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Abstract

A graph G is said to be hom-idempotent if there is a homomorphism from G2 to G,
and weakly hom-idempotent if for some n ≥ 1 there is a homomorphism from Gn+1 to Gn.
Larose et al. [Eur. J. Comb. 19:867-881, 1998] proved that Kneser graphs KG(n, k) are
not weakly hom-idempotent for n ≥ 2k + 1, k ≥ 2. For s ≥ 2, we characterize all the
shifts (i.e., automorphisms of the graph that map every vertex to one of its neighbors) of
s-stable Kneser graphs KG(n, k)s−stab and we show that 2-stable Kneser graphs are not weakly
hom-idempotent, for n ≥ 2k + 2, k ≥ 2. Moreover, for s, k ≥ 2, we prove that s-stable Kneser
graphs KG(ks + 1, k)s−stab are circulant graphs and so hom-idempotent graphs. Finally, for
s ≥ 3, we show that s-stable Kneser graphs KG(2s + 2, 2)s−stab are cores, not χ-critical, not
hom-idempotent and their chromatic number is equal to s+ 2.

Keywords: Cartesian product of graphs, Stable Kneser graphs, Cayley graphs, Hom-
idempotent graphs.

1 Introduction

Let [n] denote the set {1, . . . , n}. For positive integers n ≥ 2k, the Kneser graph KG(n, k) has
as vertices the k-subsets of [n] and two vertices are connected by an edge if they have empty
intersection. In a famous paper, Lovász [10] showed that its chromatic number χ(K(n, k)) is equal
to n − 2k + 2. After this result, Schrijver [13] proved that the chromatic number remains the
same when we consider the subgraph KG(n, k)2−stab of KG(n, k) obtained by restricting the vertex
set to the k-subsets that are 2-stable, that is, that do not contain two consecutive elements of [n]
(where 1 and n are considered also to be consecutive). Schrijver [13] also proved that the 2-stable
Kneser graphs are vertex critical (or χ-critical), i.e. the chromatic number of any proper subgraph
of KG(n, k)2−stab is strictly less than n−2k+2; for this reason, the 2-stable Kneser graphs are also
known as the Schrijver graphs. After these general advances, a lot of work has been done concerning
properties of Kneser graphs and stable Kneser graphs (see [2, 3, 9, 1, 11] and references therein).
For example, it is well known that for n ≥ 2k + 1 the automorphism group of the Kneser graph
KG(n, k) is the symmetric group induced by the permutation action on [n]; see [4] for a textbook
account. Concerning the automorphism group of the s-stable Kneser graphs KG(n, k)s−stab, Braun
[1] proved that, for s = 2, it is isomorphic to the dihedral group of order 2n. Recently, Torres
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[15] has generalized Braun’s result by proving that for any s ≥ 2, Aut(KG(n, k)s−stab) is indeed
isomorphic to the dihedral group of order 2n.

The cartesian product G�H of two graphs G and H has vertex set V (G)× V (H), two vertices
being joined by an edge whenever they have one coordinate equal and the other adjacent. This
product is commutative and associative up to isomorphism.

In this paper, we assume that the graphs are finite. An homomorphism from a graph G into a
graph H, denoted by G→ H, is an edge-preserving map from V (G) to V (H). If H is a subgraph
of G and φ : G → H has the property that φ(u) = u for every vertex u of H, then φ is called a
retraction and H is called a retract of G. If φ : G→ H is a bijection and φ−1 is also a homomorphism
from H to G, then φ is an isomorphism and we write G ' H. In particular, if G is finite, a bijective
homomorphism from G to himself is an automorphism. Two graphs G and H are homomorphically
equivalent, denoted by G↔ H, if G→ H and H → G. A graph G is called a core if it has no proper
retracts, i.e., any homomorphism φ : G → G is an automorphism of G. It is well known that any
finite graph G is homomorphically equivalent to at least one core G•, as can be seen by selecting
G• as a retract of G with a minimum number of vertices. In this way, G• is uniquely determined
up to isomorphism, and it makes sense to think of it as the core of G. It is widely known that
Kneser graphs are cores. Moreover, it is not difficult to deduce that any χ-critical graph is a core.
Therefore, any 2-stable Kneser graph is also a core, because it is χ-critical [13].

An automorphism φ of a graph G is called a shift of G if {u, φ(u)} ∈ E(G) for each u ∈ V (G).
In other words, a shift of G maps every vertex to one of its neighbors [9].

Let A be a group and S a subset of A that is closed under inverses and does not contain the
identity. The Cayley gragh Cay(A,S) is the graph whose vertex set is A, two vertices u, v being
joined by an edge if u−1v ∈ S. Cayley graphs of cyclic groups are often called circulants.

A graph G is said vertex-transitive if its automorphism group Aut(G) acts transitively on its
vertex-set. It’s well known that Cayley graphs and Kneser graphs are vertex-transitive. However,
2-stable Kneser graphs are not vertex-transitive in general. For example, no automorphism of
KG(6, 2)2−stab sends {1, 3} to {1, 4}, since Aut(KG(6, 2)2−stab) is isomorphic to the dihedral group
of order 12 acting on the set {1, 2, . . . , 6}.

We write Gn for the n-fold cartesian product of a graph G. A graph G is said hom-idempotent
if there is a homomorphism from G2 to G, and weakly hom-idempotent if for some n ≥ 1 there is a
homomorphism from Gn+1 to Gn. Larose et al. [9] showed that the Kneser graphs are not weakly
hom-idempotent. However, the technique used by Larose et al. [9] cannot be extended directly to
the s-stable Kneser graphs.

A subset S ⊆ [n] is s-stable if any two of its elements are at least ”at distance s apart” on the
n-cycle, that is, if s ≤ |i − j| ≤ n − s for distinct i, j ∈ S. For s, k ≥ 2 and n ≥ ks, the s-stable
Kneser graph KG(n, k)s−stab is the subgraph of KG(n, k) obtained by restricting the vertex set of
KG(n, k) to the s-stable k-subsets of [n].

In this paper, we characterize all the shifts of s-stable Kneser graphs. As a by-product we
show that almost all Schrijver graphs are not weakly hom-idempotent. Moreover, for s, k ≥ 2, we
show that s-stable Kneser graphs KG(ks+ 1, k)s−stab are circulant graphs and so hom-idempotent
graphs. Finally, we study some properties of the s-stable Kneser graph KG(2s + 2, 2)s−stab for
s ≥ 3. We prove that for all s ≥ 3, the graphs KG(2s + 2, 2)s−stab are cores, not χ-critical
and not hom-idempotent. Moreover, we also prove that Meunier’s conjecture [11] concerning the
chromatic number of s-stables Kneser graphs holds for this family of graphs, that is, we prove
that χ(KG(2s + 2, 2)s−stab) = s + 2. We end our paper with a conjecture concerning the not
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hom-idempotence of s-stable Kneser graphs.
In the sequel, we will use the term modulo [n] to denote arithmetic operations on the set [n]

where n represents the 0.

2 Shifts of s-stable Kneser graphs

As we have mentioned in the previous section, Braun [1] and Torres [15] showed that the automor-
phism group of the s-stable Kneser graph KG(n, k)s−stab is isomorphic to the dihedral group D2n

of order 2n, where the group isomorphism φ : D2n 7→ Aut(KG(n, k)s−stab) is such that φ(α)({i1,
i2, . . . , ik}) = {α(i1), α(i2), . . . , α(ik)}. For convenience, from now on we do not distinguish between
elements of Aut(KG(n, k)s−stab) and elements of D2n. We denote the elements of D2n as follows
(arithmetic operations are taken modulo [n]):

• Rotations: Let σ0 be the identity permutation on [n] and, for 1 ≤ i ≤ n−1, let σi = σi−1 ◦σ1,
where σ1 is the circular permutation (1, 2, . . . , n− 1, n).

• Reflexions:

– Case n odd. For 1 ≤ i ≤ n, let ρi be the permutation formed by the product of the
transpositions (i+ 1, i− 1)(i+ 2, i− 2) . . . (i+ n−1

2 , i− n−1
2 ), where i is a fix point.

– Case n even. For 1 ≤ i ≤ n
2 , we have two types of reflexions: let ρi be the permutation

formed by the product of the transpositions (i+1, i−1)(i+2, i−2) . . . (i+ n
2−1, i− n

2 +1),
where i and i + n

2 are fix points; and let δi be the permutation formed by the product
of transpositions (i, i− 1)(i+ 1, i− 2) . . . (i+ n

2 − 1, i− n
2 ) without fix point.

In the following lemmas, we will to characterize all the shifts of stable Kneser graphs.

Lemma 1. Let n ≥ ks + 1. Then, the reflexions are not shifts of the s-stable Kneser graph
KG(n, k)s−stab.

Proof. Let us consider the following two cases:

• Case n odd. For each 1 ≤ i ≤ n, let vi be a vertex in KG(n, k)s−stab such that i ∈ vi. Trivially,
such vertex vi always exists. Now, we know that i is a fix point under the permutation ρi
and thus, i ∈ ρi(vi) which implies that {vi, ρi(vi)} is not an edge of KG(n, k)s−stab. Thus, for
1 ≤ i ≤ n, ρi is not a shift of KG(n, k)s−stab.

• Case n even. Analogous to the previous case, we can show that ρi is not a shift of
KG(n, k)s−stab, for 1 ≤ i ≤ n

2 . Now, for each 1 ≤ i ≤ n
2 , let vi = {i, i+ s, i+ 2s, . . . , i+ (k −

2)s, i−s−1}. Clearly, vi is an s-stable set, since i+(k−2)s and i−s−1 are at least at distance
s apart on the n-cycle. So, vi is a vertex of KG(n, k)s−stab such that {i+s, i−s−1} ⊆ vi. How-
ever, {i+ s, i− s− 1} ⊆ δi(vi) which implies that {vi, δi(vi)} is not an edge of KG(n, k)s−stab.
Thus, for 1 ≤ i ≤ n

2 , δi is not a shift of KG(n, k)s−stab.

Lemma 2. Let n ≥ (k + 1)s − 1. Then, the only 2(s − 1) shifts of the s-stable Kneser graph
KG(n, k)s−stab are the rotations σi with i ∈ {1, . . . , s− 1} ∪ {n− s+ 1, . . . , n− 1}.

3



Proof. From Lemma 1 we only need to study the rotations σi for i ∈ [n − 1]. It is very easy to
deduce that the circular permutations σi with i ∈ {1, . . . , s−1}∪{n− s+ 1, . . . , n−1} are shifts of
the graph KG(n, k)s−stab. In order to prove that they are the only 2(s−1) shifts of KG(n, k)s−stab,
we will proceed by cases. The arithmetic operations are taken modulo [n]. Clearly, the identity
permutation σ0 is not a shift. Now, we claim that for each i ∈ {s, s+ 1, . . . , n− s}, there exists a
vertex vi in KG(n, k)s−stab such that {1, i+ 1} ⊆ vi. In fact, vertex vi can be computed as follows:

• If s ≤ i ≤ ks− 1, let j such that js ≤ i ≤ (j + 1)s− 1 and vi = {1 + ts : t = 0, . . . , j − 1} ∪
{1 + i+ ts : t = 0, . . . , k − j − 1}.

• If ks ≤ i ≤ n− s then, set vi = {1, 1 + s, 1 + 2s, . . . , 1 + (k − 2)s, 1 + i}.

Now, for each s ≤ i ≤ n− s, we know that σi(1) = 1 + i and therefore, 1 + i ∈ σi(vi) which implies
that {vi, σi(vi)} is not an edge of KG(n, k)s−stab. Thus, for s ≤ i ≤ n − s, σi is not a shift of
KG(n, k)s−stab.

In the following lemma we consider [0] = ∅.

Lemma 3. Let sk + 1 ≤ n ≤ s(k + 1) − 2 and r = n − sk. Then, the shifts of the s-stable
Kneser graph KG(n, k)s−stab are the rotations σi for i ∈ {1, . . . , s − 1} ∪ {n − s + 1, . . . , n − 1} ∪[⋃

m∈[k−2]{ms+ r + 1, . . . , (m+ 1)s− 1}
]
.

Proof. Let T = {1, . . . , s− 1}∪{n− s+ 1, . . . , n− 1}∪
[⋃

m∈[k−2]{ms+ r + 1, . . . , (m+ 1)s− 1}].
From Lemma 1 we know that the reflexions are not shifts. It is not hard to see that the circular
permutations σi with i ∈ {1, . . . , s−1}∪{n−s+1, . . . , n−1} are shifts of the graph KG(n, k)s−stab.
So, let i ∈

⋃
m∈[k−2]{ms+ r + 1, . . . , (m+ 1)s− 1}. If v, σi(v) are not adjacent for some vertex v,

then there exist j ∈ v ∩ σi(v). Therefore, {j, j − i} ⊂ v. From the symmetry of KG(n, k)s−stab,
w.l.o.g. we assume that {1 + i, 1} ⊂ v. Notice that |v ∩ [i]| ≤

⌊
i
s

⌋
and

|v ∩ {1 + i, . . . , n}| ≤
⌊
n− i
s

⌋
.

Consider m′ ∈ [k − 2] such that i ∈ {m′s+ r + 1, . . . , (m′ + 1)s− 1}. Then,

•
⌊
i
s

⌋
≤
⌊
(m′+1)s−1

s

⌋
= m′.

•
⌊
n−i
s

⌋
≤
⌊
n−(m′s+r+1)

s

⌋
≤
⌊
n−r−1

s

⌋
−m′ =

⌊
n−n+sk−1

s

⌋
−m′ = k − 1−m′.

Thus, |v| ≤
⌊
i
s

⌋
+
⌊
n−i
s

⌋
≤ k − 1 which is a contradiction. Therefore σi is a shift.

Now, let us see that if i /∈ T , σi is not a shift of KG(n, k)s−stab.
Let Fd = {ds, ds+ 1, . . . , ds+ r} for d ∈ [k − 1] and F =

⋃k−1
d=1 Fd. Observe that F = [n]− T .

Let i ∈ Fd for some d ∈ [k − 1]. Consider t = i − ds and v = {1, 1 + s + t, 1 + 2s + t, . . . , 1 +
(k − 1)s+ t}. Then v is a vertex of KG(n, k)s−stab and {v, σi(v)} is not an edge of KG(n, k)s−stab
since σi(1) = 1 + i = 1 + ds + t belongs to v. Therefore, if i ∈ F the rotations σi is not a shift of
KG(n, k)s−stab and the result follows.

As a by-product of these results, in the following section we prove that if n ≥ 2k + 2, the
Schrijver graphs KG(n, k)2−stab are not weakly hom-idempotent.
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3 Almost all Schrijver graphs are not weakly hom-idempotent

Given a graph G, the set of all shifts of G is denoted by SG. Larose et al. [9] showed the following
useful results:

Proposition 1 (Proposition 2.3 in [9]). A graph G is hom-idempotent if and only if G ↔
Cay(Aut(G•), SG•).

Theorem 1 (Theorem 5.1 in [9]). Let G be a χ-critical graph. Then G is weakly hom-idempotent
if and only if it is hom-idempotent.

Proposition 2. Let n ≥ 2k + 2 and let G denote the graph KG(n, k)2−stab. Then, G 6→
Cay(Aut(G), SG).

Proof. We know that the automorphism group of the graph KG(n, k)2−stab is the dihedral group
D2n on [n]. Moreover, by Lemma 2, we known that the only two shifts of KG(n, k)2−stab are the
circular permutations σ and σ−1. Therefore the Cayley graph Cay(D2n, {σ, σ−1}) is a disjoint
union of two n-cycles. This implies that 2 ≤ χ(Cay(D2n, {σ, σ−1})) ≤ 3. Thus KG(n, k)2−stab 6→
Cay(D2n, {σ, σ−1}).

As mentioned in the previous section, we know that any 2-stable Kneser graph is a core. There-
fore, by Propositions 1 and 2, and by Theorem 1, we have the following result.

Theorem 2. For any n ≥ 2k + 2, the 2-stable Kneser graphs KG(n, k)2−stab are not weakly hom-
idempotent.

4 s-stable Kneser graphs KG(ks+ 1, k)s−stab

Let G denote the complement graph of the graph G, i.e. G has the same vertex set of G and two
vertices are adjacent in G if and only if they are not adjacent in G. Let p be a positive integer.
The pth power of a graph G, that we denoted by G(p), is the graph having the same vertex set as
G and where two vertices are adjacent in G(p) if the distance between them in G is at most equal
to p, where the distance of two vertices in a graph G is the number of edges on the shortest path
connecting them.

Let n ≥ 2k be positive integers. The Cayley graphs Cay(Zn, {k, k + 1, . . . , n − k}), that
we denoted by G(n, k), are known as circular graphs [16, 6], where Zn denote the cyclic group
of order n. It is well known that the Kneser graph KG(n, k) contains an induced subgraph
isomorphic to G(n, k). In fact, let C(n, k) be the subgraph of KG(n, k) obtained by restrict-
ing the vertex set of KG(n, k) to the shifts modulo [n] of the k-subset {1, 2, . . . , k}, that is,
{1, 2, . . . , k}, {2, 3, . . . , k + 1}, . . . , {n, 1, 2, . . . , k − 1}. Define φ : G(n, k) → C(n, k) by putting
φ(u) = {u+ 1, u+ 2, . . . , u+k} where the arithmetic operations are taken modulo [n]. Clearly, φ is

a graph isomorphism. Notice also that the graph G(n, k) is isomorphic to the graph C
(k−1)
n , i.e. the

complement graph of the (k−1)th power of a cycle Cn. Vince [16] has shown that χ(G(n, k)) = dnk e.

In the remainder of this section, we will always assume w.l.o.g. that any vertex v =
{v1, v2, . . . , vk} of the s-stable Kneser graph KG(ks + 1, k)s−stab is such that v1 < v2 < . . . < vk,
where s, k ≥ 2. For i ∈ [k−1], let li(v) = vi+1−vi and lk(v) = v1+(ks+1)−vk. If C is the cycle on
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ks+ 1 points labeled by integers 1, 2, . . . , ks+ 1 in the clockwise direction and v = {v1, v2, . . . , vk}
is a vertex of the s-stable Kneser graph KG(ks + 1, k)s−stab, then li(v) gives the distance in the
clockwise direction between vi and vi+1 in C.

Lemma 4. Let s, k ≥ 2 and let v = {v1, v2, . . . , vk} be a vertex of KG(ks + 1, k)s−stab. Then,
li(v) ∈ {s, s+ 1} for all i ∈ [k]. Moreover, there exists exactly one i′ ∈ [k] such that li′(v) = s+ 1.

Proof. By definition, li(v) ≥ s for any i ∈ [k]. The result follows from the fact that
∑k

i=1 li(v) =
ks+ 1.

Lemma 5. Let s, k ≥ 2. The number of vertices of the graph KG(ks+1, k)s−stab is equal to ks+1.

Proof. Again, let C be the cycle on ks+1 points labeled by integers 1, 2, . . . , ks+1 in the clockwise
direction. From Lemma 4, we have that each vertex of KG(ks+ 1, k)s−stab is uniquely determined
by a clockwise circular interval of length s+ 1 in C. Trivially there exist ks+ 1 distinct clockwise
circular intervals of length s+ 1 in C and the lemma holds.

Proposition 3. Let s, k ≥ 2. Then, G(ks+ 1, k) ' KG(ks+ 1, k)s−stab.

Proof. Let C be a cycle on ks+ 1 points. We assume that the vertices of G(ks+ 1, k) are disposed
over C in clockwise increasing order from 0 to ks. In order to prove the isomorphism, we define
the application φ : G(ks+ 1, k)→ KG(ks+ 1, k)s−stab as follows: let u be a vertex of G(ks+ 1, k)
such that u = jk + i, where 0 ≤ j ≤ s− 1 and 0 ≤ i ≤ k − 1. Then, φ(u) = {u1, . . . , uk} where,

ur =

{
j + 1 + (r − 1)s, if 1 ≤ r ≤ k − i
j + 2 + (r − 1)s, if k − i+ 1 ≤ r ≤ k.

Finally, define φ(ks) = {s+1, 2s+1, . . . , ks+1}. From Lemma 5, it is not difficult to prove that
φ is a bijective function. It remains to show that φ is indeed a graph isomorphism. Let u, v be two
vertices in C(ks+ 1, k). In the sequel, we assume that v > u. In fact, if u > v we can always swap
u and v. Let u = jk + i, where 0 ≤ j ≤ s− 1 and 0 ≤ i ≤ k − 1. Let t = v − u, where 1 ≤ t ≤ sk.
Let us see that φ(u), φ(v) in KG(ks + 1, k)s−stab are adjacent if and only if k ≤ t ≤ k(s − 1) + 1.
Consider t = xk+ y where 0 ≤ x ≤ s and 0 ≤ y ≤ k− 1. Besides, let Vy = {k− i+ 1− y, . . . , k− i}
if 1 ≤ y ≤ k − i and Vy = {1, . . . , k − i, k(s+ 1)− i+ 1− y, . . . , ks} if y > k − i. By construction,
notice that:

• if 1 ≤ y ≤ k − 1 then vr = ur + 1 + x if r ∈ Vy and vr = ur + x if r /∈ Vy.

• if y = 0 then vr = ur + x for all r.

Therefore, if t ≤ k−1 then vr = ur for all r /∈ Vy. So, we have that φ(u)∩φ(v) 6= ∅. Analogously,
if k(s−1) + 2 ≤ t ≤ ks then vr = ur+1 for all r ∈ Vy \{k− i}. Again, we have that φ(u)∩φ(v) 6= ∅.
Besides, notice that lr(u) = s if r 6= k − i and lk−i(u) = s + 1. From this fact, it follows that
φ(u) ∩ φ(v) = ∅ if k ≤ t ≤ k(s− 1) + 1.

Therefore, vertices u, v in C(ks+ 1, k) are adjacent if and only if vertices φ(u), φ(v) in KG(ks+
1, k)s−stab are adjacent.

A direct consequence of Proposition 3 is that χ(KG(ks + 1, k)s−stab) = s + 1. In fact, Vince
[16] has shown, at the end of the eighties, that χ(G(n, k)) = dnk e, and thus, we obtain that
χ(G(ks + 1, k)) = χ(KG(ks + 1, k)s−stab) = s + 1. However, as far as we know, there was
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no known connections between graphs G(ks + 1, k) and KG(ks + 1, k)s−stab. For this reason,
twenty years later, Meunier (see Proposition 1 in [11]) computes again the chromatic number of
KG(ks+ 1, k)s−stab.

Let Cay(A,S) be a Cayley graph. If a−1Sa = S for all a ∈ A, then Cay(A,S) is called a normal
Cayley graph.

Lemma 6 ([5]). Any normal Cayley graph is hom-idempotent.

Note that all Cayley graphs on abelian groups are normal, and thus hom-idempotents. In
particular, the circulant graphs are Cayley graphs on cyclic groups (i.e., cycles, powers of cycles,
complements of powers of cycles, complete graphs, etc). Therefore, by Proposition 3 and Lemma
6, we have the following result.

Theorem 3. Let s, k ≥ 2. Then, KG(ks+ 1, k)s−stab is hom-idempotent.

5 Properties of the graph KG(2s+ 2, 2)s−stab

In this section, we study some properties of the graph KG(2s+ 2, 2)s−stab , with s ≥ 3. First recall
that in Section 3, we use the strong structural property of ”criticality” of Schrijver graphs to prove
that almost all Schrijver graphs are not weakly hom-idempotent. We will prove in this section
that graphs KG(2s + 2, 2)s−stab are not χ-critical for all s ≥ 3. However, we will prove that these
graphs are core and thus, we will be able to deduce that KG(2s+ 2, 2)s−stab is not hom-idempotent
for all s ≥ 3.

In 2011, Meunier [11] has settled a conjecture concerning the chromatic number of r-uniform
s-stable Kneser hypergraphs, with r, s ≥ 2, which is still an open problem, even for 2-uniform
s-stable Kneser (hyper)graphs. For 2-uniform s-stable Kneser (hyper)graphs, the conjecture can
be expressed as follows:

Conjecture 1 ([11]). χ(KG(n, k)s−stab) = n− (k − 1)s, for any s, k ≥ 2 and n > sk.

Since this conjecture was stated, some papers have confirmed it for particular cases (see, e.g
[8, 11]). However, the case k = 2 and n = 2s + 2 is still open. We will prove that Meunier’s
Conjecture 1 holds for the case k = 2, n = 2s + 2, and any s ≥ 3. In fact, we will show that
χ(KG(2s+ 2, 2)s−stab) = s+ 2 .

Let us consider the s-stable Kneser graphs KG(2s + 2, 2)s−stab for s ≥ 3. It is known that
s + 1 ≤ χ(KG(2s + 2, 2)s−stab) ≤ s + 2. Let {Ii}i∈[2s+2] be the family of all maximum stable sets
of KG(2s+ 2, 2)s−stab, where Ii has center i, for i ∈ [2s+ 2] (see Theorem 3 in [14]).

Let S = {{1, 1 + s}, {2, 2 + s}, . . . , {s+ 2, s+ 2 + s}, {1, 3 + s}, {2, 4 + s}, . . . , {s, 2s+ 2}} and
Gn be the Cayley graphs Cay(Zn, {±1,±2, . . . ,±(s − 1), s + 1}) with n = 2s + 2. Let us denote
KG[S] the subgraph induced by S in KG(2s + 2, 2)s−stab. Observe that KG[S] is isomorphic to
Gn, with the isomorphism φ : Gn 7→ KG[S] defined as follows:

φ(u) =

{
{u+ 1, u+ 1 + s} if u ∈ {0, . . . , s+ 1};
{u− (s+ 1), u+ 1} if u ∈ {s+ 2, . . . , 2s+ 1}.

Besides, notice that C
(s−1)
n is a subgraph (not induced) of KG[S], therefore χ(KG[S]) ≥

χ(C
(s−1)
n ) = s+ 1. This last fact holds from the following known result.
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Theorem 4 ([12]). Let n ≥ 2a and n = q(a + 1) + r, with q > 0 and 0 ≤ r ≤ a. Then,

χ(Ca
n) = a+ 1 +

⌈
r
q

⌉
.

On the other hand, the set T = {{1, 2 + s}, {2, 3 + s}, . . . , {s + 1, 2s + 2}} induces a complete
graph in KG(2s+ 2, 2)s−stab and S, T induce a partition of V (KG(2s+ 2, 2)s−stab).

Let G be the subgraph induced by S ∪{{1, 2 + s}, {2, 3 + s}}. We will prove that χ(G) ≥ s+ 2.
Assume that χ(G) = s + 1. Let f be a minimum coloring of G. Since α(KG[S]) = 2, each color
class of f has exactly two vertices in KG[S]. Besides, f−1(f({1, 2 + s})) and f−1(f({2, 3 + s})) are
disjoint maximum stable sets in G. Then, f−1(f({1, 2 + s})) = I1 and f−1(f({2, 3 + s})) = I2 or
f−1(f({1, 2 + s})) = I2+s and f−1(f({2, 3 + s})) = I3+s. W.l.o.g. we assume that f−1(f({1, 2 +
s})) = I1 and f−1(f({2, 3 + s})) = I2. Therefore, f({1, 1 + s}) = f({1, 3 + s}) = f({1, 2 + s}) and
f({2, 2 + s}) = f({2, 4 + s}) = f({2, 3 + s}). Let a = f({1, 2 + s}) and b = f({2, 3 + s}). Let N(v)
be the set of neighbors of vertex v in G. The set U = {{3, 3 + s}, {4, 4 + s}, . . . , {s+ 2, s+ 2 + s}}
verifies that U ⊂ N({1, 1 + s}) ∪ N({1, 3 + s}) and U ⊂ N({2, 2 + s}) ∪ N({2, 4 + s}). Then
f(v) /∈ {a, b} for all v ∈ U . Since U has cardinality s and induces a complete graph in G, f need
at least s+ 2 colors, which is a contradiction.

Thus, we obtain the following lemma.

Lemma 7. For all s ≥ 3, χ(KG(2s+ 2, 2)s−stab) = s+ 2 and KG(2s+ 2, 2)s−stab is not χ-critical.

However, let us see that KG(2s+2, 2)s−stab is a core. Firstly, notice that the chromatic number
of KG(2s+ 2, 2)s−stab−{s+ 2, 2s+ 2} is s+ 1, since its vertex set admits the partition I1, . . . , Is, J
with J = {{s+ 1, 2s+ 1}, {s+ 1, 2s+ 2}}. Besides, since Aut(KG(2s+ 2, 2)s−stab) acts transitively
on S, χ(KG(2s+ 2, 2)s−stab − v) = s+ 1 for all v ∈ S.

Therefore, S is contained in the vertex set of the core of KG(2s + 2, 2)s−stab. Assume that
KG(2s + 2, 2)s−stab is not a core and let G′ be its core. Then, there is a retraction f of KG(2s +
2, 2)s−stab onto G′ [7]. It follows that f(u) ∈ S for some vertex u ∈ T , since T induces a complete
graph in KG(2s + 2, 2)s−stab. Notice that u = {i, i + s + 1} for some i ∈ {1, . . . , s + 1}. Then
f(u) ∈ {{i, i+ s}, {i, i+ s+ 2}, {i− 1, i+ s+ 1}, {i+ 1, i+ s+ 1}}.

Let us prove that if f(u) ∈ {{i, i + s}, {i, i + s + 2}, {i − 1, i + s + 1}, {i + 1, i + s + 1}},
there is a vertex v ∈ S such that u and v are adjacent in KG(2s + 2, 2)s−stab but f(u) and f(v)
are not adjacent in G′, which is a contradiction. Observe that f(v) = v since f is a retraction of
KG(2s+2, 2)s−stab onto G′. Then, for f(u) = {i, i+s}, {i, i+s+2}, {i−1, i+s+1}, {i+1, i+s+1}
let v = {i− 2, i+ s}, {i+ 2, i+ s+ 2}, {i− 1, i+ s− 1}, {i+ 1, i+ s+ 3}, respectively.

Therefore, we obtain the following result.

Lemma 8. KG(2s+ 2, 2)s−stab is a core.

In order to obtain that KG(2s+2, 2)s−stab are not hom-idempotent, we can follow the reasoning
in Section 3, since s-stable Kneser graphs KG(2s + 2, 2)s−stab are cores. Firstly, we will observe
that if G = KG(2s+ 2, 2)s−stab, the graphs Cay(Aut(G), SG) is isomorphic to the disjoint union of
two Cs−1

n . Moreover, we prove a more general result.

Remark 1. If G = KG(2s + 2, 2)s−stab or G = KG(n, k)s−stab with n ≥ (k + 1)s − 1,
Cay(Aut(G), SG) is isomorphic to the disjoint union of two Cs−1

n .
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Proof. It is easy to see that σiσj = σi+j . Besides, if n is odd we have:

σjρi = ρm with

m =

{
i+ n−1

2 + j+1
2 if j is odd,

i+ j
2 if j is even,

and if n is even:

σjρi =

{
δm if j is odd, with m = i+ j+1

2 (mod n
2 ),

ρm if j is even, with m = i+ j
2 (mod n

2 ).

Therefore, since Aut(G) is isomorphic to D2n and SG = {σi : i = 1, . . . , s−1, n−s+1, . . . , n−1},
from previous facts it follows that the rotations induce a Cs−1

n and the reflexions also induce a
Cs−1
n .

Finaly, to prove that if G = KG(2s + 2, 2)s−stab then G 6→ Cay(Aut(G), SG), it is enough to
notice that, from Theorem 4, χ(Cs−1

2s+2) = s + 1 < s + 2. So, by Proposition 1, we obtain the
following result.

Lemma 9. For s ≥ 3, KG(2s+ 2, 2)s−stab is not hom-idempotent.

Observe that if Conjecture 1 is true for n ≥ (k + 1)s − 1 and the graphs KG(n, k)s−stab are
cores, by an analogous reasoning as before we obtain that the following conjecture is true.

Conjecture 2. If n ≥ (k + 1)s − 1 and s ≥ 3, the s-stable Kneser gragh KG(n, k)s−stab is not
hom-idempotent.

Finally, we end this paper with a more strong conjecture:

Conjecture 3. Let s ≥ 3, k ≥ 2 and n > ks+ 1. Then, the s-stable Kneser gragh KG(n, k)s−stab
is not hom-idempotent.
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