finally, in Section 6 we consider
the s-stable Kneser graphs K(ks + 1, k)s−stab, establish that their `-independence number
equals `k, and prove that α(K(ks+ 1, k)s−stab2K(ks+ 1, k)s−stab) = k(ks+ 1).

2 Preliminaries and notation

Let G be a graph. The order of G will be denoted by |V (G)|, or simply |G|. A set S is
independent (or stable) in G if any pair of vertices u, v ∈ S are non-adjacent in G. Maximum
independent sets in G will be also called α-sets in G. The independence number α(G) of
a graph G is the cardinality of an α-set in G. Thus an independent set S in G is an α-set
whenever |S| = α(G).

Given a graph G and a positive integer ` let α`(G) denote the `-independence number
of a graph G, i.e., the maximum order of an `-colorable induced subgraph of G. Clearly,
α1(G) = α(G), and α`(G) = |V (G)| if and only if ` ≥ χ(G).

Given the Kneser graph K(n, k) and x ∈ [n] = {1, . . . , n}, we define I(x) to be the set with
center x as follows: I(x) = {A ∈ K(n, k) |x ∈ A}. It is clear that I(x) is an independent
set in K(n, k), whose size is

(
n−1
k−1
)
, which equals α(K(n, k)) by Erdős-Ko-Rado theorem.

For x, y ∈ [n], let I(xy) = {A ∈ K(n, k) | x ∈ A, y /∈ A }. For instance, in K(6, 2) the set
I(12) is the set {13, 14, 15, 16}, where the notation for sets in K(n, k) is simplified so that
we write elements of K(n, k) without commas in between and with no brackets. Similarly,
I(xyz) is defined as I(xyz) = {A ∈ K(n, k) | x, y ∈ A, z /∈ A} for any x, y, z ∈ [n]. For
example, in K(7, 3) we have I(123) = {124, 125, 126, 127}.

Let G ∗H denote the product of graphs G and H, where ∗ ∈ {2, ◦,×,�}. We denote by
Gm∗ the mth power of a graph G with respect to a given product ∗. As all standard graph

3



products are associative, this is well defined. For instance, by Gm� the m-power of G (with
respect to the strong product of graphs) is defined as G� · · ·�G︸ ︷︷ ︸

m factors

.

The distance between two vertices in a graph G is the number of edges on a shortest path
connecting them. Let G denote the complement graph of the graph G, i.e. G has the same
vertex set of G and two vertices are adjacent in G if and only if they are not adjacent in
G. Let p be a positive integer. The pth power of a graph G, that we denote by G(p), is the
graph having the same vertex set as G and where two vertices are adjacent in G(p) if the
distance between them in G is at most p.

3 Strong product of Kneser graphs

The following observation follows from the fact that multiplying maximum independent sets
of both factors gives an independent set in the strong product of two graphs.

Observation 1. α(K(n, k) �K(n, k)) ≥ (α(K(n, k)))2 =
(
n−1
k−1
)2
.

The Shannon capacity Θ(G) of a graph G is defined as

Θ(G) = sup
m∈N

m

√
α(Gm�).

As proven by Lóvasz in [13], Θ(K(n, k)) =
(
n−1
k−1
)
, which, in particular, implies that

√
(α(K(n, k) �K(n, k)) ≤

(
n− 1

k − 1

)
.

Combined with Observation 1 this implies

Theorem 2. For any n and any k ≤ n/2 we have α(K(n, k) �K(n, k)) =
(
n−1
k−1
)2
.

In fact, by the same reasoning one can deduce that

α((K(n, k)m�) =

(
n− 1

k − 1

)m
.

4 Cartesian product of Kneser graphs

4.1 Lower bounds

The Cartesian product is the most intriguing in the context of independence number of the
products of Kneser graphs. Several natural upper and lower bounds on the independence
number of the Cartesian product of arbitrary graphs were presented by Klavžar [11].

The so-called diagonalization procedure is used to give lower bounds on the independence
number of the Cartesian product of graphs [11]. Note that lower bounds in the maximization
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parameter such as α(G) often come from a construction of an independent set of appropriate
size. It is clear that the product A1 × B1 of two maximal independent sets A1 and B1,
where A1 is in G and B1 in H, gives an independent set in the Cartesian product G 2H.
In addition, vertices in A1×B1 are not adjacent to any vertex in (G−A1)× (H−B1), with
respect to G2H, hence one can continue with this procedure in the subgraphs G−A1 and
H − B1; we denote these subgraphs by G1 and H1, respectively. In the ith step, let Ai+1

be a maximal independent set in Gi and Bi+1 be the maximal independent set in Hi. Then
Ai+1 ×Bi+1 is an independent set in G2H (which is also independent with the previously
determined independent sets in G2H), and we let Gi+1 = Gi−Ai+1 and Hi+1 = Hi−Bi+1.
The procedure ends in the mth step, if Gm+1 or Hm+1 becomes empty. The resulting
independent set D is

D =
m⋃
i=1

Ai ×Bi .

The most natural and interesting case of a diagonalization procedure (although not always
giving the largest independent set among all diagonalization procedures) is the case when
in each step Ai+1 and Bi+1 present α-sets of graphs Gi and Hi, respectively. We call this a
greedy diagonalization procedure. In the case of the Cartesian product of the Kneser graph
K(n, k) by itself, there is only one greedy diagonalization procedure (modulo permutations
in [n] and the corresponding changes of k-subsets in K(n, k)). This procedure gives the
following lower bound on the independence number:

α
(
K(n, k)2K(n, k)

)
≥
(
n− 1

k − 1

)2

+

(
n− 2

k − 1

)2

+ · · ·+
(

2k − 1

k − 1

)2

+

(
2k − 1

k − 1

)2

(1)

12 13 14 15 23 24 25 34 35 45

K(5, 2)

12

13

14

15

23

24

25

34

35

45

K(5, 2)

Figure 1: The independent set obtained by the greedy diagonalization procedure in
K(5, 2)2K(5, 2) represented by red squares. Sets {i, j} ∈ V (K(5, 2)) are written in the
short way as ij.

Indeed, noting that a maximum independent set I of K(n, k) (for n ≥ 2k) is obtained by
taking one of the elements as the center (so I = I(x), where x ∈ [n]), the resulting graph
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G1, defined as K(n, k)− I, is isomorphic to K(n− 1, k). By repeating the diagonalization
procedure, we eventually arrive at the subgraph of K(n, k)2K(n, k), which is isomorphic
to K(2k − 1, k)2K(2k − 1, k). Since the Kneser graph K(2k − 1, k) is isomorphic to the
graph on

(
2k−1
k

)
isolated vertices, we infer that K(2k − 1, k)2K(2k − 1, k) is isomorphic to

the graph on
(
2k−1
k−1

)2
isolated vertices, which explains the last item in the right-hand sum

of (1).

In Fig. 1 one can see the construction of the (greedy) diagonalization procedure of the
Cartesian product of the Petersen graph K(5, 2) by itself. As checked by computer the
resulting independent set of size 34 is optimal, attaining α(K(5, 2)2K(5, 2)).

12 13 14 15 16 23 24 25 26 34 35 36 45 46 56

K(6, 2)

12

13

14

15

16

23

24

25

26

34

35

36

45

46

56

K(6, 2)

Figure 2: The independent set obtained by the greedy diagonalization procedure in
K(6, 2)2K(6, 2) represented by red squares.

The greedy diagonalization procedure yielding the independent set of K(6, 2)2K(6, 2)
of size 59 is presented in Fig. 2. The actual independence number of K(6, 2)2K(6, 2),
as checked by computer, is equal to 60. The optimal construction is not obtained by a
diagonalization procedure, let alone by the greedy diagonalization procedure, see Fig. 3.
The colors in the figure represent the sets, obtained as follows. By the notation regarding
sets with center, the set in blue/dark color in Fig. 3 is I(12)× I(23), the set in green/dotted
color is I(23) × I(12), and the set in yellow/light color is I(31) × I(31). The additional
three vertices in red/lined are (12, 12), (13, 23) and (23, 13), and there is the red/lined 3×3
independent set, which is the same as in the diagonalization procedure.

The idea can be generalized to arbitrary K(n, 2) for n ≥ 6. Note that the greedy diago-
nalization procedure gives the bound:

α
(
K(n, 2)2K(n, 2)

)
≥ (n− 1)2 + (n− 2)2 + · · ·+ 32 + 32. (2)
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K(6, 2)

Figure 3: The independent set obtained by an alternative diagonalization procedure in
K(6, 2)2K(6, 2) represented by squares in colors/shapes.

In our case, we use the alternative construction in the subgraph of K(n, 2) induced by
I(1) ∪ I(2) ∪ I(3), by taking the independent set

(I(12)× I(23)) ∪ (I(23)× I(12)) ∪ (I(31)× I(31)) ∪ {(12, 12), (13, 23), (23, 13)},

which has 3(n− 2)2 + 3 vertices. Note that, when n ≥ 6, the term 3(n− 2)2 + 3 is greater
by exactly 1 than the sum of the first three terms given by the greedy diagonalization
procedure, i.e. (n− 1)2 + (n− 2)2 + (n− 3)2. As the first three terms of the diagonalization
procedure correspond to the subgraph of K(n, 2) that is induced by I(1)∪I(2)∪I(3), we get
that in both constructions the problem, after dealing with the subgraph of K(n, 2)2K(n, 2)
induced by (I(1) ∪ I(2) ∪ I(3))× (I(1) ∪ I(2) ∪ I(3)), reduces to the independence number
of K(n − 3, 2)2K(n − 3, 2) (as soon as n ≥ 6). By using a simple induction with respect
to three different bases, α(K(3, 2)22) = 9, α(K(4, 2)22) = 18, and α(K(5, 2)22) = 34, we
obtain the following result.

Proposition 3. Let n ≥ 6, and n ≡ t (mod 3). Then

α(K(n, 2)2K(n, 2)) ≥ 3(n− 2)2 + 3(n− 5)2 + · · ·+ 3(t+ 4)2 + (n− t− 3) +At,

where

At =


9 ; t = 0
18 ; t = 1
34 ; t = 2.

The bound is bigger by (n− t− 1)/3 than the greedy diagonalization bound in (2).
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The bound of Proposition 3 can be transformed from the sum to a function dependent
on n as follows.

Corollary 4. If n ≥ 3, then

α(K(n, 2)2K(n, 2)) ≥


2n3−3n2+3n+18

6 ; n ≡ 0 (mod 3)

2n3−3n2+3n+16
6 ; n ≡ 1 (mod 3)

2n3−3n2+3n+14
6 ; n ≡ 2 (mod 3).

(3)

A natural question is, if one can improve the bound of the greedy diagonalization proce-
dure to find a larger independent set in K(n, k)2K(n, k) also for k > 2.1 In case k = 2, the
question is if one can improve the lower bound from Corollary 4. We only know that the
answer is negative in the case of K(6, 2)2K(6, 2), for which we know that the independence
number attains the bound from Proposition 3.

4.2 Upper bounds for α(K(n, 2)22)

Here we consider upper bounds on α(K(n, k)2K(n, k)) with an emphasis on the case k =
2. One of the most general bounds was presented by Klavžar [11]; it generalizes several
previously known bounds, including the classical one by Vizing [23]. In the bound we
assume that a certain clique vertex cover of one factor, say H, is given. Notably, this is a
partition of V (H) into subsets Ai, for i ∈ {1, . . . ,m}, such that each Ai induces a clique,
and let `i = |Ai|. Then

α(G2H) ≤
m∑
i=1

α`i(G), (4)

where α`i(G) denotes the `i-independence number of a graph G. Indeed, it is easy to see
that for each Ai there are at most α`i(G) vertices that form an independent set in the
subgraph of G2H induced by V (G)×Ai.

As a consequence of Baranyai’s theorem [2], the vertex set of the Kneser graph K(n, k)
can be partitioned into θn,k =

⌈(
n
k

)
/bn/kc

⌉
cliques of size ωn,k = bn/kc. Combining this

with the bound in (4) we get the following upper bound on the independence number of

1We considered a possible generalization of the construction of Proposition 3 to K(n, k) for k > 2, by
using the following natural idea. As in the case k = 2, we start with the independent set

(I(12)× I(23)) ∪ (I(23)× I(12)) ∪ (I(31)× I(31)),

which has 3
(
n−2
k−1

)2
vertices. Now, to this set we can add three additional independent sets I(123)× I(123),

I(132)× I(231) and I(231)× I(132). Note that (I(12)× I(23))∪ (I(23)× I(12))∪ (I(31)× I(31))∪ (I(123)×
I(123)) ∪ (I(132) × I(231)) ∪ (I(231) × I(132)) is an independent set in K(n, k)2K(n, k), which lies in the

subgraph induced by (I(1)∪ I(2)∪ I(3))× (I(1)∪ I(2)∪ I(3)). Its size is 3
(
n−2
k−1

)2
+ 3

(
n−3
k−2

)2
. Let us compare

this with the part of the independent set in the greedy diagonalization procedure, which lies in the subgraph

induced by (I(1)∪I(2)∪I(3))×(I(1)∪I(2)∪I(3)). We recall by (1) that its size is
(
n−1
k−1

)2
+
(
n−2
k−1

)2
+
(
n−3
k−1

)2
.

While we could not find an appropriate calculation to compare these values for all k and n, we have checked
by computer that the greedy diagonalization procedure gives a better bound for all k ∈ {3, . . . , 100} and
n ∈ {2k, . . . , 1000}.
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the Cartesian product of K(n, k) by itself:

α(K(n, k)2K(n, k)) ≤

⌈ (
n
k

)
bnk c

⌉
αωn,k

(K(n, k)). (5)

Clearly, the above upper bound raises the problem of determining the ωn,k-independence
number of the Kneser graph. More generally, it is of independent interest to determine
α`(K(n, k)) for an arbitrary `. Note that the case ` = 1 is resolved by the Erdős-Ko-Rado
theorem, because this is just the independence number of the Kneser graph. At the other
extreme, if ` ≥ χ(K(n, k)), then α`(K(n, k)) = |V (K(n, k))| =

(
n
k

)
. By the well-known fact,

given by Lovász’s proof of Kneser’s conjecture [12] (see also Matoušek [14]), this happens
exactly when ` ≥ n− 2k + 2.

As the first step we determine the `-independence number in the case when k = 2, i.e.
for K(n, 2), by using both theorems, and also the Hilton-Milner result about the largest
independent set in Kneser graphs that do not have a center. (It is very likely that the result
was known before, but we present the proof for self-containment reasons.)

Proposition 5. The `-independence number of the Kneser graph K(n, 2), n ≥ 5, is

α`(K(n, 2)) =

{
(n− 1) + · · ·+ (n− `) ; ` < n− 2(

n
2

)
; ` ≥ n− 2 .

(6)

Proof. Consider the Kneser graph K(n, 2) for n ≥ 5. If ` = 1 or ` ≥ n− 2 = χ(K(n, 2)) the
result follows from the mentioned classical theorems. So let ` ∈ {2, . . . , n− 3}. Clearly, the
sets I(1), I(21), . . . , I(`12...(`−1)) are independent and pairwise disjoint, which implies that
α`(K(n, 2)) ≥ (n− 1) + · · ·+ (n− `).

For the reversed inequality, let (A1, . . . , A`) be a partition of a subset of V (K(n, 2))
into independent sets. We may assume that A1, . . . , At are sets having a center, while
At+1, . . . , A` do not have a center, and we allow t = 0 and t = `. For the first part it is
clear that

|A1 ∪ · · · ∪At| ≤ (n− 1) + · · ·+ (n− t).

For the second part, we use Hilton-Milner theorem [9], which states that the maximum size
of an independent set in K(n, k) having no center is 1 +

(
n−1
k−1
)
−
(
n−k−1
k−1

)
; in case k = 2 this

equals 3. Hence, we infer

|At+1 ∪ · · · ∪A`| ≤ 3(`− t) ≤ (n− t− 1) + · · ·+ (n− `),

where the second inequality follows from the fact that n − ` ≥ 3. The result now follows
from both inequalities.

Now, we can apply the bound for α`(K(n, 2)) in Proposition 5, when ` = ωn,2, and insert
it in formula (5). We get

α(K(n, 2)2K(n, 2)) ≤

⌈ (
n
2

)
bn2 c

⌉
((n− 1) + · · ·+ (n− ωn,2)) ,
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which can be transformed to the following bounds (respecting the parity of n, and noting
that ωn,2 = bn/2c):

α(K(n, 2)2K(n, 2)) ≤

{
n(n−1)(3n−2)

8 ; n even
n(n−1)(3n−1)

8 ; n odd.
(7)

These bounds were proven using a direct, but more technical approach in [3]. Combining
both bounds we get the main result of this section.

Theorem 6. If n ≥ 5, then

2n3−3n2+3n+18
6 ; n ≡ 0 (mod 3)

2n3−3n2+3n+16
6 ; n ≡ 1 (mod 3)

2n3−3n2+3n+14
6 ; n ≡ 2 (mod 3).

 ≤ α(K(n, 2)2K(n, 2)) ≤

{
n(n−1)(3n−2)

8 ; n even
n(n−1)(3n−1)

8 ; n odd.

(8)

While the upper bound on α(K(n, 2)2K(n, 2)) asymptotically tends to 3
8n

3, the lower

bounds tends to n3

3 .

5 The `-independence number of Kneser graphs

As mentioned in the previous section, it would be interesting to determine the `-independence
number of Kneser graphs K(n, k) also for k > 2 to obtain upper bounds on α(K(n, k)22). A
natural question is if the formula from Proposition 5 extends to the general case for k > 2,
i.e., is it true that

α`(K(n, k)) =

{ (
n−1
k−1
)

+ · · ·+
(
n−`
k−1
)

; ` < n− 2k + 2(
n
k

)
; ` ≥ n− 2k + 2

? (9)

The question was partially resolved by Erdős, who proved that for sufficiently large n, the
equality (9) holds. He also asked if the results holds when n ≥ 2k + t − 1, but this was
disproved by Frankl and Füredi [6].

As the full answer to the above general question is still open, we focus on the case ` = 2,
and graphs K(2k + 1, k) (the so-called odd graphs). In Chapter 9 of Godsil and Royle’s
book [8] one can find the following observation.

Lemma 7. [8, Lemma 9.7.1] We have α2(K(2k + 1, k)) ≤
(
2k
k

)
+
(

2k
k−2
)
.

Therefore, α2(K(5, 2)) ≤ 7 (which is the optimal value); α2(K(7, 3)) ≤ 26 (which is also
the optimal value). For K(9, 4) this upper bound gives 98. On the other hand, Tardif
(personal communication in [8]) has found an induced bipartite subgraph of K(9, 4) with
96 vertices. In this section, we address the problem of finding good lower bounds for
α2(K(2k + 1, k)), improving the bound

(
2k
k−1
)

+
(
2k−1
k−1

)
, which is derived by taking the

cardinality of I(1) ∪ I(21).
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5.1 Decomposing K(2k + 1, k)

Let k ≥ 2. It is well known that the diameter of K(2k + 1, k) is equal to k (see [20]), and
we consider a partition of V (K(2k+ 1, k)) into k+ 1 spheres around an arbitrary vertex as
follows. Let x0 = [k]. For 0 ≤ i ≤ k, let Xi be the set of vertices of K(2k+ 1, k) defined as:
X0 = {x0} and Xi = {y : y ∈ V (K(2k+ 1, k)), |x0 ∩ y| = i− 1}. Note that

⋃k
i=0Xi forms a

partition of the vertex set of K(2k + 1, k).

Lemma 8. Let Gi be the subgraph of K(2k+1, k) induced by the vertex set Xi, for 0 ≤ i ≤ k.
Then,

1. For 0 ≤ i ≤ k, with i 6=
⌊
k
2

⌋
+ 1, the subgraph Gi induces an independent set.

2. Let GA =
⋃

1≤i≤b k2cGi and let GB =
⋃
b k2c+2≤i≤kGi. Then, the subgraph GA (resp.

GB) induces an independent set.

3. Let i =
⌊
k
2

⌋
+ 1. The subgraph Gi is isomorphic to 1

2

(
k
k/2

)
disjoint copies of the direct

product graph K2×K(k+1, k/2) if k is even, and Gi is isomorphic to 1
2

(
k+1
dk/2e

)
disjoint

copies of the direct product graph K(k, bk/2c)×K2 if k is odd.

Proof. 1. Clearly, the statement holds for i = 0. Let a, b be two vertices in Gi and assume
that a is adjacent to b, that means, |a ∩ b| = 0. This implies that a ∪ b is formed by
2(i−1) elements in x0 = {1, . . . , k} and 2(k−i+1) elements in z = {k+1, . . . , 2k+1}.
Therefore, 2(i − 1) ≤ k and 2(k − i + 1) ≤ k + 1. However, if 1 ≤ i ≤ bk/2c then,
2(k − i + 1) ≥ k + 2, which is a contradiction; and if bk/2c + 2 ≤ i ≤ k then
2(i− 1) ≥ k + 1, which is again a contradiction.

2. Assume that there are two adjacent vertices a and b with |a∩x0| = i−1 and |b∩x0| =
j−1. By the previous case, i 6= j and by construction, we must have that i+j−2 ≤ k
and 2k − (i + j − 2) ≤ k + 1. However, if a, b ∈ GA, then 1 ≤ i 6= j ≤ bk/2c and
2k − (i + j − 2) ≥ 2k − 2bk/2c + 3 ≥ k + 3, which is a contradiction. Similarly, if
a, b ∈ GB, then bk/2c + 2 ≤ i 6= j ≤ k and i + j − 2 ≥ 2bk/2c + 3 ≥ k + 2, which is
again a contradiction.

3. Let i =
⌊
k
2

⌋
+ 1. For a vertex u of Gi let Au = u ∩ x and Bu = u ∩ z. We define

the map φ : Gi → K(k, i − 1) ×K(k + 1, k − i + 1) by letting φ(u) = (Au, Bu). By
definition of the Kneser graph and the direct product of graphs, it is trivial to see
that φ is a graph isomorphism. Now, if k is even, then Gi is isomorphic to the graph
K(k, k/2)×K(k + 1, k/2), but K(k, k/2) is isomorphic to a perfect matching of size
1
2

(
k
k/2

)
. Moreover, if k is odd, then Gi is isomorphic to the graph K(k, bk/2c)×K(k+

1, dk/2e), but K(k + 1, dk/2e) is isomorphic to a perfect matching of size 1
2

(
k+1
dk/2e

)
.

5.2 Lower bound for α2(K(2k + 1, k))

In this section, we obtain the following lower bound for α2(K(2k + 1, k)):
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Proposition 9. For k ≥ 2,

α2(K(2k + 1, k)) ≥


(
2k+1
k

)
− (k+1)

(k+2)

(
k
k/2

)2
, if k even

(
2k+1
k

)
−
(

k
bk/2c

)2
, if k odd

Proof. Let GA and GB the subgraphs of K(2k + 1, k) as defined in the previous section.
Let W1 and W2 be two (initially empty) sets, which will form a bipartition of an induced
bipartite subgraph of K(2k+ 1, k). Let GC be the subgraph of K(2k+ 1, k) induced by the
vertices in the set Xbk/2c+1. We consider two cases depending on the parity of k:

(a) k even. Let Y1 = {y : y ∈ GC and 1 ∈ y}, that is, Y1 is the subset of all vertices in GC
containing the integer 1, i.e., Y1 = GC ∩ I(1). Set W1 = {x0} ∪ {y : y ∈ GB} ∪ Y1 and
W2 = {y : y ∈ GA}. Notice that the size of Y1 is equal to

(
k−1
k/2−1

)(
k+1
k/2

)
= 1

2

(
k+1
k/2

)(
k
k/2

)
.

Clearly, x0 is neither adjacent to any vertex in GB nor in Y1. It remains to show that for
any two vertices a ∈ Y1 and b ∈ GB, these vertices are not adjacent. Assume that there
exist a ∈ Y1 and b ∈ GB such that a is adjacent to b. By construction, |a ∩ x0| = k/2
and |b ∩ x0| = j, with k/2 + 1 ≤ j ≤ k − 1, and we must have that k/2 + j ≤ k, which
is impossible. Let p = |Xk/2+1| =

(
k
k/2

)(
k+1
k/2

)
be the number of vertices in GC . It is not

difficult to prove that p− |Y1| = k+1
k+2

(
k
k/2

)2
which ends the proof of this part.

(b) k odd. We consider the following vertex subsets of GB: let B1 = {y : y ∈ GB, k + 1 ∈
y, and |y∩x0| = bk/2c+1} and B2 = {y : y ∈ GB and |y∩x0| ≥ bk/2c+2}. Moreover,
we partition the vertex set of GC as follows: C1 = {y : y ∈ GC and k + 1 ∈ y}
and C2 = Xbk/2c+1 \ C1. Finally, set W1 = {x0} ∪ B1 ∪ B2 ∪ C1 and set W2 =
{y : y ∈ GA} ∪ C2. Let a be any vertex in C1 and let b be any vertex in B2 and
suppose that a is adjacent to b in K(2k + 1, k). By construction, |a ∩ x0| = bk/2c and
|b ∩ x0| = j with bk/2c + 2 ≤ j ≤ k − 1. However, by construction, bk/2c + j ≤ k,
which is impossible. It shows that W1 induces an independent set in K(2k + 1, k).
Now, let a be any vertex in GA and let b be any vertex in C2 and suppose that a
is adjacent to b in K(2k + 1, k). By construction, |b ∩ x0| = bk/2c and |a ∩ x0| = j
with 0 ≤ j ≤ bk/2c − 1. Again, by construction, k − bk/2c + k − j ≤ k + 1, which
is again impossible. Therefore, W2 induces an independent set in K(2k + 1, k). Let
p = |Xbk/2c+2| =

(
k

bk/2c+1

)(
k+1

k−bk/2c−1
)

and let q = |B1| =
(

k
bk/2c+1

)(
k

k−bk/2c−2
)
. In order

to end the proof of this part, it suffices to show that p − q =
(

k
bk/2c

)2
. It follows easy

from the identities:
(

k
bk/2c+1

)
=
(

k
bk/2c

)
= dk/2e+1

k+1

(
k+1
bk/2c

)
,
(

k+1
k−bk/2c−1

)
=
(
k+1
bk/2c

)
, and(

k
k−bk/2c−2

)
= bk/2c

k+1

(
k+1
bk/2c

)
.

The bound in Proposition 9 can be obtained by an alternative construction. In fact, let
GA and GB the subgraphs of K(2k+ 1, k) defined in Lemma 8, and let GC the subgraph of
K(2k + 1, k) induced by the vertices in the set Xb k

2
c+1 (see Section 5.1). It is not difficult

to verify that if k is even (resp. odd) there are edges between some vertices in GC and
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some vertices in the set Xk/2 (resp. Xb k
2
c+1) and there are no edges between vertices of

GC and vertices in X k
2
+2 (resp. Xb k

2
c). Therefore, let I be a maximum independent set in

GC . An alternative bipartition yielding the bound in Proposition 9 will be (GA, GB ∪ I)
if k is even, and (GA ∪ I,GB) if k is odd. Let Z be a minimum vertex cover in GC . It
is clear that |I| = |GC | − |Z|. Therefore, the size of the bipartite subgraph obtained by
this construction will be

(
2k+1
k

)
− |Z|. Let k be even. By Lemma 8, GC is is isomorphic to

1
2

(
k
k/2

)
disjoint copies of K2 ×K(k + 1, k/2). Moreover, by [21], α(K2 ×K(k + 1, k/2)) =

max{2α(K(k + 1, k/2)),
(
k+1
k/2

)
} = max{2

(
k−1
k/2−1

)
,
(
k+1
k/2

)
} =

(
k+1
k/2

)
. So, a minimum vertex

cover in K2 ×K(k+ 1, k/2) has size 2
(
k+1
k/2

)
−
(
k+1
k/2

)
=
(
k+1
k/2

)
. Therefore, a minimum vertex

cover Z in GC has size 1
2

(
k
k/2

)(
k+1
k/2

)
= (k+1)

(k+2)

(
k
k/2

)2
. In the case when k is odd, we know

by Lemma 8, that GC is is isomorphic to 1
2

(
k+1
dk/2e

)
disjoint copies of K(k, bk/2c)×K2. So,

α(K(k, bk/2c) ×K2) = max{2
(

k−1
bk/2c−1

)
,
(

k
bk/2c

)
} =

(
k
bk/2c

)
. Thus, a minimum vertex cover

in K(k, bk/2c)×K2 has size 2
(

k
bk/2c

)
−
(

k
bk/2c

)
=
(

k
bk/2c

)
and therefore, the size of a minimum

vertex cover Z in GC has size 1
2

(
k+1
dk/2e

)(
k
bk/2c

)
=
(

k
bk/2c

)2
. This proves that the constructions

give the same lower bounds.

In addition, we compared the bound in Proposition 9 with the bound stated in the recent
book of Godsil and Meagher [7]: for k ≥ 2,

α2(K(2k + 1, k)) ≥


∑k−1

i=k/2

(
k−1
i

)(
k+2
k−i
)

+
∑k

i=k/2+1

(
k+1
i

)(
k
k−i
)

, if k even

2
∑k

i=(k+1)/2

(
k
i

)(
k+1
k−i
)

, if k odd

The following lemma shows that the bound in Proposition 9 and the Godsil and Meagher
bound are in fact the same.

Lemma 10. Let k ≥ 2 be an integer. Then the following equalities hold:

(i)
∑k−1

i=k/2

(
k−1
i

)(
k+2
k−i
)

+
∑k

i=k/2+1

(
k+1
i

)(
k
k−i
)

=
(
2k+1
k

)
− (k+1)

(k+2)

(
k
k/2

)2
, if k is even;

(ii) 2
∑k

i=(k+1)/2

(
k
i

)(
k+1
k−i
)

=
(
2k+1
k

)
−
(

k
bk/2c

)2
, if k is odd.

Proof. In order to prove this result, we need the well-known Vandermonde’s identity:(
n+m

r

)
=

r∑
i=0

(
n

i

)(
m

r − i

)
, for any non negative integers n,m, r, (10)

and some identities related to the sum of squares of binomial coefficients that have been

obtained by Slav́ık in [18]. For any integer n ≥ 1 and for t ≥ 0, let St(n) =
∑n−1

i=0 i
t
(
2n
i

)2
.
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Then,

S0(n) =
1

2

[(4n
2n

)
−

(2n
n

)2]
; (11)

S1(n) = n

[(4n− 1

2n− 1

)
− 3

(2n− 1

n− 1

)2]
; (12)

S2(n) = 4n2

[
1

2

(4n− 2

2n− 1

)
−

(2n− 1

n− 1

)2]
; (13)

S3(n) = 2n2

[(4n− 2

2n− 1

)
− 2

(2n− 1

n− 1

)2

+ (2n− 1)

[(4n− 3

2n− 2

)
− 2

(2n− 1

n− 1

)(2n− 2

n− 2

)
−

(2n− 2

n− 1

)2]]
. (14)

We distinguish two cases.

Case k even. Let A =
∑k−1

i=k/2

(
k−1
i

)(
k+2
k−i
)

and let B =
∑k

i=k/2+1

(
k+1
i

)(
k
k−1
)
.

Claim 11. A = 1
2

(
2k+1
k

)
− k+1

k+2

(
k
k/2

)2
+ 1

2

(
k
k/2

)2
.

Proof of Claim 11. By considering
(
m
n

)
= 0 for m < n, we have that A =

∑k
i=0

(
k−1
i

)(
k+2
k−i
)
−

A1, where A1 =
∑k/2−1

i=0

(
k−1
i

)(
k+2
k−i
)
. By using Eq. (10), we have that A =

(
2k+1
k

)
−A1.

Expressing
(
k−1
i

)
and

(
k+2
k−i
)

in terms of
(
k+2
i+2

)
, we get A1 =

∑k/2−1
i=0

(
k+2
i+2

)2 ( (k−i)(i+1)(i+2)
k(k+1)(k+2)

)
=∑k/2+1

i=0

(
k+2
i

)2 ( (k−i+2)(i−1)i
k(k+1)(k+2)

)
. By using the fact that

(
k+2
k/2+1

)
= 4(k+1)

(k+2

(
k
k/2

)
, we can rewrite

A1 as A1 = A2 + 2(k+1)
(k+2)

(
k
k/2

)2
, where A2 =

∑k/2
i=0

(
k+2
i

)2 ( (k−i+2)(i−1)i
k(k+1)(k+2)

)
.

Finally, A2 can be decomposed as follows: A2 = 1
k(k+1)(k+2) [(k + 3)A3 − (k + 2)A4 −A5],

where A3 =
∑k/2

i=0 i
2
(
k+2
i

)2
, A4 =

∑k/2
i=0 i

(
k+2
i

)2
, and A5 =

∑k/2
i=0 i

3
(
k+2
i

)2
. Let n = k/2 + 1.

Notice that A3 corresponds to S2(k/2 + 1) (Eq. (13)), A4 corresponds to S1(k/2 + 1) (Eq.
(12)) and A5 corresponds to S3(k/2 + 1) (Eq. (14)). Therefore, by expressing

(
2k+2
k+1

)
and(

2k+3
k+1

)
in terms of

(
2k+1
k

)
, and by expressing

(
k+1
k/2

)
and

(
k

k/2−1
)

in terms of
(
k
k/2

)
, we have:

A3 = (k + 2)2
(
2k+1
k

)
− 4(k + 1)2

(
k
k/2

)2
; A4 = (2k + 3)

(
2k+1
k

)
− 6 (k+1)2

(k+2)

(
k
k/2

)2
; and

A5 =
[
(k + 2)2 + (k+2)2(k+1)

2

] (
2k+1
k

)
−
[
4(k + 1)2 + 2k(k + 1)2 + (k+2)2(k+1)

2

] (
k
k/2

)2
.

Now, as A2 is expressed in terms of A3, A4 and A5, we can rewrite this as

A2 = 1
2

(
2k+1
k

)
− (k+1)

(k+2)

(
k
k/2

)2 − 1
2

(
k
k/2

)2
. So, as A1 is expressed in terms of A2, it can be

rewriten as A1 = 1
2

(
2k+1
k

)
+ (k+1)

(k+2)

(
k
k/2

)2 − 1
2

(
k
k/2

)2
. Finally, as A =

(
2k+1
k

)
− A1, the claim

holds. (2)

Claim 12. B = 1
2

(
2k+1
k

)
− 1

2

(
k
k/2

)2
.

Proof of Claim 12. Expression B can be expressed as
∑k

i=0

(
k+1
i

)(
k
k−i
)
−
∑k/2

i=0

(
k+1
i

)(
k
k−i
)

and by Eq. (10), B =
(
2k+1
k

)
−B1, where B1 =

∑k/2
i=0

(
k+1
i

)(
k
k−i
)

=
∑k/2

i=0

(
k+1
i

)(
k
i

)
. In order

to compute B1, we express both
(
k+1
i

)
and

(
k
i

)
in terms of

(
k+2
i

)
obtaining in this way that

B1 = 1
(k+2)2(k+1)

[
((k + 1) + 2(k + 2))B4 + (k + 2)2(k + 1)B2 − ((k + 2)2 + 2(k + 2)(k + 1))B3 −B5

]
,

whereB4 =
∑k/2

i=0 i
2
(
k+2
i

)2
; B2 =

∑k/2
i=0

(
k+2
i

)2
; B3 =

∑k/2
i=0 i

(
k+2
i

)2
; andB5 =

∑k/2
i=0 i

3
(
k+2
i

)2
.

14



Notice that B3 = A4 = S1(k/2 + 1); B4 = A3 = S2(k/2 + 1); B5 = A5 = S3(k/2 + 1);
and B2 = S0(k/2 + 1). In order to compute B2, we express

(
2k+4
k+2

)
and

(
k+2
k/2+1

)
in terms of(

2k+1
k

)
and

(
k
k/2

)
, respectively. Thus, B2 = 2(2k+3)

(k+2)

(
2k+1
k

)
− 8(k+1)2

(k+2)2

(
k
k/2

)2
. As B1 is expressed

in terms of B2, B3, B4 and B5, after regrouping and simplifying, we obtain that it can be

rewritten as B1 = 1
2

(
2k+1
k

)
+ 1

2

(
k
k/2

)2
. Finally, as B =

(
2k+1
k

)
−B1, the claim follows. (2)

Therefore, by Claims 11 and 12, the case (i) of the lemma holds.

Case k odd. Let C = 2
∑k

i= k+1
2

(
k
i

)(
k+1
k−i
)
. Clearly, C = 2

[∑k
i=0

(
k
i

)(
k+1
k−i
)
−
∑bkc

i=0

(
k
i

)(
k+1
k−i
)]

.

By Eq. (10), C = 2
[(

2k+1
k

)
− C1

]
, where C1 =

∑bkc
i=0

(
k
i

)(
k+1
k−i
)

=
∑bkc

i=0

(
k
i

)(
k+1
i+1

)
. By express-

ing
(
k
i

)
in terms of

(
k+1
i+1

)
, we have that C1 = 1

k+1

∑bk/2c
i=0 (i+ 1)

(
k+1
i+1

)2
= 1

k+1C2 + 1
2

(
k+1
dk/2e

)2
,

where C2 =
∑bk/2c

i=0 i
(
k+1
i

)2
. Clearly, C2 = S1(dk/2e) = k+1

2

[(
2k+1
k

)
− 3
(

k
bk/2c

)2]
. Now, by

expressing
(
k+1
dk/2e

)
in terms of

(
k
bk/2c

)
, we obtain that C1 = 1

2

(
2k+1
k

)
+ 1

2

(
k
bk/2c

)2
. Finally,

C = 2
[(

2k+1
k

)
− C1

]
=
(
2k+1
k

)
−
(

k
bk/2c

)2
which proves the case (ii) of the lemma.

Observation.2 Actually, the sums in Lemma 10 can be evaluated algorithmically by using
the Zeilberger’s algorithm [16] to produce recurrences which they satisfy, then the algorithm
Hyper of Petkovšek [15] to solve these recurrences in closed form. For instance, in order to
prove Claim 11 where k is even, we can write k = 2n and using the Zeilberger’s algorithm
on the sum S1(n) =

∑2n−1
i=n

(
2n−1
i

)(
2n+2
2n−i

)
yields the inhomogeneous first-order recurrence

(1+n)(3+2n)S1(n+1)−2(3+4n)(5+4n)S1(n) =
(1+n)(−6−4n+11n2+8n3)(1+2n

n )(4+2n
2+n )

4(1+2n)2(3+2n)
whose

second-order homogeneous version is 0 = (1 + n)(2 + n)(3 + n)(5 + 2n)(−6− 4n + 11n2 +
8n3)S1(n+ 2)− 2(1 +n)(2 +n)(−540− 621n+ 1377n2 + 2624n3 + 1440n4 + 256n5)S1(n+ 1)
+8(1 + 2n)2(3 + 4n)(5 + 4n)(9 + 42n + 35n2 + 8n3)S1(n). According to algorithm Hyper,

this recurrence has two linearly independent hypergeometric solutions, h1(n) = n
n+1

(
2n
n

)2
and h2(n) =

(
4n+1
2n

)
, and so S1(n) = Ah1(n) + Bh2(n), where the values of A and B are

determined from the initial values S1(1) = 4, S1(2) = 51 as A = −1
2 , B = 1

2 . Hence

S1(n) = 1
2

[(
4n+1
2n

)
− n

n+1

(
2n
n

)2]
= 1

2

[(
2k+1
k

)
− k

k+2

(
k
k/2

)2]
. In the same way, by set k = 2n

and by applying Zeilberger’s algorithm to the sum S2(n) =
∑2n

i=n+1

(
2n+1
i

)(
2n

2n−i
)
, we can

obtain a second-order homogeneous recurrence which can be solved by using Hyper algo-
rithm in order to obtain Claim 12. Finally, by setting k = 2n+ 1 and by applying the same
process as before to the sum S3 =

∑2n−1
i=n

(
2n−1
i

)(
2n

2n−i−1
)

we obtain the result in Lemma
10(ii).

By Lemma 10 and preceding discussion, we note that three different constructions of a
(large) induced bipartite subgraph of K(2k+1, k) give the same value. We wonder whether
this is in fact an exact value of α2(K(2k + 1, k)), and pose it as a problem.

2We are in debt with one of the anonymous referees for pointing out this important fact.
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Problem 1. Is it true that for any k ≥ 2,

α2(K(2k + 1, k)) =


(
2k+1
k

)
− (k+1)

(k+2)

(
k
k/2

)2
, if k even

(
2k+1
k

)
−
(

k
bk/2c

)2
, if k odd

6 Stable Kneser graphs

The 2-stable Kneser graph (also known as the Schrijver graphs) [17] is the induced subgraph
of the Kneser graph K(n, k), obtained by restricting the vertex set to the k-subsets that
are 2-stable, that is, that do not contain two consecutive elements of [n] (where 1 and n are
also considered to be consecutive).

In general, a subset S ⊆ [n] is s-stable if any two of its elements are at least at distance
s apart on the n-cycle, that is, if s ≤ |i − j| ≤ n − s for distinct i, j ∈ S. For s, k ≥ 2
and n ≥ ks, the s-stable Kneser graph K(n, k)s−stab is the subgraph of K(n, k) obtained
by restricting the vertex set of K(n, k) to the s-stable k-subsets of [n].

Let n ≥ 2k be positive integers. The Cayley graphs Cay(Zn, {k, k + 1, . . . , n − k}), that
we denote by G(n, k), are known as circular graphs, where Zn is the cyclic group of order

n. Note that the graph G(n, k) is isomorphic to the graph C
(k−1)
n , i.e., the complement

graph of the (k − 1)st power of cycle Cn. Vince [22] has shown that χ(G(n, k)) = dnk e and
α(G(n, k)) = k. In [19] the following proposition was proven.

Proposition 13. [19] If s, k ≥ 2, then G(ks+ 1, k) ' K(ks+ 1, k)s−stab.

By using Proposition 13, the following result can be proved.

Lemma 14. [19] If k ≥ s ≥ 2 and G = K(ks + 1, k)s−stab, then G is a hom-idempotent
graph, that is, there exists a homomorphism from G2G to G.

From Proposition 13 it follows that the graph K(ks + 1, k)s−stab is a Cayley graph and
so a vertex transitive graph. Moreover, it is well known that the Cartesian product graph
of two vertex transitive graphs is also vertex transitive. The following ”No-Homomorphism
Lemma” of Albertson and Collins [1] is very useful when there exists a graph homomorphism
to a vertex transitive graph.

Lemma 15 (No-Homomorphism Lemma). Let X be a graph and let Y be a vertex transitive
graph. If there is a graph homomorphism from X to Y then, α(Y )/|Y | ≤ α(X)/|X|.

Using the above results we can easily derive the independence number of the Cartesian
product of K(ks+ 1, k)s−stab with itself.

Proposition 16. If k ≥ s ≥ 2 and G = K(ks+ 1, k)s−stab, then α(G2G) = k(ks+ 1).

Proof. There is a natural homomorphism from G to G2G. Moreover, by Lemma 14, there
is a homomorphism from G2G to G. Therefore, by applying twice the No-Homomorphism
Lemma (Lemma 15) we have α(G)|G2G|

|G| ≤ α(G2G) ≤ α(G)|G2G|
|G| . Finally, by Proposition

13, we have that |G| = ks+ 1 and α(G) = k, which ends the proof.
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In the rest of this section we focus on the `-independence number of K(ks+ 1, k)s−stab.

Given a graph H, a trivial upper bound for the `-independence number of H, denoted by
α`(H), is `α(H). The following result shows that the `-independence number of the graph
K(ks+ 1, k)s−stab is equal to the trivial upper bound.

Proposition 17. If k ≥ s ≥ 2 and G = K(ks+1, k)s−stab, then, for 1 ≤ ` ≤ s, α`(G) = `k.

Proof. By Proposition 13, G is isomorphic to the circular graph G(ks + 1, k) which is the
Cayley graph Cay(Zks+1, {k, k+1, . . . , n−k}). It is well known [22] that α(G(ks+1, k)) = k
and χ(G(ks+1, k)) = dks+1

k e = s+1. Moreover, a simple observation shows that G(ks+1, k)
can be decomposed into s independent sets of size k plus one independent set of size one:
{0, 1, . . . , k − 1}, {k, k + 1, . . . , 2k − 1}, . . . , {k(s − 1), . . . , ks − 1} and the singleton {ks}.
Therefore, the result holds.
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I, pp. 403–424. Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam,
1975.
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