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Introduction

Ce document msSente mes activas de recherche et les principawsultats obtenus
apres l'obtention du digiine de doctorat en Informatiquee I'Universite Paris-Sud en
décembre 2000. J'ai travadllpendant quatre ans (janvier 200lecdmbre 2004) comme
enseignant assistant aggirtement des mathiatiques de I'Universtdes Andes (Colom-
bie). Pendant cetteepiode, j'ai enseiga’et travail€ en tl€orie des graphes, d@bfie
algébrique des graphes gbrie des groupes et algorithmique. De janvier 20Q5n 2006,
jai enseigre algorithmique auepartement des mathiatiques appliges de 'Universe”
de Padoue (ltalie). C’est en 2006 que & Tecru€ comme Méte de Conérencesa
I'Université Paris-Nord, o je travaille dans BquipeOptimisation Combinatoire et Al-
gorithmique Distribiee (OCAD) au sein du_aboratoire d’'Informatique de I'Universi
Paris-NordUMR CNRS 7030.

Mes travaux de recherche font partie diésthématiques Dis@tes plus pecigment,
de laThéorie des Graphedls portent sur Etude de certaines variantes du peshé de
coloration des graphes. Je méné€ssea I'etude de nouvelles progtés pour I'obtention
des algorithmes polynomiaux ainsi comeméanalyse de la complexdtalgorithmique de
certaines variantes de la coloration dans certaines familles des graphes. Ma recherche
porte aussi suré&fude de proldmes algbriques concernant la coloration des graphes. Ce
document est compegrincipalement des trois chapitres suivants.

Chapitre 2 : b-coloration des graphes

Dans ce chapitre, on montre d’abord qu’il n’existe pas une constante( pour
lagquelle le prol@dime de la dfermination du nombre b-chromatique d’un graphe péet ~
approcke’avec un facteur de20/113—¢ en temps polynomial, sauf si?2 NP. Ce Esultat
est jusqua present, I'unique @sultat concernant la diffic@td’approximer tel paragire
dans les graphes. Ce travaiéte réali€ avec la collaboration de Sylvie Corteel (CNRS,
France) et Juan Vera (University of Waterloo, Canada) (\e@rence [19]).

Ensuite, on montre que les graph@ssparse (et en particulier, les cographes) sont
b-continus et b-monotones. En plus, il est denm algorithme de programmation dy-
namique pour éferminer en temps polynomial le nombre b-chromatique dans cette famille
des graphes. Ce travailé¥ réali€ avec la collaboration de Flavia Bonomo, Guillermo
Duran (Universidad de Buenos Aires, Argentina)ederic Maffray (CNRS, France), et
Javier Marenco (Universidad Nacional de General Sarmiento, Argentina) é#@ience

[8]).
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Chapitre 3 : Produit direct de certains graphes sommet-transitifs

Dans ce chapitre, oetudie d’abord le nombre d’iregbendence et le nombre chroma-
tigue du produit direct de graphes circulaires, graphes de Kneser et de graphes puissance
des cycles via homomorphismes. Ce traadlté réali€ avec la collaboration de Juan
Vera (University of Waterloo, Canada) (voeférence [80]).

Ensuite, en utilisant desettiodes algbriques classiques, on obtient une chamagsation
compkte des partitions idomatiques du produit direct de trois graphes complets ainsi que
la détermination du nombre idomatique de ces graphes (ef@rence [78]).

Chapitre 4 : Somme-coloration de graphes

Dans ce chapitre, oatudie d’abord le prolkeime de la somme-coloration minimum
(MSC) dans les graphédg;-sparse. Dans ce cas, le but consiste en colorier les sommets
du graphe avec des entiers positifs, tout en minimisant la somme des couleurseaffect”
aux sommets. On montre qu’il y a une grande sous-famille des grdphgsarse pour
lagquelle ce proldime peuttre Esolu en temps polynomial. Ce travagte réalig avec la
collaboration de Flavia Bonomo (Universidad de Buenos Aires, Argentina) @fénerice
[10]).

Le probEme de la somme-até-coloration minimum d’'un graphe (MSEC) peut se
définir de mangre analogue. Dans ce chapitre,aindie le prokdme MSEC dans le cas
des multicycles (cycles avec deg#sS multiples). On propose des algorithmes simples
(pseudo) polynomiaux pouesoudre ce probme dans cette famille de multigraphes. Ce
travail a ét réalig€ avec la collaboration de Jean Cardinal (Univerkibre de Bruxelles,
Belgique) et Vlady Ravelomanana (UniveesRaris-Nord, France) (voieférences [13,
14)).

Finalement, on aefini le probEme de la somme-ensemble-coloration minimum (MSSC)
d’'un graphe, lequel consiste affecter un ensemble d’entiers positifs de taille)) a
chaque sommet du graphe, de telle sorte que I'intersection des ensemblesedtedEs
sommets adjacents soit vide et que la somme totale des ensembles des entiessaffect”
sommets soit minimum. |l est clair quessiv) = 1 pour tout sommet du graphe, alors le
probléme MSSC deviens le prabhie MSC. On montre que, dans les arbres, le prabl”
MSSC peuttre €solu en temps polynomial (resp. est un peoié NP-difficile) dans le
cas @' I'ensemble des entiers affesté chaque sommet est un intervalle cengif (resp.
non-congcutif). On montre aussi que, dans le cas des graphesseqetifs des atés
des arbres, le probime MSSC est NP-difficile quand I'ensemble des entiers af$ect”
chaque sommet est un intervalle ceasfif. Ce travaib'été réali®€ avec la collaboration
de Flavia Bonomo, Guillermo ran (Universidad de Buenos Aires, Argentina), et Javier
Marenco (Universidad Nacional de General Sarmiento, Argentina) @@irance [9]).

Conclusions et Perspectives

Le dernier chapitre conclut ce document et s’ouvre sur lesrdifftes perspectives de
recherche que pourroatre dans le futur trages par ultfieures collaborations nationales
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et internationales ainsi getfea la base de nouvellestimatiques de #se en Informatique
Théorique ou en Matrhatiques Dis@tes.
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Chapter 1

Introduction

This manuscript presents the principal results that | have obtained after my Ph.D. de-
gree in Computer Science at Paris-Sud University in December 2000. After my Ph.D.
degree | have worked four years (from January 2001 to December 2004) as Assistant
Professor at the Mathematical Department of "Los Andes” University in Bof@blom-
bia). During this period, | have had the opportunity of teaching and working on Algebraic
Graph Theory, Graph Theory, Group Theory and Algorithmic. From January 2005 till
June 2006, | have taught some Algorithmic courses at the Mathematical Department of
the University of Padova (Italy). From September 2006, | have obtained a tenure position
as "Maitre de Conérences” in Computer Science at Paris-Nord University. Actually, I'm
working in the Computer Science Department of the Paris-Nord University in the OCAD
team (Optimisation Combinatoire et Algorithmique Distrilée”).

My research domain Biscrete MathematicdPrecisely, the main goal of my research
is the study of several problems on variations of the famous classical problem of graph
coloring. | have studied new properties to develop algorithms for solving some of the pro-
posed problems and to address the computational complexity of some of these variations
of graph coloring in different graph classes, not overlooking the practical applications of
these models. This manuscriptis composed of three principal chapters as in the following.

Chapter 2 : b-coloring of graphs

In this chapter, it is proved that there is no constant 0 for which the problem of
determining the b-chromatic number of a graph can be approximated within a factor of
120/113 — € in polynomial time, unless P- NP. This result is until now the only hard-
ness approximation result known for this parameter. This work has been done with the
collaboration of Sylvie Corteel (CNRS, France) and Juan Vera (University of Waterloo,
Canada) (see reference [19]).

Next, itis proved thaP,-sparse graphs (and, in particular, cographs) are b-continuous
and b-monotonic. Besides, it is given a dynamic programming algorithm to compute the
b-chromatic number in polynomial time within these graph classes. These algorithms rely
on the structural properties of the corresponding classes and are based on the notion of
dominance vector. This work has been done with the collaboration of Flavia Bonomo and

11
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Guillermo Ddran (Universidad de Buenos Aires, Argentina)edéric Maffray (CNRS,
France), and Javier Marenco (Universidad Nacional de General Sarmiento, Argentina)
(see reference [8]).

Chapter 3 : Direct products of some vertex-transitive graphs

In this chapter, the independence and chromatic numbers of finite direct products
graphs of circular graphs, Kneser graphs and powers of cycles is studied. In the case
of circular and Kneser graphs, this is done via classical homomorphisms. For the direct
product graph of powers of cycles, first it is analyzed its independence number and then
such a parameter is used to compute its chromatic number. This work has been done with
the collaboration of Juan Vera (University of Waterloo, Canada) (see reference [80]).

Next, by using an standard algebraic approach, a full characterization of the idomatic
partitions of the direct product of three complete graphs is given, and it is shown how to
use such a characterization in order to construct idomatic partitions of the direct product
of four or more complete graphs (see reference [78]).

Chapter 4 : Sum-coloring of graphs

In this chapter, the Minimum Sum Coloring (MSC) problem Brysparse graphs is
studied. In the MSC problem, the goal is to assign natural numbers to vertices of a graph
such that adjacent vertices get different numbers, and the sum of the numbers assigned
to the vertices is minimum. It is introduced the concept of maximal sequence associated
with an optimal solution of the MSC problem of any graph. Based in such maximal
sequences, it is shown that there is a large sub-family’e$parse graphs for which
the MSC problem can be solved in polynomial-time. This work has been done with the
collaboration of Flavia Bonomo (Universidad de Buenos Aires, Argentina) (see reference
[10]).

In an analogous way, it has been defined the edge coloring version of the MSC prob-
lem : theMinimum Sum Edge ColorindMSEC) problem. Thehromatic edge strength
of a graph is the minimum number of colors required in a minimum sum edge coloring of
this graph. In this part, it is studied the case of multicycles, defined as cycles with parallel
edges, and it is given a closed-form expression for the chromatic edge strength of a mul-
ticycle, thereby extending a theorem due to Berge. It is shown that the minimum sum can
be achieved with a number of colors equal to the chromatic index. It is also proposed sim-
ple algorithms for finding a minimum sum edge coloring of a multicycle. These results
are generalized to a large family of minimum cost coloring problems. This work has been
done with the collaboration of Jean Cardinal (Univerditbre de Bruxelles, Belgique)
and Vlady Ravelomanana (UniveesiParis-Nord, France) (see references [13, 14]).

Finally, it is defined the Minimum Sum Set Coloring (MSSC) problem which consists
in assign a set ab(v) positive integers to each vertexof a graph so that the intersection
of sets assigned to adjacent vertices be empty and the sum of the assigned set of numbers
to each vertex of the graph is minimum. Clearly, whe) = 1 for each vertex of
the graph, the MSSC problem becomes the MSC problem. It is shown that the MSSC
problem on trees is polynomial-time solvable in tien-preemptivease (i.e. the set of
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integers assigned to each vertex is a consecutive interval) but NP-hardgredraptive
case. Finally, it is shown that then-preemptivease of the MSSC problem is NP-hard
for line graphs of trees. This work has been done with the collaboration of Flavia Bonomo
and Guillermo iran (Universidad de Buenos Aires, Argentina), and Javier Marenco
(Universidad Nacional de General Sarmiento, Argentina) (see reference [9]).

Conclusions and Perspectives

This final chapter contains the conclusions of this manuscript and gives some perspec-
tives for a future work at the basis of the formulation of new Ph.D. subjects in Theoretical
Computer Science and Discrete Mathematics.
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CHAPTER 1.

INTRODUCTION



Chapter 2
b-coloring of graphs

We consider finite undirected graphs without loops or multiple edgesri&x color-
ing (i.e. proper coloring of a graphGG = (V, E) is an assignment of colors to the vertices
in V' such that adjacent vertices receive different colors. We assume that the colors are
positive integers. A vertexcoloring of a graph is a coloring where the color of each
vertex inV is taken from the sefl, 2, ..., ¢}. The smallest numbersuch thatz admits
at-coloring is called thehromatic numbeof G and is denoted by (G).

Given a coloring of a grapli with ¢ colors, a vertex is said to bedominantor
t-dominantif v is adjacent to at least one vertex receiving each oft thel colors not
assigned ta. A b-coloringof a graph is a coloring such that every color class admits
a dominant vertex. Note that every coloring@fwith x(G) colors is a b-coloring. The
b-chromatic numbeof a graph(z, denoted by, (G), is the maximum numbersuch that
G admits a b-coloring witht colors. This parameter has been introduced by R. W. Irving
and D. F. Manlove [45], by considering proper colorings that are minimal with respect to
a partial order defined on the set of all the partitions of the vertex s&t diey proved
that determiningy,(G) is NP-hard for general graphs, but polynomial-time solvable for
trees. In [57], Kratochvil, Tuza and Voigt show that determiningG) is NP-hard even
if G is a connected bipartite graph.

Several related concepts concerning b-colorings of graphs have been studied in [25,
42,43, 53, 54, 63]. A grapty' is defined to bé-continuoug25] if it admits a b-coloring
with ¢ colors, for everyt = x(G), ..., x»(G). For example, the graph in Figure 2.1 is
not b-continuous since it admits b-colorings with 2 colors and 4 colors, but no b-coloring
with 3 colors. In [53] (see also [25]) it is proved that chordal graphs and some planar
graphs are b-continuous.

Hoang and Kouider [42] defined the conceptmperfectnessf a graph. A graph
G is b-perfectif x,(H) = x(H) for every induced subgrapH of G. The property
x»(G) = x(G) is not hereditary: the graph in Figure 2.2 ha3G) = x(G) = 3 but
it contains an induced subgrapgh with ,(H) = 4 andx(H) = 3. Also a graphG is
b-imperfectf it is not b-perfect, ananinimally b-imperfecif it is b-imperfect and every
proper induced subgraph 6fis b-perfect (see [54, 43, 63] and references therein).

We define a grapli: to beb-monotonidf y,(H;1) > x,(H,) for every induced sub-
graph H; of G, and every induced subgragh, of H;. This property does not hold in
general, see Figure 2.2. Notice that, by the monotonicity of the chromatic number, both

15



16 CHAPTER 2. B-COLORING OF GRAPHS

Figure 2.1: A non-b-continuous graph, admitting b-colorings with 2 and 4 colors but no
b-coloring with 3 colors.

b-perfect and minimally non b-perfect graphs are b-monotonic.

Figure 2.2: A non-b-monotonic grapi. We havey,(G) = 3, but the subgrapt/
obtained from by deleting the central vertex hgg(H ) = 4.

Recently, the theory of b-colorings of graphs has been applied in [21] to some cluster-
ing problems in data mining processes. In fact, clustering is generally defined as an unsu-
pervised data mining process which aims to divide a set of data into groups, or clusters,
such that the data within the same group are similar to each other while data from different
groups are dissimilar. However, additional background information (namely constraints)
is available in some domains and must be considered in the clustering solutions. A b-
coloring-based approach exhibits more important clustering features an enables to build a
fine partition of the data set in clusters when the number of clusters is not predefined.

In this chapter, we first prove in Section 2.1 that, there is no constant (0 for
which the problem of determining the b-chromatic number of a graph can be approxi-
mated within a factor 0£20/113 — ¢ in polynomial time, unless P- NP. This result is
until now, the only hardness approximation result known for this parameter. This work
has been done with the collaboration of Sylvie Corteel (CNRS, France) and Juan Vera
(University of Waterloo, Canada) (see reference [19]). In Section 2.2, we provethat
sparse graphs (and, in particular, cographs) are b-continuous and b-monotonic. Besides,
we describe a dynamic programming algorithm to compute the b-chromatic number in
polynomial time within these graph classes. These algorithms rely on the structural prop-
erties of the corresponding classes, and are based on the notion of dominance vector that
we will introduce in Section 2.2. This work has been done with the collaboration of Flavia
Bonomo and Guillermo Dran (Universidad de Buenos Aires, Argentinagdéric Maf-
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fray (CNRS, France), and Javier Marenco (Universidad Nacional de General Sarmiento,
Argentina) (see reference [8]).

2.1 On approximating the b-chromatic number

2.1.1 Preliminaries

Let P be a maximization problem and let> 1. For an instance of P let O PT'(x) be
the optimal value. Amv-approximation algorithnfior P is a polynomial time algorithrmd
such that on each input instancef P it outputs a numbed(z) such thaO PT'(z)/a <
A(z) < OPT(z).

To show the hardness of approximating the b-chromatic number we relate it to the
hardness of approximating the optimization version of’HESAT problem. Le# be an
integer greater than 1.

k-ESAT problem.

Instance AsetX = {x;,x,...,x,} of boolean variables, a collectioh= {cy, s, ..., ¢,}
of disjunctive clauses with exactly different literals, where a literal is a variable or a
negated variable itX .

Question Does there exist a truth assignment for the variables such that each clause
in C'is satisfied?

The decision version of thie-ESAT problem is NP-complete fdr > 3 [29]. Johnson
showed in [52] the following result.

Theorem 1 (Theorem 3in [52]) Let X, C') be an instance of the-ESAT problem. Then,
there is a deterministic polynomial time algorithm that finds a truth assignment for vari-
ables inX which satisfies at least’|(1 — 1/2*) clauses inC'.

The MAX k-ESAT problem is the optimization version of teESAT problem in
which, given an instance @f-ESAT, the goal consists of finding the maximum number
of clauses that can be satisfied simultaneously by any truth assignment of the boolean
variables. The MAXk-ESAT problem is NP-hard [29].

Note that in the caske = 3, Theorem 1 gives a®/7-approximation algorithm for the
MAX 3-ESAT problem. Moreover, HStad showed in [37] the following inapproximabil-
ity result for the MAX 3-ESAT problem.

Theorem 2 (Theorem 6.1 in [37]) The MAX 3-ESAT problem is not approximable within
8/7 — e for anye > 0, unless P= NP.

In the following section, we use Theorem 2 restricted to a special kind of instances in order
to obtain an inapproximability result for the b-chromatic number problem of a graph.

Definition 1 We say that an instandgX, C') of MAX 3-ESAT is non-trivial ifC| > 4,
and forallz € X
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e Thereis na: € C such thatr, T € c,

e There arec,d € C such thatr € candz € d.

We now show that Theorem 2 holds when restricted to non-trivial instances of MAX
3-ESAT.

Corollary 1 The MAX 3-ESAT problem is not approximable withifi — for anye > 0,
even when restricted to non-trivial instances.

Proof : We present a proof by contradiction. Assume that there {8 A< )-approximation
algorithm running in polynomial timg(| X | 4 |C|) for non-trivial instance$.X, C') of the
MAX 3-ESAT problem, for somé) < ¢ < 1/7. We prove that there is af8/7 — ¢)-
approximation algorithm for the MAX 3-ESAT problem. This contradicts Theorem 2.
We prove this by induction opX'| + |C|. The base case is trivial. Now, let> 1 and
assume that the statement holds for all instafigges”) such that X | + |C| < k, and let
(X, C) be an instance of MAX 3-ESAT such that' | + |C| = k. If the instance is non-
trivial, the statement follows from our initial assumption. If not we have three possible
cases:

e There isz € X such that there is € C with z,7 € ¢. LetC’ = C \ {¢}. By
induction hypothesis applied toX, C’), we can get, in polynomial time, a truth
assignment for the variables ik that satisfies at Iea%% clauses inC’. This
assignment also satisfieand therefore satisfies at least

ol .l
8/7—c¢ —8/7T—¢

clauses of”.

e There isz € X such that no clause € C containsz. Let X’ = X \ {z} and
C" = C\ {c € C: z € c}. Byinduction hypothesis we can get, in polynomial
time, a truth assignment for the variablesXi that satisfies at lea fﬂs clauses
in C’. Now we assign the value True t9 and all clauses i@’ containing it are

satisfied. Therefore we have a truth assignment satisfying at least
7]
8/7T—¢

€l
8/7—c¢

+ONC| =

clauses.

e Thereisz € X such that no clausec C' containse. This case is analogous to the
previous one.

Therefore, there is &8/7 — ¢)-approximation algorithm for the MAX 3-ESAT problem
running in polynomial-time) (k2)p(k), where theD (k?) term represents the time needed
to find the desired and construcX’ andC” and is certainly not the best possible. O
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2.1.2 Hardness of approximation

In this section we prove the hardness result for approximating the b-chromatic number
problem of a graph.
Let (X, C) be an instance of the 3-ESAT problem. We deftheX,C) = (V, E) to
be the graph constructed as follows:
Let X = {z1,29,...,z,} be the set of boolean variables, anddet {c;,co, ..., ¢c,}
be the collection of disjunctive clauses, with= {; 1,1 2,13} fori = 1,2, ..., p, where
li; =z orl; ; = T, for somel < k < n.

Let

V={v}U{z:1<i<p—-1}U{w;:1<j<2p}
Uyt 1<i<phU{z;,Tij:1<i<n,1<j<p}

and let

E={{z,w;}:1<i<p—-1,1<j#i<2p}
U{{v,z}:1<i<p—-1}U{{v,y;}:1<i<p}
U{yi,yib 1 <i<j<p}

U{{zi;, Tigr:1<i<n,1<jk<p}
U{{yizjr} 1 <i<p,1<j<n1<k<p €}t
Uy T} 1<i<p,1<j<n, 1 <k<p, 75 €}

Notice that|V'| = 2np + 4p.
The resulting grapli=(X, C) = (V, E) is shown in Figure 2.3.

Figure 2.3: Partial construction ¢f from (X, C), where the clause, € C contains the
literalsz; andzx,,.
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Theorem 3 Let (X, C') be a non-trivial instance of the 3-ESAT problem, whefé = n
and|C| = p. Then,x,(G(X, C)) = p+ t wheret is the maximum number of clauses that
can be satisfied i

The proof of Theorem 3 requires Propositions 1 and 2 below.

Proposition 1 Let (X, C') be a non-trivial instance of the 3-ESAT problem, wheéf¢ =
n and|C| = p. Lett be the maximum number of clauses that can be satisfi€d Fhen
there is ab-coloring of G( X, C') with p + ¢ colors.

Proof : Fix a truth assignment of the variables that satisfies exaatlguses. W.l.0.g.
assume that the clauses satisfied'iarec,, cs, . . ., ¢;.
Color the vertices o6 (X, C') with p + ¢ colors as follows:

e for1 <i < p— 1, assign coloi to vertexz;,
e assign colop to vertexw,
e for1 <i < t, assign colop + i to vertexy;.

The previous vertices will be the dominating vertices of each one gf-thtecolor classes.

Forl < j < p+t, assign color to vertexw;, and forl < j < p — t, assign color
p +t to vertexw,,+, ;. In this way, the vertex; is dominating for the color class

Vertexw is already a dominating vertex for the color class

Fort + 1 <1 < p, assign to vertey; the colori — ¢.

For everyl < i < n, do the following. Ifz; is true, choosd < s < p such that
z; € cs. Notice thatc, is satisfied and therefore< ¢. Assign to eacly; ; color j and to
Z;, colorp + s, for1 < j < p. If z; is false therx; is true, and proceed in the analogous
way.

Now, we just need to check that the coloring is proper and that fori < ¢, y; is a
dominating vertex for its color class.

The coloring is not proper only if there ate< i < p,1 < j <nandl <k <p
such that there is an edge betwegand/; ., wherel; , = x;; or l; , = T;, with y; and
L, of the same color (all the other edges are taken care of directly by the construction).
Without loss of generality we assurg, = x5, because the other case is analogous. By
construction ofG (X, C'), we know thatr; € ¢;. There are two cases. If< i < ¢, as
the color ofz;;, is the same as the color of, and this isp + ¢ > p, thenz; is false,
soz; is true. Therefore by the construction of the colorifige ¢;, but thenz;, z; € ¢
contradicting the non-triviality of the instance. tif< i < p, as the color ofc; is the
same as the color of, and thisisi — t < p, z; is true. Therefore; is satisfied, but this
contradicts our assumption that the truth assignment satisfies exactly thelmsses.

Now, considerl < i < t, and let/; be a literal in clause; such that the truth assign-
ment satisfies;. Notice thaty; is adjacent to the vertices that correspond to this literal,
and they received colofis .. . ., p. Since vertey; is also adjacent to every other vertgx
for 1 < j # i <'t, vertexy; is a dominating vertex. a
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Proposition 2 Let (X, C') be a non-trivial instance of MAX 3-ESAT and let< ¢. If
there is a b-coloring of5 (X, C') with p + ¢ colors, Then there exists a truth assignment
for X such that at least clauses are satisfied i.

Proof : Fix a b-coloring ofG (X, C') with p + ¢ colors. There are three possible cases:

e There existt < j <nandl < k < psuch thate;, is a dominating vertex. In this
case, vertex; ; is adjacent at least to+ ¢t — 1 other vertices and thereforg j, is
adjacent to at leagt— 1 of the verticeg;s. This impliesz; belongs to at leagt— 1
of thec;s. If z; belongs to at leastof thec]s, any truth assignment wheteg is true
will satisfy ¢ clauses irC'. If x; belongs to exactly — 1 y;s, takec € C such that
z; & c,and letj’ # 7,1 < j' <n, besuchthat; € c(orz; € c). Then any truth
assignment where; is true andr; is true (resp.z; is false) will satisfy at least
clauses irC.

e Thereard < j <nandl <k < psuchthat;; is a dominating vertex. This case
is completely analogous to the first one.

e Foreveryl < j <nandl <k < pneitherz;; norz;; is a dominating vertex. In
this case the dominating vertices are among thé¢sgt {z; : 1 <i < p—1}U{y; :
1 <i < p}. Now let B the set of dominating vertices belonging{tg : 1 < i < p}.
Then|B| > t. Without loss of generality assume that for< i < p the color of
eachy; is< and that the color assigneddas p + 1. Now define the following truth
assignment for the boolean variables:

o(z;) is True if and only if for alll < k& < p the color ofz; is notp + 2.

Now, let1 < ¢ < p be such thay; € B. Asy; is a dominating vertex, it has to be
connected to some vertex of colpr- 2, and this one has to be one of thg, or
Z; 5, for somel < j < nandl < k < p. Notice that ifz;, has colorp + 2 then
forall 1 <1 < p, the color ofz;; is notp + 2 and thuss(z;) is True. On the other
hand ifz;; has colop + 2 theno () is False. In either casesatisfies;. 0

Proof of the Theorem 3. From Theorem 1¢ > 7p/8 > 1, and the result follows from
Propositions 1 and 2. O

By Corollary 1 and Theorem 3, the hardness approximation result for the b-chromatic
number problem now follows.

Theorem 4 The b-chromatic number problem is not approximable wittdf/113 — ¢
foranye > 0, unless P= NP.

Proof : Suppose that the b-chromatic number problem can be approximated within a
factor 0f120/113 — ¢, for somes > 0. Let (X, C') be a non-trivial instance of 3-ESAT,
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as defined in Section 2. Letbe the number of clauses (%, and lett be the maximum
number of clauses @f that can be satisfied by a truth assignmenttdBy Theorem 3, we
can construct in polynomial time a graph namelyG (X, C'), such thaty,(G) = p + t.
By the assumption, we can compute in polynomial time a b-coloring-farith [ colors
such that

X (G)

120/113 — ¢

and by Proposition 2, we can derive a truth assignme(kof_') which satisfies at least
[ — p clauses. Then

S l S Xb(G>7

p+t
— - _p<l—-p<t.
120/113—¢ =" F=
113t -7 113
p+ lope <l-p<t
120 — 113¢
But, from Theorem 1p < 8t/7, therefore
t _ 105t < 105t + 113pe < 113t — Tp + 113pe <l-p<t
8/7—¢ 120 — 105e 120 — 113¢ 120 — 113¢

Thus, we can get&/7 — ¢ approximation ta which contradicts Corollary 1. O

2.2 0On the b-coloring of cographs andP,-sparse graphs

2.2.1 Definitions and preliminary results

Given a graphty, we define thelominance sequente be dom; € ZN>x, such that
domy;[t] is the maximum number of distinct color classes admitting dominant vertices in
any coloring ofG with ¢ colors, for everyt > x(G). Note that it suffices to consider this
sequence until = |V (G)|, since doma[t] = 0 for ¢t > |V (G)|. The algorithmic treatment
of this sequence will be based on this observation, i.e., we shall considgotieance
vector (dom;[x(G)], ..., domg[|V (G)]]) instead of the whole sequence. For example,
the dominance vector of the graph in Figure 2.43is3,2,0).

1 4 5 1
3 1 2 4 1 4 4 1 5 4 5 6
Figure 2.4: A pyramid and its coloring with 3, 4, 5 and 6 colors admitting 3, 3, 2 and O

distinct color classes with dominant vertices, respectively.

Notice that a grapli admits a b-coloring with colors if and only if dong[¢] = t.
Moreover, it is clear that dogix (G)] = x(G).
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Let Gy = (V4, Ey) andG, = (Vs, Es) be two graphs with; NV, = (). Theunionof
G1 and@G, is the graphGy U Gy = (V3 U Vs, By U Esy), and thgoin of Gy andG, is the
graphG, VvV Gy = (ViU Vo, By U B, UV) x Vo) (i.e.,G1 V Gy = G U G).

A cographis a P,-free graph [17], i.e. a graph that does not contain a path with four
verticesP; as an induced subgraph. Many NP-complete problems are polynomial time
solvable on cographs; but there are some expections, e.g. achromatic number [6], list
coloring [50], etc. The b-coloring problem on cographs was studied in [54], where b-
perfect cographs have been characterized. Nevertheless, the complexity of computing the
b-chromatic number of a cograph was not known. Cographs have a really nice structure,
since they admit a fully decomposition theorem.

Proposition 3 [17] Every non-trivial cograph is either union or join of two smaller cographs.

To each cograpld” one can associate a corresponding decomposition rooted'free
called thecotreeof G, in the following way. Each non-leaf node in the tree is labeled
with either “U” (union-nodes) or ¥/ (join-nodes) and each leaf is labeled with a vertex
of G. Each non-leaf node has two or more children. Lgtbe the subtree df’ rooted
at noder and letV, be the set of vertices corresponding to the leavés,inThen, each
nodez of the cotree corresponds to the gragh= (V,,, E,). An union-node (join-node)
corresponds to the disjoint union (join) of the cographs associated with the children of
the node. Finally, the cograph that is associated with the root of the cotree i5,just
the cograph represented by this cotree. In the sequel, we assume that the union and join
nodes in the cotree alternate on each path from a leaf to the root. The cotree associated to
a cograph can be computed in linear time [18].

The chromatic number of a cograph can be recursively calculated from its cotree by
applying the following result.

Theorem 5 [18] If G is the trivial graph, theny(G) = 1. LetG; = (V4, Ey) andGy =
(Va, E) be two graphs such thaf, N V5 = (. Then,

() x(G1UG2) = max{x(G1), x(G2)}.
(i) x(G1V G2) =x(G1) + x(Ga).

For b-coloring there is a similar result, but the relation between the b-chromatic num-
ber of two graphs and the b-chromatic number of their union is weaker.

Theorem 6 [54] If G is the trivial graph, theny,(G) = 1. LetG;, = (V4, Ey) and
Gy = (Va, E5) be two graphs such thaf, NV, = (). Then,
() x6(G1 U G2) > max{xy(G1), xs(G2)}.

(i) xo(G1V Ga) = xp(G1) + x(Ga).

The graphH in Figure 2.2 is an example of a graph verifying the strict inequality in
Theorem 6:x,(H,) = x»(Hz) = 3, butx,(H) = 4.

A spideris a graph whose vertex set can be partitioned #t6¢' and R, whereS =
{s1,..., sk} (k > 2)is astable sett’ = {cy,..., ¢} is a complete seg; is adjacent to
c; ifand only if i = j (athin spide), or s, is adjacent te:; if and only if i # j (athick
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spidel); R is allowed to be empty and if it is not, then all the verticesiirare adjacent
to all the vertices irC' and non-adjacent to all the verticesin Clearly, the complement
of a thin spider is a thick spider, and viceversa. The tr{gleC, R) is called thespider
partition, and can be found in linear time [46].

A graph is P,-sparseif every 5-vertex subset contains at most die P,-sparse
graphs were introduced in [41], they generalize cographs, can be recognized in linear
time [46], and are a subclass of perfect graphs. Besides, b-pétfaparse graphs have
been characterized in [42F,;-sparse graphs have also a nice decomposition theorem.

Theorem 7 [41, 47]If G is a non-trivial P,-sparse graph, then eithef or G is not
connected, of7 is a spider.

In fact, Theorem 7 say that ifr is a non-trivial P,-sparse graph, then either (i)
Gi,...,G, (p > 1) are the connected components(6{) andG is the disjoint union
(join) of G’s (G’s), or (ii) G'andG are connected and is a spider.

Let G be a graph andl C V(G). Denote byGG|A] the subgraph ofr induced byA.

In [47] is observed that if7 is a spider with vertex partitiofS, C, R), thenG is P,-sparse
if and only if G[R] is P,-sparse.

In [48], itis implicitly stated the following lemma, which allows to compute the chro-
matic number of &;-sparse graph recursively in linear time.

Lemma 1 [48] Let G be a spider with spider partitionnS, C, R). If R is empty, then
xX(G) = |C|. Otherwisex(G) = |C| + x(G[R]).

The algorithm is based on the decomposition theorem and the recognition algorithm,
which finds the decomposition tree in linear time.

2.2.2 Db-continuity in cographs

Minimally b-imperfect cographs, i.e., grap@ssuch thaty,(G) > x(G) butx,(H) =
x(H) for every proper induced subgraphof G, are characterized in [54]. Such graphs
are the disjoint union of two diamonds and the disjoint union of thi*geln both cases
x»(G) = x(G) + 1 holds. It is natural to ask whether there exist cographs with a bigger
difference between their chromatic number and their b-chromatic number.

Let B,, be the graph composed by 1 copies of the stak’, ,,. We have thak(B,,) =
2 andx,(B,) = n + 1. A b-coloring withn + 1 colors is obtained by coloring each of
then + 1 central vertices with a different color and, for every star, coloring each of the
n non-central vertices with a different color (such that this color does not coincide with
the color assigned to the corresponding central vertex). In such a coloring, all the central
vertices ardn + 1)-dominant, and each color class admits a dominant vertex.

Since there are cographs with arbitrarily large difference between their b-chromatic
number and their chromatic number, it makes sense to analyze b-continuity in cographs.

Lemma 2 LetG, = (V4, Ey) andG, = (V4, Ey) be two graphs such thaf NV, = 0. If
(G, and G, are b-continuous and’ = G U G, thend is b-continuous.
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Proof. AssumeG admits a b-coloring withi + 1 colors such that+ 1 > x(G). We shall
show that there exists a b-coloring@fwith ¢ colors. Sincey(G) = max{x(G1), x(G2)}

by Theorem 5, then+ 1 > x(G;) fori = 1,2. We are going to eliminate colar+ 1
and obtain a b-coloring aff with ¢ colors. To this end, consider the following cases for
i=1,2:

(a) If G; does not admit dominant vertices assigned the c¢olar, recolor every vertex
v € @ receiving colort 4+ 1 with some color between 1 artdnot used by any
neighbor ofw.

(b) If G; admits dominant vertices assigned the caler 1 but no dominant vertex
assigned coloy for somej # t + 1, then swap the colors+ 1 andj, and then
resort to Case (a), since now there are no dominant vertices withicelornn G ;.

(c) If G; admits dominant vertices for every color, then we have a b-coloring;of
with ¢ + 1 colors, where + 1 > x(G;). SinceG; is b-continuous, there exists a
b-coloring ofG; with ¢ colors.

After these operations, it is clear that the resulting coloring is a b-coloring with ¢
colors (since we have yet dominant vertices with every color fromt¢} to O

Lemma 3 LetG, = (Vi, E1) andG, = (V3, E») be two graphs such thaf, NV, = 0. If
G, and G4 are b-continuous and’ = G, V G5, thenG is b-continuous.

Proof. AssumeG admits a b-coloring witht + 1 colors such that + 1 > x(G).
We shall show that there exists a b-coloring(ofwith ¢ colors. We have that(G) =
X(G1) + x(G2) andx,(G) = xs(G1) + xu(G2) by Theorems 5 and 6. Furthermore, any
b-coloring ofG; andG, generates a b-coloring 6f by renaming the colors assigned to
(G, starting by the largest color assignedioplus one, and any b-coloring 6f restricted

to G, (resp.Gy) is also a b-coloring. Therefore, in the b-coloring@iwith ¢ + 1 colors,
either G; or G5 (perhaps both) is colored with more colors than its chromatic number.
Suppose without loss of generality that this is the caséforBy restricting the coloring
of G to G;, we obtain a b-coloring of7; with k& 4 1 colors such thak + 1 > x(Gy).
Since(; is b-continuous, there exists a b-coloring@f with k£ colors. Combine this
coloring with the original b-coloring of- restricted taz,, thus constructing a b-coloring
of G with ¢ colors. O

Theorem 8 Cographs are b-continuous.

Proof. We proceed by induction, using Proposition 3, Lemma 2, and Lemma 3, since the
trivial graph is b-continuous. O
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2.2.3 A polynomial time algorithm for b-coloring cographs

Theorem 6 does not lead to an algorithm to compute the b-chromatic number of a
cograph. In fact, itis not difficult to build examples showing that the b-chromatic number
of the graph(z; U G5 does not depend only on the b-chromatic number§ pandG,.

For this reason, we introduce the notion of dominance vector. Our goal is to recursively
compute this vector using the decomposition theorem for cographs, hence obtaining the
b-chromatic number of the graph as the maximwsuch that domg|t] = ¢.

Theorem 9 LetG, = (V4, Ey) and G, = (13, E») be two graphs such thaf N 15 = 0.
If G = G, UGy andt > x(G), then

domg[t] = min{¢, domg, [¢t] + domg, [t]}.

Proof. Lett > x(G). If t > |V(G)|, thent > |V(G,)| andt > |V (G,)|, hence
dom;[t] = 0 = min{¢, dony, [t] + domg,[t]}. If ¢t < |V(G)|, we take a coloring of~
with ¢ colors and dora[t] color classes with dominant vertices. Latbe the number of
color classes with dominant vertices@h, and leta, be the number of color classes with
dominant vertices 7, not having dominant vertices ifi;. Then doma[t] = a; + as.
Notice that, fori = 1,2, if a; > 0 then thet colors are used id7;. Therefore, by
restricting the coloring t@-; (resp.G2) we obtain dorg, [t] > a; and dom, [t] > a2, SO
domy[t] < dony, [t] + dom,[t]. Since clearly dom[t] < ¢, we conclude dog[t] <
min{¢, dom, [t] + domy, [t]}.

On the other hand, sindge> x(G) thent > x(G;) andt > x(Gs). If t > |V(G4)]
andt > |V(G2)|, then dong[t] = 0 = min{t,domy, [t] + domg,[t]}. If t > |V(Gy)]
butt < |V(G,)l, then dong, [t] = 0 and domg[t] = dom,[t] = min{t, domy, [t] +
dom,[t]} holds. Ift < |V(Gy)| andt < |V(G,)|, take a coloring of5; (resp. a col-
oring of G») with ¢ colors and dom, [t] (resp. dom, [t]) color classes with dominant
vertices. If dong, [t] + domy, [t] < ¢, then we can rename the colorsGf in such a way
that the dominant vertices use den| color classes differing from the daomt] color
classes with dominant vertices @#,. This implies dom[t] > domg, [t] + domg,[t] =
min{t, domy, [t] +domg, [t]}. If domg, [t] +domy, [t] > ¢, then we can rename the colors
in G5 in such a way that the dominant vertices usetthelomy;, [t] color classes differing
from the dong,, [¢] color classes with dominant verticesGih plus some additional colors.
We conclude, therefore, that dei] > ¢t = min{¢, domy, [t] + domg, [¢] }. O

Theorem 10 LetG, = (V4, By ) and G, = (Va, E») be two graphs such thag NV, = 0.
LetG = G V Gy andx(G) <t < |[V(G)|. Leta = max{x(G,),t — |V(G2)|} and
b= min{|V(G1)|,t — x(G2)}. Thena < b and

domg[f] = masx {dom, [j] + dom, [t — 1]}
a<j<b

Proof. We will show first four inequalities that imply < b. By Theorem 5x(G;) +
X(G2) = x(G) < t,s0x(G1) <t — x(G2); on the other handy(G;) < |V(G1)| and
X(G2) < [V(Gy)], sot = |[V(Gy)| < t=x(Ga)ifinally, t < [V(G)] = [V(G1)[+[V(Ga2)l,
sot — |V (Gq)| < |V (Gy)].
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Consider any-coloring of G with dom;[t] color classes with dominant vertices. Let
t1 (resp.ty) be the number of colors used by this coloringGh (resp.G,), and leta,
(resp.az) be the number of color classes with dominant vertices ir{resp.(z;). Notice
that any coloring ofG assigns disjoint color sets @@, and G,, sot = t; + t, and
domy[t] = a; + ay. Since thet; colors fromG, are not used iz, the t-dominant
vertices inG which are inG, aret;-dominant vertices in the coloring restricted@q,
hencea; < domg, [t;]. Similarly, thet-dominant vertices irf¥ which are inG, aret,-
dominant vertices in the coloring restricted@. Sincet, = t — t;, we obtaina; <
domy, [t —t1], implying dom;[t] = a1 +as < domy, [t1] +domg, [t —t1]. Asty > x(G1),
ty > t—|V(Gs)|, t1 < |V(Gy)|andt; < t—x(Gs), thena < t; < b. Therefore, we have
domg[t] < max,<;<,{domy, [j] + dome, [t — j}.

Consider any; such thatu < t; < b. Sincex(G;) < t; < |[V(G,)|, there exists
some coloring ofG; with exactly¢; colors. Take any such coloring having dent; |
color classes with dominant vertices. ltgt= t — ¢;. Sincex(Gs) < ty < |V(G9)|,
there exists some coloring @f, with exactlyt, colors. Take any such coloring hav-
ing domy, [t,] color classes with dominant vertices, and rename theselors in such
a way that only colors i{t; + 1,...,t} are used in the new coloring. By combining
these two colorings fof7; and(G,, we obtain a coloring of7 with exactlyt colors. Each
t;-dominant vertex inG; has inG all the vertices iniG; as neighbors, hence it admits
a neighbor with every color if¢; + 1,...,t} and, therefore, it is @&dominant vertex
in G. Similarly, eacht;-dominant vertex inz, can be shown to bée-dominant inG.
Conversely, every-dominant vertex in is eithert;-dominant inGG; or t,-dominant in
GG,. Moreover, since the color sets corresponding-toand GG, are disjoint, the num-
ber oft-dominant vertices in such a coloring 6fis domy,, [t1] + dom, [t2]. Therefore,

dony;[t] > max,<;<p{domy, [j] + domy, [t — j]}. H

Theorem 11 The dominance vector and the b-chromatic number of a cograph can be
computed irO(n?) time.

Proof. The previous results give a dynamic programming algorithm to compute the dom-
inance vector of a cograph from its cotreeGlE= G, U G5 (as in Theorem 9) the value of
dony;[t] is obtained directly from dom [¢] and dong,, [t]. If G = GV G, (asin Theorem

10), then at most values ofj; must be examined. Moreover, each of these two theorems
reduces the computation of desi| to the computation on two disjoint subgraphs. Thus,
there are at most occurrences of such reduction steps. In total, the computation time is
O(n?) for every value of, and soO(n?) for all possible values of. From the dominance
vector of a graplti, the b-chromatic number can be computed easily as the maximum
such that dom|t] = ¢. O

2.2.4 b-monotonicity in cographs

The monotonicity on induced subgraphs is a desirable property that holds for many
known optimization parameters of a graph, like chromatic number, maximum clique,
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maximum degree. This is not the case of the b-chromatic number in general, so itis inter-
esting to analyze the monotonicity of the b-chromatic number within different classes of
graphs. In this section we study the b-monotonicity of cographs. We first state some pre-
liminary properties of the dominance vector of a graph, and then use the decomposition
theorem to analyze the b-monotonicity in this class of graphs.

Lemma 4 If Gisagraphand > x(G), then eithedom;[t+1] = t+1 or domy[t+1] <
domy [t].

Proof. If t +1 > |V(G)|, then0 = domg[t + 1] < domg[t]. Assume, therefore,

t+ 1 < |V(G)| and domg[t + 1] < t + 1. Take any coloring of7 with ¢ + 1 colors
having dong [t + 1] color classes with dominant vertices. Since ddmt 1] < ¢ + 1,

there exists some color class with no dominant vertices, say the iceldr. For every
vertexv with color ¢ + 1, change the color of to any color in{1, ..., ¢} not used by

any of the neighbors af. The resulting coloring is a coloring @f with ¢ colors. Note

that every dominant vertex in the original coloring is dominant in the new coloring, and
that the number of color classes with dominant vertices in the new coloring is at least the
same. Therefore, dagft] > dom [t + 1]. O

A direct consequence of this lemma is the following.
Corollary 2 LetG be a graph. The maximum valueduim; [¢] is attained int = x,(G).

Lemma5 LetG;, = (Vi, Ey) andGy = (V4, E3) be two graphs such thafy NV, = (),
and letG = G; U G,. Assume that for every> x(G;) and every induced subgraph
of G; we havedomy[t] < dony,[t], fori = 1,2. Then, for every > x(G) and every
induced subgraplt/ of G, domy[t] < domy[t] holds.

Proof. Let H be an induced subgraph 6fand lett > x(G). By Theorem 9, we have
domg[t] = min{t, domy, [t] + domg,[t]}. If domg[t] = ¢, then dony[t] < domy[t]
clearly holds. Assume, therefore, defti = domy, [t] + dony, [t]. If H is completely
contained inG;, fori = 1 ori = 2, then dony[t] < dony,[t] < domy[t]. Otherwise,
H = H, U H,, whereH, is an induced subgraph ¢f;, for i = 1,2. By the hypothesis,
domy, [t] < domy,|[t], hence dom, [t] +domy, [t] < domg, [t] +domy, [t]. Therefore, we
conclude dom [t] < domy[t]. O

Lemma 6 LetG, = (Vi, Ey) andGy = (14, E») be two b-continuous graphs such that
V1NV, = 0, and letG' = GV G,. Assume that for evety> y(G;) and for every induced
subgraphH of G; we havedomy[t] < dony,[t], fori = 1,2. Then, for every > x(G)
and for every induced subgragh of G, domy[t] < domy|t] holds.

Proof. Let H be an induced subgraph 6f, and lett > x(G). By hypothesis(,

and GG, are b-continuous. So, by Theorem 3, we have thas b-continuous. Hence
it suffices to considet > x,(G), otherwiset = dony[t] > domy|t]. Recall that, by
Theorem 6x,(G) = xu(G1)+x6(Ga2), SOt > xu(G1)+xs(G2). By Theorem 10, we have
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dony;[t] = max,<;<,{domg, [j] + domy, [t — j]}, wherea = max{x(G1),t — |V (G2)|}
andb = min{|V(Gy)|,t — x(G2)}, anda < b holds.

If H is completely contained i@, or G5, sayG1, by the hypothesis we have deiit] <
domg, [t]. Letj’ = max{a, x,(G1)}. We know thate < b, andx,(G1) < |[V(G1)].
Furthermore,x,(G1) < t — xp(G2) < t — x(G3), hencea < j' < b. Finally, t >
x»(G1) > x(G1) and clearlyt > t — |V(G3)|, hencet > j'. Sincet > j' > x,(G1)
and dong, [t] < t, by Lemma 4, dom, [t] < domy;, [j'], and since do, [t — 5/ > 0, we
have dorg[t] = max,<;<,{dom, [j] + domg,[t — j]} > domy, [j'] + domy, [t — j'] >
domy, [j'] > dony, [t] > domy[t]. Therefore, dom[t] < domglt].

If H is not completely contained i&'; or Go, thenH = H; VvV H,, whereH; is an
induced subgraph df;, for i = 1,2. By the hypothesis, dom|;j] < domy,[j] for each
J > x(G;). By Theorem 10, we have dopf] = max, <<y {domy, [j] + domy, [t — j]},
wherea’ = max{x(H,),t — |V(H)|} andt = min{|V(H,)|,t — x(H2)}, anda’ <

v holds. Letj’ € {d/,...,b'} be the color realizing such maximum, and consider the

following three possible cases:

(@) Ifa <y <b,thendony,[j’] < domg,[j'] and domy,[t—;'] < domg,[t—j'], hence
domy[t] = max,<;<p{domy, [j] + domy, [t — j]} > domy, [j'] + dom, [t — 5] >
domH1 []l] + domH2 [t - j/] = domH [t]

(b) If j/ < a, then in particular’ < a and, since — |V (Hs)| >t — |V(G2)|, we have
a = x(G1). Therefore, dom,[j'] < j' < a = domg,[a]. Sincet > x,(G1) +
x5(G2) anda < x,(Gy), itholdst — a > x,(G2). Sincet — j' >t —a > x,(Gy),
then Lemma 4 implies dog[t — j'] < domg,[t — a|. Finally, as dom,[t —
j'] < domg, [t — j'], we obtain dom|t] = max,<;<,{domg, [j] + domg, [t — j]} >
donmy, [a] + domg, [t — a] > domy, [j'] + domy, [t — 5] = domy[t].

(c) If j/ > b the argumentation is similar. We ha¥ve > b and, sinceV (H;)| <
|V (G1)], we haveb = t — x(G3). Therefore, dom,[t —j'] <t —j <t —b=

x(Gy) = domg, [t — b]. Following the same argument as in Case (b), we conclude

that domy, [j'] < domy, [b], hence dom[t] = max,<;<,{domy, [j] + domg, [t —
j]} > domyg, [b] 4+ domy, [t — b] > domy, [j] + domy, [t — j'] = domg [t].

In the three cases we obtain dgff] < domg|t]. O

Theorem 12 Cographs are b-monotonic.

Proof.  As cographs are hereditary, it is enough to prove that given a cogkaph
x»(G) > x»(H), for every induced subgraph of G. By applying Proposition 3, The-

orem 8, Lemma 5, and Lemma 6, an induction argument shows that for every cograph

G, everyt > x(G), and every induced subgragh of G, domy[t] < domg[t] holds.
Let G be a cograph, and lgf be an induced subgraph 6f. If x,(H) < x(G), then
o(H) < xu(G). Otherwise,x;(H) = domy[x,;(H)] < domy[x,(H)], and by Corol-
lary 2 dom;[x»(H)] < domg[xs(G)] = xu(G). Hencex,(G) > xp(H). O
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2.2.5 P,-sparse graphs

In this section we extend the results about cographs to a superclass offthaparse
graphs. For the b-chromatic number of a spider, a result similar to Lemma 1 can be
proved.

Lemma 7 LetG be a spider with spider partitioniS, C, R). If R is empty then,(G) =
|C|. Otherwise,(G) = |C| + x»(G[R]).

Proof. Let G be a spider with spider partitiai, C, R), where|S| = |C| =k > 2. If R

is empty therny(G) = k, and the vertices il§ have degree at mokt- 1, thus they cannot
be dominant in a coloring with more thancolors. So,,(G) = k£ = |C|. Assume now
that R is non-empty. Then, by Lemma ,(G) > x(G) = k + x(G[R]) > k + 1. Any
b-coloring of G[R] with p colors generates a b-coloring @fwith p + & colors, by using
k new colors orC' and coloring each vertex ifi with a color used by a non-neighbor of
itin C, thusx,(G) > k + x»(G|R]); conversely, any b-coloring @ with ¢ colors, when
restricted ta7|R] is also a b-coloring with — & colors, since the color sets usedirand

R are disjoint and vertices il cannot be dominant in a coloring with more thaoolors,
sox,(G) < k + x»(G[R]). Hence, the lemma holds. O

Nevertheless, in order to compute recursively the b-chromatic numbePgbparse
graph, we will need to calculate the dominance vector of a spider instead.

Theorem 13 LetG be a spider with spider partitio0sS, C, R), andk = |S| = |C| > 2.

() If R is empty and7 is a thin spider, therdomg[k] = domy[k + 1] = k, and
domg[j] =0forj >k + 1.

(b) If Ris non-empty and- is a thin spider, themlomg[k + 7] = k + domgg)[r] for
X(G[R]) < r < |R|,domg|k +|R|+ 1] = k, anddomg[j] = 0for j > k+ |R| + 1.

(c) If Ris empty and7 is a thick spider, themlomg [k + s] = min{k, 2k — 2s} for
0 < s < k,anddomy[j] = 0 for j > 2k.

(d) If Ris non-empty and; is a thick spider, theomg[k + r] = k + domgg[r] for
X(G[R]) < r < |R|, dong[k + |R| + s| = min{k, 2k — 2s} for1 < s < k, and
domg[j] = 0forj > 2k + |R|.

Proof. Let G be a spider with spider partitioft, C, R), andk = |S| = |C] > 2. Let
C = {Cl,...,Ck} andsS = {sl,...,sk}.

(a) If Ris empty and? is a thin spider, then(G) = k, implying domy [k] = k. Thek
vertices inC' have degreé and the vertices iy have degreeé, hence dom[k+1] <
k and dong[j] = 0 for j > k + 1, sinceGG does not admit any vertex with degree at
leastk + 1. Finally, a coloring ofGG with k£ + 1 colors andk colors with dominant
vertices can be obtained by assigning colbts & to the vertices inC', and color
k + 1 to the vertices irb.
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(b) If Ris non-empty and is a thin spider, then, by Lemma {(G) = k + x(G|[R)),
implying dony; [k + x(G[R])] = k + x(G[R]). Thek verticescy, ..., ¢, in C
have degreé + |R|, the vertices inR have degree at most+ |R| — 1 and the
vertices inS have degreé, hence dom[k + |R| + 1] < k and dona[j] = 0 for
Jj > k+ |R| + 1. On the other hand, a coloring ¢f with k& + |R| + 1 colors
andk color classes with dominant vertices can be obtained by assigning the colors
1,...,ktothe vertices irC, the colorsc + 1, ..., k + | R| and the colok + |R| + 1
to the vertices ofS. For x(G[R]) < r < |R|, in a coloring withk + r colors,
the vertices ofS cannot be dominant. Moreover, if they use a color non present
in C'U R, then at most thé vertices inC' can be dominant. Suppose now that
all the colors used ity are also present i6' U R. Then all the vertices 0’ are
dominant, and they have pairwise different colors. In fact, they are dominant also in
the coloring restricted t6/[C'U R] as well as the dominant verticesit) since there
are no edges betweénhandsS. Besides, any coloring @i[C' U R] can be extended
to G without introducing new colors. So, deffk + r] = domgicur [k + |, and,
by Theorem 10, dogak + r| = k + domgg[r].

(c) If R is empty andG is a thick spider, they(G) = k, implying dony[k] = k.
Furthermore, the vertices ist have degreé — 1 and the vertices i@’ have degree
2k — 2, hence dom|[j] = 0 for j > 2k. Finally, fors =1, ..., k, the vertices in5
cannot be dominant in a coloring 6fwith & + s colors, thus dom[k + s] < k. In
any coloring ofG the vertices inC' are assigned pairwise different colors, say the
colorsl, ..., k. Moreover, the vertex; is dominant if and only if the color assigned
to s; is also assigned to some other vertexGin By symmetry, at least vertices
from S must be assigned thecolors betweert + 1 andk + s, saysy, ..., S, If
k < 2s then at least — (k — s) of them get a color not used by any other vertex
in G. This implies dom[k + s] < k — (s — (k — s)) = 2k — 2s. As in the
casek > 2s we have2k — 2s > k and this already is an upper bound, we obtain
domy [k + s] < min{k,2k — 2s}. A coloring attaining this bound is obtained by
assigning the colors, . . ., k to the vertices iniC', and the colorg + 1,...,k + s
to the verticessy, ..., ss. If k& > 2s, the verticessy, 1, . .., sos receive the colors
k+1,...,k+s,and fori > 2s, s; gets the same color as In this case, we have
k color classes with dominant vertices, since every vertex bm dominant. If
k < 2s, the verticess,, 1, . .., s, are assigned the coloks+ 1, ..., 2k — s. Here,
we get2k — 2s color classes with dominant vertices. Therefore, dPmy- s| =
min{k, 2k — 2s}.

(d) If Ris non-empty and is a thick spider, then, by Lemma {(G) = k+ x(G[R)]),
implying donmy [k + x(G[R])] = k + x(G][R]). Furthermore, the vertices fihave
degree — 1, the vertices irC’ have degre@k + | R| — 2, and the vertices i have
degree at most + |R| — 1 hence domg[j] = 0 for j > 2k + |R|. Fors =1,... K,
neither the vertices ity nor the vertices ik can be dominant in a coloring &f
with k& + |R| + s colors, hence dowmik + |R| + s] < k. In any coloring ofG,
the vertices fronC' are assigned pairwise different colors, say the colors. , .
Moreover, the vertex; is dominant if and only if the color assigned ipis also
assigned to some other vertex@h Since the vertices iR can use at mogt?|
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colors, sayk + 1,...,k + |R|, then by symmetry, at leastvertices fromS must

be assigned the colors betweert + |R| + 1 andk + |R| + s, says, ..., ss. If

k < 2s, at leasts — (k — s) of them are assigned a color not used by any other
vertex inG. Therefore, dom(k + |R| +s] < k— (s — (k —s)) = 2k — 2s. As

in the caseé: > 2s we have2k — 2s > k and this already is an upper bound, we
obtain dong [k + |R| + s] < min{k,2k — 2s}. A coloring attaining this bound
can be constructed by assigning the colbrs ., k to the vertices irC, the colors
k+1,...,k+|R|tothe vertices ik, and the coloré + |R|+1,...,k+|R|+ s to

the verticessy, ..., s,. If k£ > 2s, the verticess, 1, . .., sos are assigned the colors
k+|R|+1,...,k + |R| + s, ands; gets the same color as, for i > 2s. In

this case, we obtaikh color classes with dominant vertices, since all the vertices
in C' are dominant. Ift < 2s, the verticess,,4,..., s, are assigned the colors
k+|R|+1,...,2k + |R| — s. In this case, we havek — 2s color classes with
dominant vertices. Therefore, deiit + 1+ s| = min{k, 2k —2s}. For domy; [k+7]

with x(G[R]) < r < |R|, we can use the same argumentation as in case (b), so
domg [k + 7] = domgcur [k + 7] = k + domgr[r].

O

Theorem 14 The dominance vector and the b-chromatic number &f,-@parse graph
can be computed i@ (n?) time.

Proof. By combining Theorem 9, Theorem 10, Theorem 7, and Theorem 13, and since
P,-sparse graphs are a hereditary class, we can recursively calculate the dominance vector
and, consequently, the b-chromatic number & sparse graph i®(n?) time. The com-

plexity analysis is the same as for Theorem 11, noting that for the base cases (spiders) the
computation of dom|t] for each value of is given directly in the proof of Theorem 18.

Now, we study the b-continuity oR,-sparse graphs.
Theorem 15 P,-sparse graphs are b-continuous.

Proof. We proceed by induction, using Theorem 7 and Lemmas 2 and 3. So, it remains
to analyze the case of spiders. Suppose th#é a spiderP,-sparse graph, with spider
partition (S, C, R), where|S| = |C| = k > 2. Assume’ admits a b-coloring with + 1
colors such that + 1 > x(G). We shall show that there exists a b-coloringtdfwith

t colors. We have that(G) = k + x(G[R]) andx,(G) = k + x»(G[R]) by Lemmas 1

and 7. So,kR must be non-empty ang,(G[R]) > x(G|R]). As observed in the proof of
Lemma 7, any b-coloring of/[R] with p colors generates a b-coloring 6fwith p + &
colors and, conversely, any b-coloring@frestricted ta7| k| is also a b-coloring. There-
fore, by restricting the b-coloring @¥ with ¢+ 1 colors toG|[R], we obtain a b-coloring of
G[R]witht+1—F colors, and +1—k > x(G|R]). SinceP,-sparse is a hereditary graph
class,GG[R] is a P;-sparse graph, and by inductive hypothesis, there exists a b-coloring of
G|R] with t—k colors. As observed before, this b-coloring¢[fR] generates a b-coloring

of G with ¢ colors. O

Finally, we analyze the b-monotonicity di-sparse graphs.
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Lemma 8 Let G be a spider with spider partitioqS, C, R). Assume that for every >
x(G[R]) and for every induced subgraptf of G|R| we havedomy[t] < domyg[t].
Then, for every > x(G) and for every induced subgragh of G, domy[t] < domy[t]
holds.

Proof. Let G be a spider with spider partitiofts, C, R), where|S| = |C| = k > 2,
and letH be an induced subgraph 6f. For convenience, if a graph is empty define its
dominance sequence as the zero sequence, beginning at zerfdy betV' (H) N R. By
hypothesisdomgir,,[r] < domerr], for eachr > x(G[R]). Following the arguments
used in the proof of Theorem 13, it can be seen that:

- If G is a thin spider, then dogik + 7] < k + domgr,[r] <
domg [k +r] for x(G[R]) < r < |R|, domg [k + |R|+1] < k =
and domy[j] = 0 = domg[j] for j > k + |R| + 1.

k + domgr[r] =
dony; [k + |R|+ 1],

- If G is a thick spider, then dopik + r] < k + domgr,,[r] < k + domegg[r] =
domy [k + r] for x(G[R]) < r < |R|, domy [k + |R| + s| < min{k, 2k — 2s} =
domy[k + |R| + s] for 1 < s < k, and dony [j] = 0 = domy[j] for j > 2k + |R).

We conclude dom[t] > domyt], for everyt > x(G). |

Theorem 16 P,-sparse graphs are b-monotonic.

Proof. As P,-sparse graphs are hereditary, it is enough to prove that givep a
sparse grapltz, x,(G) > x,(H), for every induced subgrapH of G. By applying
Lemma 5, Theorem 15, Lemma 6, Lemma 8, and Theorem 7, gisparse graphs
is a hereditary class, we can inductively show that for evépgparse grapld:, every
induced subgrapli/ of G, and everyt > x(G), domg[t] < domy]t] holds. LetG be
a P,-sparse graph, and léf be an induced subgraph 6f. If x,(H) < x(G), then
xo(H) < x(G). Otherwise,y,(H) = domy[x,(H)] < domg[x,(H)] and by Corol-
lary 2, dom [y, (H)] < dom:[x,(G)] = xs(G) implying thatx, (G) = xu(H). =

2.3 Conclusions

In Section 2.1, we have shown that the b-chromatic number of a graph is hard to
approximate in polynomial time within a factor #20/113 — ¢, for anye > 0, unless
P = NP. This is the first and only hardness result for approximating the b-chromatic
number. An interesting open problem is the existence of a constant-factor approximation
algorithm for the b-chromatic number in general graphs.

In Section 2.2, we have proved that cographs Bpdparse graphs are b-continuous and
b-monotonic. Besides, we have designed a dynamic programming algorithm to compute
the b-chromatic number in polynomial time within these graph classes. One interesting
problem is to extend our results to superclasses of these graph families, as for example,
the class of distance-hereditary graphs. Finally, it would be an interesting problem to
characterize b-monotonic graphs by forbidden induced subgraphs.
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Chapter 3

Direct product of some vertex-transitive
graphs

Thedirect product& x H of two graphs= andH is defined by (G x H) = V(G) x
V(H), and where two verticegu,, us), (v1, v2) are joined by an edge iR (G x H) if
{uy,m} € E(G) and{us,v,} € E(H). This product is commutative and associative
in a natural way (see reference [44] for a detailed description on product graphs). A
coloring of G x H can be easily derived from a coloring of any of its factors, hence
X(G x H) < min{x(G), x(H)}. One of the outstanding problems in graph theory is a
formula concerning the chromatic number of the direct product of any two giGi il
H, called theHedetniemi conjecturg39] (see also [32, 33, 22] and ref.), which states
X(G x H) = min{x(G), x(H)}. The inherent difficulty of Hedetniemi’s conjecture lies
in finding lower bounds fog (G x H). In this paper we prove the Hedetniemi’s conjecture
to be true in some classes of vertex-transitive graphs.

On the other hand, if is an independent set of one factor, the pre-imagewfder the
projection is an independent set of the product. Thé@;x H) > max{«a(G)|H|, «(H)|G|}.

In this case it is known that the equality does not hold in general. In fact, Jha anzbKlav™
show in [51] that for any grap&’ with at least one edge and for ajy¥ N there is a graph

H such thato(G x H) > max{«a(G).|V(H)|,a(H).|V(G)|} + j. In [77], Tardif asks
whethera, (G x H) = max{a,(G)|H|,ax(H)|G|} always holds for vertex-transitive
graphs, wherey.(G) is the maximal size of an inducédcolourable subgraph @f.

In other related work, Larose and Tardif investigate in [60] the relationship between
projectivity and the structure of maximal independent sets of finite direct products of sev-
eral copies of the same graph beingG a circular graph, a Kneser graph or a truncated
simplices.

Independence and chromatic properties of circular graphs and Kneser graphs are ana-
lyzed using graph homomorphism. An edge-preserving map froy (G) — V(H) is
called ahomomorphisnfrom GG to H and itis denoted by : G — H. We say that; and
H arehomomorphically equivaleritthere existy : G — H andy : H — G. Notice that
if there is¢ : G — H thenx(G) < x(H). In particular ifG and H are homomorphically
equivalent theny(G) = x(H). The following result is direct.

Lemma 9 Let G be a graph and lef/ be an induced subgraph 6f. Then,G x H and
H are homomorphically equivalent and therefoxg(G x H) = y(H).

35
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In the context of vertex transitive graphs The “No-Homomorphism” lemma of Albert-
son and Collins is useful to get bounds on the size of independent sets.

Lemma 10 (Albertson-Collins [2]) LetG, H be graphs such thall is vertex-transitive
and there is a homomorphism: G — H. Then,
a(G) _ o(H)
> .
V(G — [V(H)

The chromatic number of a graghand its independence number are closely related
via the inequality

X(@) = [IV(G)|/a(G)].

Let n be a positive integer. We denote by the set{0,1,...,n — 1}. The complete
graph K, will usually be on the vertex set|. By using this relation, Lemma 10, and
Lemma 9, we can deduce the following well known result.

Corollary 3 Letk > 2 be an integer and let, no, ..., n, be positive integers. Then,

o ([T, Kn.) = max { (TT;n5)/nis | andx(ITK,) = min{n}.
wherel < i,j < k.

A setS C V is called adominating setf for every vertexv € V' \ S there exists a
vertexu € S such thatu is adjacent ta. The minimum cardinality of a dominating set
in G is called thedomination numbeof G and is denoted(G). A setS C V is called
independenif no two vertices inS are adjacent. A sef C V' is called anndependent
dominating sebf G if it is both independent and dominating set@f The minimum
cardinality of an independent dominating setins called theindependent domination
numberof G and is denoted(G). Thedomatic number(G) is the maximum order of
a partition ofV' into dominating sets. The domatic number of a graph was introduced
by Cockayne and Hedetniemi [16]. A partition of the vertex Beinto independent
dominating sets is called aomatic partitionof G [15, 16]. Clearly, an idomatic partition
of a graph(G represents a proper coloring of the verticeg:0fThe maximum order of an
idomatic partition ofG is called theidomatic numbetid(G). An idomatic partition of a
graph( into £ parts is called amdomatick-partition of G. Notice that not every graph
has an idomatic k-partition, for any. For example, the cycle graph on five vertices
has no an idomatik-partition for anyk.

Let I" be a group and’ a subset of” closed under inverses and identity free. The
Cayley graph Cay’, C) is the graph witH" as its vertex set, two verticesandv being
joined by an edge if and only if~'v € C. The setC is then called th&onnector set
of Cay(T', C'). Simple examples of Cayley graphs include the cycles, which are Cayley
graphs of cyclic groups, and the complete graphswhich are Cayley graphs of any
group of ordem. Cayley graphs constitute a rich class of vertex-transitive graphs (see
[32, 33] and references therein).

Lett > 1 beanintegerand let;, n,, ..., n; be positive integers. Notice that the direct
product graplz = K,,, x K,,, x ... x K,, can be seen as the Cayley graph of the direct
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product grouy = Z,,, X Z,,, X ... X Z,, with connector seftu;]\ {0} x ... x [ng] \ {0},
whereZ,,. denotes the additive cyclic group of integers modulo

Some recent results concerning independence parameters in graphs with connection to
direct products graphs and Cayley graphs can be found in [11, 61, 20] (see also references
therein).

Idomatic partitions of graphs were studied in [20] as an special coloring problem on
graphs defined dsall colorings. In this work, the authors show the following result.

Theorem 17 ([20]) Letn; > 1 andny, > 1 be two integers. The direct product graph
K,, x K,, admits an idomatia,-partition and an idomatic:,-partition. Furthermore,
if £ > 1is aninteger such that¢ {n,,n.}, thenk,, x K,, has no idomati¢-partition.

Moreover, in [20] is posed the question of characterizing the idomatic partitions of the
direct product of three or more complete graphs.

In this chapter, we study in Section 3.1 the independence and chromatic numbers of finite
direct products graphs of circular graphs, Kneser graphs and powers of cycles. In the case
of circular and Kneser graphs, this is done via classical homomorphisms. For the direct
product graph of powers of cycles, we first analyze its independence number and then we
use such a result to compute its chromatic number. This work has been done with the
collaboration of Juan Vera (University of Waterloo, Canada) (see reference [80]).

In Section 3.2, we give a full characterization of the idomatic partitions of the direct
product of three complete graphs by using an standard algebraic approach, and we show
how to use such a characterization in order to construct idomatic partitions of the direct
product of four or more complete graphs (see reference [78]).

3.1 Independence and chromatic properties

3.1.1 Circular graphs

Let m,n be integers such that > 2n > 0. Thecircular graphC)" is the Cayley
graph for the cyclic grouf.,,, with connector se{n,n + 1,n + 2,...,m — n}. These
graphs play an important role in the definition of the star chromatic number defined by
Vince in [81]. The following result can be easily deduced.

Lemma 11 Letm,n be integers withn > 2n > 0. Then,a(C)") = n and x(C)") =
[l

Concerning homomorphisms between circular graphs, Bondy and Hell show in [7] the
following result.

Lemma 12 (Bondy-Hell [7]) Letm, n, k be positive integers such that > 2n. Then,
C™ andC}™ are homomorphically equivalent.

Lemma 13 Letr, m be positive integers and let;, no, . .., n, be positive integers such
thatn, < n, <... <n, andm > 2n,, for each; € [r]. Then,C}" is a subgraph of the
graphCy x C70ox ... x C.
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Proof : Let ¢ : C' — [[,C be the map defined by — (z,z,...,z) for all
x € V(C). Itis easy to deduce that this map is an injective graph homomorphism.
0

By Lemma 13 and Lemma 9 we have the following result.

Corollary 4 Letr, m be positive integers and let;, no, . . ., n, be positive integers such
thatm > 2n,, for eachi € [r]. Then,x (I], C") = min{x(C}")} = min { [m-‘ }
v 7 g 7 n;

Letmy, mo, ..., m, be positive integers, with > 1. We denote bym,, ms, ..., m,]
the least common multiple of.,, msy, ..., m,.

Theorem 18 Letr be a positive integer, and let, ms, ..., m,, ny,no,...,n, be posi-
tive integers such that; > 2n;, for eachi € [r]. Then,x (T, C™) = min{x(C})}.

Proof : Let m = [my,ms,...,m,| andk; = m/m; for eachi € [r]. By Lemma 12,
for eachi, we haveC)’, homomorphically equivalent t6';":. Therefore[[, C;";. is
homomorphically equivalent tp], C:. By Corollary 4, we have

(H 0’”’) = X (TL.C7y,) = min {x(C )} = mnﬂ%}} = min {x(C)}

O

Lemma 14 Letr, m be positive integers and let;, no, ..., n, be positive integers such
thatm > 2n;, foreachi € [r]. Thena (T[,C)") = m" ' max{a(C}")} = m"~" max{n;}.

Proof: W.l.o.g. we can assume that < n, < ... < n,. By Lemma 13, the grapf" is

a subgraph of the gragh x C7! x ... x C" and thus, there is a natural homomorphism
(i.e. the inclusion map) from'}" to [, C. Moreover, ad [, C)" is vertex-transitive, by
Lemma 10 we have(C)/m > a (I]; i) /m". Therefore,

a(TT.Cm) < m™a(Cr) = m™'n, = m" ' max;{n;}. O

Theorem 19 Letr be a positive integer, and let,, mo, ..., m,,ny,ng, ..., n, be pos-
itive integers such thatr;, > 2n;, for eachi € [r]. LetM = myms...m,. Then,
e (Hl CT’L”) = max{a(C;" )M /m;} = max{n; M/m;}.

Proof : Letm = [my, ma, ..., m,] and letk; = m/m; for eachi € [r]. By Lemma 12,
ILCry, is homomorphlcally equivalent tp[, C;:. Moreover, a§ [, C;", and] ], C
are vertex-transitive, by Lemma 10, we hav@—[ ary)/m’ = o[, C”jz)/M Now,
by Lemma 14, we have([[, C7,. ) = m’ ' max;{n;k;}. W.l.o.g. we can assume that
niky < noky < ... < n, k.. Thereforen([], C77) = n.kee M/m = mymy ... m,_1n, =
max;{n;M/m;} = max;{a(C})M/m;}. O
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3.1.2 Kneser graphs

Let m, n be positive integers such that > 2n. TheKneser graphk]" is the graph
whose vertices are thesubsets of0, 1, ..., m — 1}, where two vertices are adjacent if
they are disjoint. In a celebrated paper, Bez shows the following result.

Theorem 20 (Lovasz [62]) The chromatic number &f " ism — 2n + 2.
The independence number of Kneser graphs is related to the following classical inequality.

Theorem 21 (Erdos-Ko-Rado, [23]) Letn, n be positive integers such that < m/2,
andF a family of pairwise intersecting-subsets ofm]. Then|F| < ("~}).

n—1

Theorem 21 implies that the sets = {A € V(K") : k € A} are independent sets
of maximal cardinality ink]", for k = 0,1,...,m — 1. Hilton-Milner [40], show that
those are the only independent sets of maximal cardinalify;Jn Recently, the diameter
of Kneser graphs has been computed in [79].

Concerning homomorphisms between Kneser graphs, Stahl shows the following use-
ful result.

Theorem 22 (Stahl [75]) Letm, n be integers such that > 1 andm > 2n. Then, there
is an homomorphism frof ™ to K™ 2.

Lemma 15 Letn, r be positive integers and let; < my < ... < m, be positive integers
such thatm; > 2n, for: € [r]. Then, K™ is a subgraph of the grapk™ x K2 x
X K

Proof : Let® : K" — [, K be the map defined b§(A) = (A, A,..., A) for all
A e V(K!™). Itis clear that this map is an injective homomorphism. O

By Lemma 15, Lemma 9 and Theorem 20 we can deduce the following result.

Corollary 5 Letn, r be positive integers and let,, ms, . .., m, be positive integers such
thatm, > 2n, fori € [r]. Thenx (][, K7) = min{x(K,")} = min{m;} — 2n + 2.

Lemma 16 Letr be a positive integer, and let,, msy, ..., m,, ny,na, ..., n, be positive
integers such thatn; > 2n,;, for i € [r|, and assume that; < ny, < ... < n,, with

m;+2(nr—n;

n, > 1. Then, there is a graph homomorphidm [, K, e IL K.

m;+2(ny—n;) N

Proof : By Theorem 22, for eache [r], there is a graph homomorphisim: K,
K. Therefore, there is a graph homomorphigm]T], gt LK. O

Theorem 23 Letr be a positive integer, and let, mo, ..., m,,ny,ng, ..., n, be posi-
tive integers such that; > 2n;, for i € [r]. Then,y ([T, K/) = min{x(K}")}.
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Proof : W.l.o.g. we can assume that < n, < ... < n,, and assume that, >
1. Then, by Lemma 16, there is a graph homomorphism [, K ™) —

[, K", which implies thaty ([, K") > x <Hi KQZZ'”("T’”Z')). By Corollary 5 we

havey (Hz Kﬂ"”(m_”i)) = min{m,; +2(n, —n;) — 2n, + 2} = min{m; —2n; +2} =
min{x(K7)}. 0

Letm, n be positive integers such that > 2n. The circular graptt’" is a subgraph
of the Kneser graplk*. More precisely the map : C" — K" defined byp(u) =
{u,u+1,...,u +n — 1} (arithmetic operations are taken modulg is an injective
graph homomorphism. Notice that the BsdKo-Rado inequality (Theorem 21) can be
easily deduced by using the fact ti@}" is a subgraph of<", and then, using the No-
Homomorphism-Lemma (Lemma 10). In the same way, we can deduce the independence
number of the direct product of Kneser graphs, which is a particular case of a more general
result of Ahlswede, Aydinian, and Khachatrian [1] in extremal set theory.

Theorem 24 Letr be a positive integer, and let, mo, ..., m,,ny, ng, ..., n, be posi-
tive integers such that,; > 2n;, fori € [r]. LetN =[], (™). Then,

o (I K7) = mae {7/ ()}

Proof : We know that for each € [r], we have thaC}"" is a subgraph ok Therefore,

there is a homomorphism frof[, C7 to [], K7, Let M = [], m;. By Lemma 10,
we havea(I], C)/M > o], K')/N. Moreover, by Theorem 19y (], Ci) =
mlax{ni]\/[/mi}. Thus,a] [, K777) < leax{ni/mi} = miax{ (7;‘;:11)]\7/(7;;)} =

max{a (K )N/ (") }, which proves this theorem. O

3.1.3 Powers of cycles

For positive integers anda such that > 2a, we denote by’ (n, a) the graph with
vertex set{0,1,...,n — 1} and edge se{ij : i — j = £k mod n,1 < k < a}; the
graphC(n, a) is thea-th power of then-cycle C(n, 1). Notice that grapiC(n, a) is the
complement graph of the circular graglf, ;. Prowse and Woodall analyze in [72] a
restricted coloring problem (the list-coloring problem) on powers of cycles. In particular,
they show the following result.

Theorem 25 (Prowse-Woodall [72]) Let:, a be positive integers such that< n/2 and
n = q(a+1)+r whereg > 1and0 < r < a. Then,a(C(n,a)) = || = g and
xX(C(n,a)) = [zetmay ] =a+ 1+ 151

Let V1, Vs, ..., V; be a vertex decomposition (i.e. a partition of the vertexiSeof the
graphG. Then, it is easy to deduce thatG) < > . a(G[V;]), where, forl < i < j,
G[V;] denotes the subgraph @finduced byV;.
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Lemma 17 Letm, n, a be positive integers such that< n/2, and leta = «(C(n,a)).
Then,
a(K,, x C(n,a)) = max{n, ma}.

Proof : Letn = g(a + 1) + r, with ¢ > 1 and0 < r < a. By Theorem 25 we have
thata = ¢, and thus we need to prove thatk,, x C(n,a)) < max{n,mq}. LetI be a
maximal independent set éf,, x C'(n,a). We can assume that| > n. Otherwise, the
lemma trivially holds. Thus, there exisfsc {0,...,n — 1} such that there are at least
two vertices in/ with the second coordinate equaljtoAs C'(n, a) is vertex transitive, we
can assume that= 0. As/ is an independent set, there is no vertex iraving as second
coordinate an integer such that) < i < a or such thatt —a < i < n — 1. Thus, as
0 <r < a, we can assume that the remaining vertices fairm an independent set in the
induced subgrapk,, x C(n,a)[{a+1,a+2,...,n—r—1}]. Thisinduced subgraph ad-
mits a vertex decomposition into— 1 subgraphs all of them isomorphic fo,, x K,;.
Therefore, by using Corollary 3, we have that < m + (¢ — 1)a(K,, X Kup1) =
m+ (¢—1)max{m,a+1}. If m > a+1then|I| < mq. Otherwise|I| < (a+1)q < n.

0

Theorem 26 For i = 1,2, let n;, a; be positive integers such that > 2q;, and let
a; = a(C(n;, a;)). Then,

a(C(ny,ar) x C(ng,az)) = max{ayng, asny }.

Proof : Fori = 1,2, arithmetic operations on the vertex set(dfn;, a;) will be taken

modulon;. Letn; = ¢;(a;+1)+r;, withg; > 1and0 < r; < a;. By Theorem 25¢; = ¢;,
for i = 1,2. Let I be a maximal independence set in the gréffhh,, a;) x C(ns, as).
We should prove thgt/| < max{qins,¢n,}. We definel; = {x € [ : (1 — 1,29) €
Ior(zy 4+ 1,20) € I} andly = I\ I,. Forz € I we defineS, = {(x1,22 +1) : 1 =
0,...,a}ifz e andS, = {(x1 +i,29) 11 =0,...,a1 } If x € L5.

Clam1 Letz,y € I. If z # y thenS, N S, = 0.

Letz,y € I be such that # y. First we showy ¢ S, andz ¢ S,. W.l.o.g. assume
y € S,. Ifx € I, thenzy = y; and0 < y, — 25 < ay. By the maximality of/,
{(x1,294+19):i=1,...,y2 — a2} C I, contradictingz € I,;. By a similar argument
x ¢ I,. Now, assumes, N S, # (. Note that ifz,y € I, orz,y € I, thenz € S, or
y € S,. Thereforeyx € I, ifand only ify € I,. W.l.o.g. assume € [, andy € I,. Let
z €5, NSy Thenz; =z andzy = yo. Thus,0 <y — 25 < agandd <z —y; < ay,
contradictinge, y € I, proving this Claim.

Now, w.l.0.g. assume that < a, and|I| > nyq;; and letA = U,¢;S,. By Claim 1,
we havelA| = |I1](ag+ 1)+ |3 (a1 + 1) > |I|(a1+1) > neqi (a1 +1). Thenthere i9 <
j <ngsuchthatd; = {0 <z <ny : (z,j) € A} has size larger thap (a; + 1). Given
x € A; letz be defined as the only point ihsuch thatz, j) € S;. Also, fori = 1,2, let
B, ={ze€A;:zeL}andletB), = {x € A : (z,j) = & € I,}. By Claim 1, we have
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B is anindependence set@(n, a;) and|A;| = (a1+1)|By|+|B1| < (a1 +1)q1 +| By
Therefore,B; is nonempty. A (nq,a1) x C(ng, as) is vertex-transitive we can assume
A;={a":i=1,...,]A;|} ordered such that' > 2* for all i andz' = 0 € B;. Notice
thatas4;| > ¢1(a1+1), thenz'™ — 2’ < g, for all i. Now we want to prove3, is empty.
For this assum@), # () and letk = min; {2' € By} = min; {z' € By}. Thenz*~! € B;.
Now, #¢~1 2% € I, buti? — 241 = 2F — 2F1 < gy andib™ — 25 = j — 257 < ay.
Thenit~! = j and by maximality off we getz* = 2*~' 41, but this contradict$” € I5.
ThereforeB, is empty.

Finally, by a similar argument to the one above, for eviery i < |A;| we havet}, =
#5 andz*! = 2% + 1. Therefore there i8 < j' < ny such thaf0, n; — 1] x {5’} C I.
W.l.o.g assumg’ = 0. The vertices in/ \ [0,n; — 1] x {0} belong to the induced
subgraptC(ny,a;) x C(ng, as)[{as + 1,as + 2,...,ny — 1o — 1}], which admits a ver-
tex decomposition intg, — 1 subgraphs all of them isomorphic €(nq, a;) X Ku,.1-
Therefore, by Lemma 17, we have that < n; + a(C(ny,a1) X Kapi1)(@e — 1) =
n1 + (g2 — 1) max{ny, (az + 1)g1 } < max{goni, g1na}. o

Theorem 27 For i = 1,2, let n;, a; be positive integers such that > 2aq;, and let
a; = a(C(ng,a;)). Then,

(€, a0) % Clz, ) = i (€. a0), x(Clng, )} = min { | ][22},

Proof : Fori = 1,2, letn; = ¢(a; + 1) + r;, with ¢, > 1 and0 < r; < a;.
By Theorem 25 we have that(C(n;,a;)) = [=-], wherea; = ¢;. Moreover, by
Theorem 26, we have that(C(n;,a;) X C(ng,dg)) = max{njag, nocy }. SO, we
have thaty(C(ni,a1) x C(ng,as)) > [—F2"2——1. Thus, ifnjas > nsay then

max{niaz,naa }

X(C(ny,a1) x C(ng,az)) > [M22] = [22] = x(C(ng,as)). Otherwisex(C(ny,a1) X

nia2 a2

C(ng, az)) > [122] = [2] = x(C(n1,a1)). Thereforex(C(ni,ar) x C(ng, az)) >
min{x(C(n1,a1)), x(C(n2, as))}. O

We have not be able to generalize Theorem 26 for any finite product of powers of
cycles graphs, and so it remains as an open problem.

3.2 ldomatic sets and idomatic partitions

3.2.1 Independent dominating sets

Lemma 18 LetG = K,,, x K,,, x K, withng,ny,n, > 2 and let/ be an independent
dominating set in7. If the set/ contains at least two vertices agreeing in exactly two
coordinates, thed = pr;'(k), wherei € [3], pr; is the projection ofG' on K, and
ke [nl]

Proof. As G is vertex-transitive and the direct product is commutative, we can assume
w.l.0.g. that the verticege, 7, j) and(y, 7, j) of G belong tol, with i and; fix, andx # y.
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First note that for alk € [no], with z ¢ {x,y}, we have thatz,i,j) € I. Otherwise,

let 2 ¢ {z,y} such that z,i,j) ¢ I. As I is a dominating set, then there exists a vertex
(a,b,c) € I suchthate # z, b # i andc # j. If a & {x,y} then(a,b, c) is adjacent

to vertices(z, i, 7) and(y, i, ). If a € {x,y}, saya = x (the case: = y is analogous),
then(a, b, ¢) is adjacent to vertey, i, j). In both cases, we obtain a contradiction to the
independence of. Now, assume that there exists a vertexq, j) ¢ I, with ¢ # 1.
Otherwise,/ = pr,'(j) and there is nothing to prove. Asis a dominating set, then
there exists a vertea, b, c) € I with a # w, b # g andc # j. As(z,1,7) belongs to

I for anyz € [ngl, thenb = i, otherwise! is not an independent set. Thus, the vertices
(a,i,7) and(a, i, c) belong tol. By using a similar argument as before, we can deduce
that (a,i,h) € I for all h € [ny]. Therefore, we have that, i, j) and(a, i, h) belong

to [ for all = € [ny] and for allh € [ns] which implies, by the hypothesis thatis an
independent dominating set &f that!/ = pr;* (7). O

Lemma 19 LetG = K,,, X K, x K,,, withng, ny,n, > 2, and let/ be an independent
set ofGG such that no two vertices in it agree in exactly two coordinates. Thus, theiset
a dominating set of7 if and only if

I= {(O[(), an, Oég), (OZ(), ﬁla ﬁ?)a (ﬁ()y Qq, ﬁ?)a (ﬁo: ﬁla 052)},
for somen;, 3; € [n;], with o; # 3; andi € [3].

Proof. Assume first that such independent ges also a dominating set af. By
hypothesis,/ contains at least two vertices, and any pair of such vertices agreeing in
exactly one coordinate. A§' is vertex-transitive, we can assume w.l.0.g. that vertex
(0,0,0) belongs tol. By the commutativity of the direct product, we can assume that
contains also the vertéX, 3;, 32), with 3; # 0 for ¢ = 1, 2. Furthermore, by hypothesis,

I contains no vertex of the forrfv, 0, z), for anyz # 0. As [ is a dominating set, then
there existg 3y, b,c) € I with 5y # 0, b # 0 andc # z. If ¢ # 0 then verticeg0, 0, 0)

and (o, b, c) are adjacent which is a contradiction to the independende &oc = 0
which implies thab = 3;, otherwise there is again a contradiction with the independence
of I. Therefore, vertices0, 0,0), (0, 31, 52) and (5o, £1,0) belong tol. Similarly, by
hypothesis/ contains no vertex of the forift, y, 0) for anyy # 0. As I is a dominating

set, there exists a vertéx, v, w) € I with u # 0, v # y andw # 0, which implies

that vertex(y, 0, 52) belongs tal. By hypothesis, it is clear that no other vertex different
to the previous four vertices can belong tpotherwise there is a contradiction to the
independence af.

Conversely, lef = {(«, a1, a2), (v, b1, 52), (Bo, aa, Ba), (Bo, 1, a2) }, for somew;, 5; €

[n;], with a; # §; andi € [3]. Clearly, I is a maximal independent set w.r.t. the property
that any pair of vertices in it agree in exactly one coordinate. Suppose that there is a
vertex(zo, x1,x2) € G\ I such that it is not adjacent to any vertexinThus,z; = «;

for some (but not for allj € [3]. So, assume that, # a, (the other cases can be proved
similarly). If xo = ap andz; = oy then(5y, 51, z) is adjacent to it. Therefore, assume
thatz; # ay. Aszy = «y, then it implies that:; = 3;, otherwise(zy, 1, z2) is adjacent

to (5o, F1, a0). But, the last implies that, = [, otherwise(z,, 1, z2) is adjacent to
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(Bo, a1, B2). Thus,(zg, x1, x2) = (ap, (1, P2) € I that is a contradiction. Similarly, if we
assume that, # «ag, 1 = a1, andzs # as We obtain thatzy, z1, x2) = (6o, a1, Ba) € 1
that is a contradiction. Thereforéjs an independent dominating set@f O

Definition 2 LetG = K, x K,, x K,,, withn; > 2, and let/ be an independent
dominating set inG. The set/ is said to be ofTfype A if it verifies the hypothesis in
Lemma 18, and it is said to be ©fpe B if it verifies the hypothesis in Lemma 19.

The following result is a consequence of Lemmas 18 and 19.

Theorem 28 LetG = K,,, x K,,, x K,,,, withn; > 2, and let/ be an independent set in
G. Then,l is also a dominating set it if and only if it is of Type A or Type B.

3.2.2 ldomatic partitions

Definition 3 LetG = K, x K,, x K,,, withn; > 2, and letG,,Gs, ..., G; be an
idomatict-partition of G, witht > 1. Such an idomatic partition is called

- of Type A: If all independent dominating sefs; are of Type A.
- of Type B: If all independent dominating sefs; are of Type B.

- of Type C: If there is at least one independent dominatingGebf Type A, and at
least one independent dominating 6&tof Type B, with # j.

Theorem 29 LetG = K, X K,, x K,,, withn; > 2. Then,G has an idomatio;-
partition of Type A for each € [3]. Moreover, such partitions are the only idomatic
partitions of Type A of5.

Proof. Let pr, be the projection of7 on K,,,, fori € [3]. It is easy to deduce that
pr;1(0),pr; (1), ..., pr; ' (n; — 1) is an idomatic;-partition of G. In order to proof the
second part, assume th@thas an idomatic partition of Type A containing two different
independent dominating sefsand/; such that/; = K, x K,; x {«a;} for some fixed
a; € [n;] andl; = K, x {«a;} x K, for some fixedw; € [n;], whereq, j, k € [3] and
i, j, k pairwise different. Clearlyl; N I; # () that is a contradiction. O

Proposition 4 LetG = K,,, x K,,, x K,,, withn; > 2. If G has an idomatic partition
of Type B then there exigtk € [3], with j # k, such that:; andn,, are both even.

Proof. By Lemma 19, we know that each part in an idomatic partition of Type B has four
vertices, and thué is a divisor ofng.n;.ny. That s, there is at least ome, with j € [3]
such that2|n,. By the commutativity of the direct product, we can assume w.l.0.g. that
j = 2. Let G}, be a part of the idomatic partition of Type B. By definitiar, is an inde-
pendent dominating set of Type B. So, &t = {(ao, a1, a2), (v, 51, B2), (Bo, a1, B2),
(Bo, b1, a0) }, Wherea;, 5; € [n;] with «; # ;. Fix the elementy, € [ny]. The number
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of vertices(z, y, ) in G is exactlyny.n,. Moreover, asy; # 3; then, there are exactly
m parts in any idomatic partition of Type B each one containing exactly two different
vertices(z, y, az) and (2/, ¢, ), with = # 2’ andy # y'. Therefore2|nq.ny, which
implies that2|n, or 2|n;. O

Proposition 5 LetG = K,,, x K,,, x K,,, withn; > 2. If there existj, k € [3], with
J # k, such thatz; andn;, are both even, the&' has an idomatic partition of Type B of
order “o-tLnz,

4

Proof. As mentioned previously, the gragh = K,, x K,, x K,, can be seen as
the Cayley graph associated with the direct product g@up 7,,, x Z,, X Z,, with
connector sefng] \ {0} x [n4] \ {0} x [n2] \ {0}, whereZ,,, denotes the additive cyclic
group of the integers module;,. By the commutativity of the direct product, we can
assume w.l.0.g. th&in, and2|n,. Leta; be an element of orde“gé in the groupZ,,,, for

j € {1,2}. Let Hy = < (1,0,0) > be the cyclic subgroup @ generated by the element
(1,0,0). Similarly, let H, = < (0,a4,0) > andH, = < (0,0, az) > be cyclic subgroups
of G. Itis easy to deduce thdf; N H; = {(0,0,0)} for all 7,5 € [3], withi # j. As§G

is an Abelian group then, by using standard group theoretic concepts, it can be deduced
that the sety. H,.Hy = {ho + hy + hy : h; € H;fori € [3]} is a subgroup of order
neri2in G, Let P denotes the subgrouid,. /. H, and letr = #0-1-22. Moreover, let
P = {p1,ps2,...,p-}, Wwherep; = (0,0,0) is the identity element. The following claim
can be obtained by using standard arguments in group theory.

Claim 1 Let P be the subgroup @ = Z,,, x Z,, x Z,, defined previously. Fof = 1, 2,
leta; be the element of order; /2 in Z,,; chosen in order to construct the subgrotip of
G. Let, be any element iw,,,, with 3, # 0. Moreover, forj = 1, 2, let3; be any element
in Z,,, such thats; ¢< a; >. Then,P, (0, 31, 32) + P, (50,0, 82) + P, (8o, $1,0) + Pis
a partition ofG into left cosets of°.

In fact, letD = {(0, 1, B2), (6o, 0, B2), (G0, F1,0)}. By construction, no element in
the setD belongs to the subgroup. Moreover, letzr, y be any two different elements in
D. Itis easy to show that there exists no elemest P such thatr + z = y. Otherwise,
z = (po, p1,p2) € Pissuchthap; = +3; orp, = £+, thatis a contradiction. Therefore,
Claim 1 holds.

Now, for eachl < i <, letC; = {p;, (0, 51, B2) +ps, (5o, 0, B2) +pi, (Bo, B1,0) +p; :
p; € P}. We want to show that';, Cs, .. ., C, is an idomatie-partition of the grapltz =
K,, x K,, x K,,,. By using the fact that- is the Cayley graph C&y[ Z..., [ [([7:]\{0})),
we obtain the following claim.

Claim 2 Letx,y, = be three vertices af. Then, vertices + y andz + z are adjacent in
G if and only if verticesy and z are adjacent inG.

Notice that, by Claim 2, each patt is an independent set of the gragh Moreover,
by Lemma 19, each sét; is an independent dominating set of Type B, which completes
the proof. O

By Propositions 4 and 5, we obtain the following theorem.
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Theorem 30 LetG = K,,, x K,,, x K,,,, withn; > 2. Then,GG has an idomatic partition
of Type B if and only if there exigtk € [3], with j # k, such thatr,; andn, are both
even.

Example 1 Let G = K, x K3 x K4. An idomatic6-partition of Type B ofG can
be constructed as follows : let =< (0,0,0) > . < (0,1,0) > . < (0,0,2) >=
{po, p1,p2,p3, 4,5} be a subgroup of the groug, x Z; x Z4, wherep, = (0,0,0),
p1 = (0,1,0), p, = (0,2,0), ps = (0,0,2), ps = (0,1,2), andps = (0,2,2). Let
€T, = (O, 1, ]_), To = (1, 0, 1), andl'g, = (1, 1,0) Then,C’Z- = {pi,pi+x1,pi+x2,pi+x3},
fori =0,1,...,5,is an idomatig-partition of Type B of~ .

Theorem 31 Let G = K,,, X K,,, x K,,, withn; > 2, and letq,, ¢o be two positive
integers. Then(z has an idomati¢q; + g-)-partition of Type C if and only if there exists
i € [3] suchthat; — ¢ > 1and K, x K,, x K,,_,, admits an idomatig,-partition of
Type B, withyj, k, ¢ € [3] and j, k, i pairwise different.

Proof. Assume first thafz has an idomati¢q, + ¢»)-partition of Type C, where; (resp.

¢2) denotes the number of independent dominating sets of Type A (resp. Type B) in such
a partition. By Theorem 29, it can be deduced thaithe@ominating sets of Type A must

be all of the formkK’,, x K, x {s} for somes € K, with i fix, wherej, k,i € [3] and

J, k. pairwise different. So, by permuting (if necessarily) the elements in the faGtor

we can assume w.l.o.g. that theindependent dominating sets of Type A are the sets
Ky, x Ky, x {s}, fors = n; —q,...,n; — 1. Clearly, the remaining, independent
dominating sets of Type B induce an idomatjepartition of Type B of the direct product
graphk, x K, x K, _,. Finally, note that ifn; — ¢, = 1, then all the independent
dominating sets in the idomatic partition are of Type A, which is a contradiction, and thus,
n; — ¢, > 1. The other direction of the proof is trivial. O

Example 2 Let G = K, x K3 x K4. An idomatic5-partition of Type C ofz can be
constructed as follows : consider first the graph= K, x Ky x K, and letP =

< (0,0,0) > . < (0,0,0) > . < (0,0,1) >= {po, p1, p2, p3} be a subgroup of the group
Zoy X Zy x Zy, Wwherepy = (0,0,0), p1 = (0,0,1), po = (0,0,2), andps = (0,0, 3). Let
T = (O, 1, ]_), To = (1, 0, 1), andzs = (1, 1, 0) Then,C’Z{ = {pi,pi+x1,pi+x2,pi+x3},
fori =0, 1,2, 3is an idomatict-partition of G’ of Type B. Then K, x {2} x K4)U(UCY)

is an idomatics-partition of Type C foiGz.

From Theorems 29, 30 and 31, we have a full characterization of the idomatic parti-
tions of the direct product of three complete graphs as follows.

Theorem 32 LetG = K,,, x K,, X K,,, withn; > 2. If Z is an idomatic partition of~,
thenZ must be of Type A, B or C.

By Theorem 17 (see [20]) we know that the idomatic number of the giaphi,, x
K,,, with ng,ny > 2, is equal tomax{ng, n; }. Now, having the characterization of the
idomatic partitions of the direct product of three complete graphs then, by using Theorems
29, 30, 31, and Proposition 5, we can easily deduce the following corollary.
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Corollary 6 LetG = K,,, x K,, x K,,, Withng,ni,ny > 2, and letid(G) denote the
idomatic number of grapty. Lett = max{ng, ni,n2}. Then,

1. If n; is an odd integer for al € [3], thenid(G) = t.

2. If n; is an even integer and; < n;, are odd integers, with, j, £ € [3] and:, j and
k pairwise different, thend(() = max{t, “"-7=0 4 13,

ng.nj.nyg

3. Ifn; andn; are even integers, with j < [3] and: # j, thenid(G) = =

3.2.3 Some General results

Theorem 33 Let G x H be the direct product graph of graplis and H respectively. If
GG admits an idomatie-partition for somer > 0, and if H has no isolated vertices, then
G x H admits an idomatie-partition.

Proof. Assume thatz admits an idomatic-partition, for some positive integet Let
G1,Gs, ..., G, be such an idomatic-partition of G. SetS; = G; x H,for1 <i < r.
Clearly, | J;_, S; is a vertex partition of the grapfy x H. As for eachl < i < r, we
have that~; is an independent dominating setdf it follows, by the definition of direct
product graph and by the hypothesis thahas at least one edge, thgtis an indepen-
dent dominating set i@ x H, and therefor¢ J._, S; is an idomatic--partition of G x H. O

So, by using Theorem 33, we can directly deduce the following result.

Proposition 6 LetG = K,,, x K, X...x K,,, witht > 3andn; > 2foranyi € [t+1].
Let J be any subset dt + 1]. If [],.; K, has an idomatic partition of size, thenG
has an idomatie-partition.

Notice that Theorem 29 can be generalized as follows.

Theorem 34 LetG = K,,, x K, X ... x K,,,witht > 3 andn; > 2 foranyi € [t + 1].
Then,G has an idomatia:;-partition of Type A for each € [t + 1]. Moreover, such
partitions are the only idomatic partitions of Type A®f

3.3 Conclusions

In Section 3.1, we have shown that for circular graphs, Kneser graphs, and powers
of cycles graphs, the Hedetniemi’s conjecture on the chromatic number of direct prod-
ucts of these graphs is true. Moreover, we have also computed the independence number
of direct products of these graphs. However, it is unknown if for any vertex-transitive
graphsG and H, the equalitiesy(G' x H) = min{x(G), x(H)} anda(G x H) =
max{«a(G)|H|, a(H)|G|} always hold.

In Section 3.2, we are obtained a full characterization of the idomatic partitions of the
direct product of three complete graphs. Moreover, From Theorem 34 and Proposition
6 in Section 3.2, we are able to construct many idomatic partitions for a direct product
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of four or more complete graphs. However, we do not know if there exist other different
types of idomatic partitions. Therefore, a full characterization of such idomatic partitions
for the direct product of finitely many complete graphs remains an open question.



Chapter 4

Sum-coloring of graphs

Given a vertex coloring of a grapH, thesumof the coloring is the sum of the colors
assigned to the vertices. Tlebromatic sun®(G) of G is the smallest sum that can be
achieved by any proper coloring 6f. In theMinimum Sum ColoringMSC) problem we
have to find a coloring of with sum%(G).

The MSC problem was introduced by Kubicka [58]. The problem is motivated by
applications in scheduling [3, 4, 35, 36] and VLSI design [69, 76]. The computational
complexity of determining the vertex chromatic sum of a simple graph has been studied
extensively since then. In [59] it is shown that the problem is NP-hard in general, but
polynomial-time solvable for trees. The dynamic programming algorithm for trees can
be extended to partidl-trees and block graphs [49]. Furthermore, the MSC problem is
NP-hard even when restricted to some classes of graphs for which finding the chromatic
number is easy, such as bipartite or interval graphs [4, 76]. A number of approachability
results for various classes of graphs were obtained in the last ten years [3, 30, 35, 36, 26].

Jansen has shown in [49] that a more general optimization problem where each color
has an integer cost, but this cost is not necessarily equal to the color tkeel©pti-
mal Cost Chromatic Partition (OCCP) probleman be solved in polynomial-time for
cographs and block graphs, but it remains NP-hard for permutation graphs. Salavatipour
has shown in [73] that the OCCP problem can be solved in polynomial-time for the fam-
ily of P,-reducible graphs, a superclass containing the family of cographssparse
graphs were introduced in [41]. They generalize cographsfgreducible graphs, can
be recognized in linear time [46], and are a subclass of perfect graphs [41]. In Section
4.1, we study the Minimum Sum Coloring (MSC) problem Biprsparse graphs. First,
we introduce the concept of maximal sequence associated with an optimal solution of
the MSC problem of any graph. Next, based in such maximal sequences, we show that
there is a large sub-family a?;-sparse graphs for which the MSC problem can be solved
in polynomial-time. This work has been done with the collaboration of Flavia Bonomo
(Universidad de Buenos Aires, Argentina) (see reference [10]).

In an analogous way, it has been defined the edge coloring version of the MSC prob-
lem : theMinimum Sum Edge ColorinMSEC) problem. Thesdge-chromatic surof
a graphG is denoted by'(G).The MSEC problem is NP-hard for bipartite graphs [31],

49
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even if the graph is also planar and has maximum degree 3 [64]. Furthermore, in [64] is
also shown that the MSEC is NP-hard fsregular planar graphs and for partiatrees.
Independently of the result given by Jansen in [49] concerning the polynomial-time com-
plexity of a more general optimization problem (i.e. the General Optimal Cost Chromatic
Partition Problem) containing the MSC problem on block graphs, it has been shown in
[31, 74, 83] that the MSEC problem can be solved in polynomial time by a dynamic pro-
gramming algorithm that uses weighted bipartite matching as a subroutine (in fact, notice
that the family of block graphs includes trees and line graphs of trees). For general multi-
graphs, d.829-approximation algorithm for the MSEC problem is presented in [36]. For
bipartite graphs there exist better approximation ratios.786-approximation algorithm

is given in [35], and al .414-approximation algorithm is proposed recently in [28]. In
Section 4.2, we show that the MSEC problem is polynomial-time solvable for multicy-
cles (resp. multipaths), i.e. cycles (resp. paths) with parallel edges. This work has been
done with the collaboration of Jean Cardinal (Univerditbre de Bruxelles, Belgique)

and Vlady Ravelomanana (UniveesiParis-Nord, France) (see references [13, 14]).

We also define the minimum number of colors needed in a minimum sum coloring of
G. This number is called th&trengths(G) of the graph’Z in the case of vertex colorings,
and theedge strength’(G) in the case of edge colorings. Clearly&) > x(G) and
s'(G) > x'(G). Hardness results were also given for the vertex and edge strength of a
simple graph by Salavatipour [74], and Marx [66].

Some results concern the relations between the chromatic nurtd@eand the strength
s(G) of a graph. It has been known for long that the vertex strength can be arbitrarily
larger than the chromatic number [24]. Howeverdifis a proper interval graph, then
s(G) = x(G) [69], ands(G) < min{n,2x(G) — 1} if G is an interval graph [68]. Haji-
abolhassan, Mehrabadi, and Tusserkani [34] proved an analog of Brooks’ theorem for the
vertex strength of simple graphs(G) < A(G) for every simple grapld- that is neither
an odd cycle nor a complete graph, whéx&>) is the maximum degree i@.

Concerning the relation between the chromatic index and the edge strength, Mitchem,
Morriss, and Schmeichel [67] proved an inequality similar to Vizing’s theoreffiz) <
A(G) + 1 for every simple graplts. Harary and Plantholt [82] have conjectured that
§(G) = X'(G) for every simple grapltz, but this was later disproved by Mitcheet
al. [67], and Hajiabolhassagt al. [34].

An interesting application of the MSEC problem is to model dedicated scheduling
of biprocessor jobs. The vertices correspond to the processors and each edge
corresponds to a job that requires a time unit of simultaneous work on the two preassigned
processors andv. The colors correspond to the available time slots. A processor cannot
work on two jobs at the same time, this corresponds to the requirement that a color can
appear at most once on the edges incident to a vertex. The objective is to minimize the
average time before a job is completed. When there can(bginstances of the same
job, it arises the notion o$et-coloringof the corresponding conflict graph. Formally,
given a simple grapli: = (V, E) and a demand function : V' — Z7, avertex set-
coloring of (G, w) consists in assigning to each vertex 1 a set ofw(v) colors in such
a way that adjacent vertices will be assigned disjoint sets of colors. Given a vertex set-
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coloring of a graphG with demand functiow, thesumof the set-coloring is the sum of

the colors in the set assigned to each one of the verticeschirbenatic set-sunx(G, w)

of (G,w) is the smallest sum that can be achieved by any proper set-colorifig, of).

In the Minimum Sum Set ColorinMSSC) problem we have to find a set-coloring of
(G,w) with sum¥(G,w). Clearly, whenv(v) = 1 for each vertex of the graph, the
MSSC problem becomes the MSC problem. The dedicated scheduling of biprocessor
jobs with multiple instances can be modeled as a MSSC problem on the line graph of the
conflict graph. A similar problem where each jebequiresw(e) time units of dedicated
biprocessors, thus leading to a different objective function, was studied in [65]. In this
case, sometimes it is allowed that a job is interrupted and continue later : the set of colors
assigned to a vertex does not have to be consecutive. This type of scheduling is called
preemptivglassuming that preemptions can happen only at integer times). Otherwise, if
the set of colors assigned to each vertex needs to be consecutive, then the scheduling is
callednon-preemptiveln our case, the non-preemptive case arises when each job requires
a high cost setup on the processors, and thus the objective is to minimize the average time
before a job is completed, within the solutions minimizing the setup costs. Therefore, we
have two variants of the MSSC problem : the preemptive and the non-preemptive one.
It will be show in Section 4.3 that the computational complexity of the MSC problem
and the MSSC problem (resp. preemptive MSSC problem and the non-preemptive MSSC
problem) can be different for the same family of graphblock graphs A maximal
subgraph2-connected of a graph is calledoéock A block graphis a graph for which

each block is a clique. The family of block graphs includes as special cases trees and
line graphs of trees. This work has been done with the collaboration of Flavia Bonomo
and Guillermo iran (Universidad de Buenos Aires, Argentina), and Javier Marenco
(Universidad Nacional de General Sarmiento, Argentina) (see reference [9]).

4.1 MSC problem in P;-sparse graphs

By Theorem 7 (see Chapter 2, Section 2.2F,}sparse graphs have a nice decompo-
sition property : ifG is a non-trivial P;-sparse graph, then eith@ror G is not connected,
or GG is a spider.

In fact, to eachP,-sparse grapli one can associate a corresponding decomposition
rooted tre€l” in the following way. Each non-leaf node in the tree is labeled with either
“U” (union-nodes), or V" (join-nodes) or “SP” (spider-partition-nodes), and each leaf is
labeled with a vertex ofs. Each non-leaf node has two or more children. Tgbe the
subtree of/' rooted at node and letV,, be the set of vertices corresponding to the leaves in
T... Then, each nodeof the tree corresponds to the gragh = (V,,, £,). An union-node
(join-node) corresponds to the disjoint union (join) of tRg-sparse graphs associated
with the children of the node. A spider-partition-node corresponds to a spider-partition
(S,C, R) of the P,-sparse graphs associated with the children of the node. Finally, the
Py-sparse graph that is associated with the root of the tree igjuiste P,-sparse graph
represented by this decomposition tree. The decomposition tree associatedRyith a
sparse graph can be computed in linear time [47].
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4.1.1 Maximal sequences and optimal solutions of the MSC problem

A k-coloring of a graphG = (V, E) is a partition of the vertex sét into £ indepen-
dentsets, ..., S, where each vertex if; is colored with colot, for1 < i < k. So, for
any suchk-partition of into independent sets, we can associate a non-negatijence
p such thap[i] = |S;| fori = 1,..., kandp[i| = 0 for i > k. In the sequel, we deal only
with finite support non-negative integer sequences,tlet max{i : p[i| > 0}.

Definition 4 Letp andq be two integer sequences. We say fhdbminates;, denoted
byp = g, ifforall ¢ > 1it holds thatzlgiétp[i] > Z@gqm-

Definition 5 Letp be a sequence. We denotejbthe sequence that results frgnwhen
we order it in a non-decreasing way.

The following two lemmas are direct consequences of Definition 4.
Lemma 20 The dominance relatiok is a partial order.
Lemma 21 Letp be a sequence. Theng- p.

The following lemma will be very useful in order to study the MSC problem on
graphs.

Lemma 22 Let p and ¢ be two sequences and let= max{|p|, |¢|}. If p = ¢ and
Zlgignp[i] = Zlgignq[z’], then it holds thaElSiSnz’.p[i] < Zlgigni.q[z’].

Proof. LetN = >, ... plil = > -, qli.. Let P andQ be two sequences obtained
from p andg such that P| = |Q| = N, and defined by’[j] = min{k : Y, _,., pli] > j}
(resp. Q[j] = min{k : >, qli] > j}) forj = 1,..., N. By hypothesisp > g¢,
and so,P[j] < Q[j] forall1 < j < N. Therefore,y", ;. i-pli] = >0,y Plj] <
Zlgjgzv Q] = Zlgigni'qm' o

Notice that if the sequences represent partitions of the vertex set of a graph into inde-
pendent sets, where the value of ttteelement of the sequence represents the size of the
ith independent set in the partition, then for the sum-coloring problem on graphs we can
restrict us to study maximal sequences w.r.t. the partial ordexotice also that maxi-
mal sequences are non-increasing sequences. In the following, we define some operations
between sequences.

Definition 6 Letp andq be two sequences. The joinpéandq, denoted by * ¢, is the
sequence that results by ordering in a non-increasing way the concatenation of sequences
pandg.

Definition 7 Letp andg be two sequences. The sunp@ind g, denoted by + ¢, is the
sequence such that itgh value is equal to[i] + ¢[¢], fori = 1, ..., max{|p|, |¢|}.

Definition 8 Let p and ¢ be two sequences. We say thaind ¢ are non-comparable,
denoted by||q, if p # g andq % p.
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The following two lemmas will be useful in order to study the MSC problenfgn
sparse graphs.

Lemma 23 Letp, p’ andq be sequences. ff= p' thenp x ¢ = p' * q.

Proof. Let’s consider the sequengéx ¢. By definition of join,p’ is a subsequence of
P x q. Lets be the sequence that results frpfrx ¢ by replacing each elemept/i| for
pli]. As by hypothesisy = p’, then we have that = p’ x ¢. But now, note thap x ¢ = s
and thusp xq = s = p’ % q. O

Lemma 24 Letp, p’ andq be sequences. Thepi|p’ if and only ifp + ¢||p’ + q.

Proof. Note thatp|[p" if and only if there exist two different positive integeisand j,
such thaty 7t pli] > >0, p'li] and Y72, pli] < D771, p'li]l. Therefore,> 7t (p[i] +
qli]) > S (0] + qli]) and 3272 (pli] + qli]) < SL, (P'[i] + ¢li]) that it is equivalent
top +qllp’ +¢. O

A direct consequence of the previous lemma is the following result.
Corollary 7 Letp, p’ andq be sequences. Theng p’ if and only ifp + ¢ > p' + q.

Let G be a graph. Suppose thdt= G, U G, and letp be a sequence representing

a partition of the vertex set d@ into independent sets. Clearly,= p; + p; wherep,
(resp. p2) is a sequence representing a partition of the vertex sét; dfesp. G) into
independent sets. In an analogous way, supposétkaty; vV GG, and letp be a sequence
representing a partition of the vertex set(ointo independent sets. Clearfy= p1 x p-
wherep; (resp. p2) IS a sequence representing a partition of the vertex sét,qresp.

(1) into independent sets. Therefore, by Corollary 7 and Lemma 23, if we are looking
for maximal sequences 6f representing partitions of its vertex set into independent sets
then, in both cases it is sufficient to consider maximal partitions of the gi@plasdG,.

4.1.2 Maximal sequences aP,-sparse graphs

In the sequel, sequences of a graph will represent partitions of its vertex set into inde-
pendent sets.

Lemma 25 LetG = (S, C, R) be a thin spider. Then,

1. If R = () then,G has only one maximal sequengewith [p| = |C|, wherep[1] =
|C|, p[2] = 2, andp[i] = 1for3 <i < |C]|.

2. If R # (0 then, the number of maximal sequences;/aé equal to the number of
maximal sequences 6f R]. Moreover, for each maximal sequengef G| R] there
exists only one maximal partitiogf of G with |¢'| = |¢| + |C| and whereg'[1] =
q[1] +1C1, ¢'li] = qli} for 2 < < |q|, andq/[i] = 1for |g[ +1 < i < [q] + |C.
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Proof. LetS = {s1,...,sx} andC = {cy,...,c}, with k > 2. LetS;,...,S; bea
partition of the vertex set af into independent sets, with> 1, such that its associated
sequence is maximal. Then,

1. By hypothesis, we have th&t= (). Note first that each vertex € C' must belong
to a different independent s&f and sot > k. Now, by definition of a thin spider,
each vertex, is adjacent to vertex; if and only ifi = j. We claim that there is);
such thatS; = S or there ares; andsS;, with i # j, such thatS; = (S\ {s,})U{c,}
andS; = {s,,cn}, forsomen,m € {1,...,k}, with m # n. Assume that it is
not true, that is, suppose that there &reS;, S;, with ¢ < j < [, such that each
one of them contains at least one vertexSofLet s, € S be a vertex inS;. Then
vertexc, € C belongs at most to one &f; or S; but not to both. Thus, vertex,
must migrate to one of; or S; who contains no vertex, which gives a sequence
that dominatep, that is a contradiction. Therefore, verticesSrbelong to only
one setS; or to two different sets5; and.S;. As p is maximal, therp is such that
() p[1] = kandp[i] = 1for2 <i < k+1, thatis,S; = S ands; = {¢;_1}
for2 < j < k-+1;or(i) p[l] =k, p[2] = 2, andp[i] = 1 for 3 < i < k, that is,
sequence is associated with the partitioty = (S \ {s1}) U{c1}, S2 = {s1, 2},
ands; = {¢} for 3 < < k. Clearly, the sequence of Cage) dominates the one
of Case(7), and it is the only maximal sequence.

2. By hypothesis, we have th&t = (). Let p be a maximal sequence 6fand letp,
andp, be sequences associated withy C' and defined asp; [1] = k andp, [i] = 1
for2 <i < k+1;andps[l] =k, p2[2] = 2, andp,[i] = 1 for 3 <i < k. In fact,p,
(resp.ps) represents the partition of the Case(resp.(ii)) in Case(1) above. Let
Sy, ..., S; be the partition of the vertex set 6f into independent sets associated
with the sequencg, with¢ > k. Let S|, ..., S! (resp.S7, ..., S") be the partition
that results fromSy, ..., S; after eliminating on it the setS,, such thatS,, C R
(resp. S, € SUC(C), and letQq, ..., Q, (resp. Ry, ..., R,») be a partition of the
vertex setSUC (resp.R), whereQ; = S\ S;N R (resp.R; = S7\ ST N (SUC)).
By definition of spider partition, all vertices iR are adjacent to all vertices @l
and non-adjacent to all the vertices $h First, we will show that the sequence
¢’ associated with the partitiof; ..., Q, of S U C is equal either tg; or to ps.
For this, letj be the minimum positive integer suéh) contains vertices ofz. By
definition of thin spider and by the maximality of the sequepcé suffices to
consider the following cases:

- Casej = 1. In this caseS C S; which implies that sequencg is equal to
sequence;.

- Casej = 2. Inthis case, set; must contains a vertex ifi. Lets; € S be the
vertex not inS;. Note thatS; ¢ R, otherwiseS, U {s;} leads to a partition
of G such that its associated sequence domingteélat is a contradiction.
Therefores, € S; and sog; € S;. LetTh, ..., T; be a partition of the vertex
set of G into independent sets such that;: = S} \ {¢1} U Sy, T; = S;44 for
2 <i<t,andT; = {ci}. Letp’ be the sequence associated with the partition
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T1,...,T;. Clearly,p’ dominate that is a contradiction. Therefore, this case
can no exists.

- Casej > 3. Notice that each s&; must contains a vertex ifi, for 1 <i < j.
Aspis maximal, itimplies thab; = S\ {s1} U{c1} andS, = {s1, c2}, which
implies that sequencg is equal to sequengs.

Now, as sequencg associated with the partitio@, ..., Q, of S U C is equal
either top; or to p, then, it is not difficult to show that sequeng@ssociated with
the partitionR; ..., R» of R must be a maximal sequence for the grapR],
otherwise there is a contradiction with the maximalitypoNow, for the sequence
g we define the following parameters : let = |{i : q[i] > k,1 < i < |q|}];
ro = |{i: 1 < qli] <k, 1<i<]|gl}};andrs = [{i:q[i] =1,1 <i<]g|}|. By
the observations made above, we have only two possibilities for the sequence

(&) The sequenceg associated with the partitio, ..., Q, of S U C is equal
to p;. As p is maximal, then we have thatp[l] = ¢[1] + & (all vertices in
S U Ry); pli] = q[i] for 2 < i < |g| (vertices inR \ R;); andp[i] = 1 for
lq| +1 <i <|q| + k (vertices inC).

(b) The sequencg associated with the partitio; ..., @, of S U C' is equal to
pa. As p is maximal, then we have thapi] = ¢[i] for 1 <1i < r; (verticesin
Ry, ..., R.); plri1+1] = k (where there aré —1 vertices inS et one vertex in
C);pli] =qli—1]forri+2 <i <ry+ro+1(verticesinR,, 11,..., Rriir);
plr1 + re + 2] = 2 (the remaining vertex iy and one vertex i); pli] = 1
forri +re+3 <1 < |g|+ k (the remaining-; vertices ink and the remaining
k — 2 vertices inC).

It is not difficult to show that the sequence of the Céspdominates the one of
Case (b). Therefore, it is the only maximal sequencé of

Lemma 26 LetG = (S, C, R) be a thick spider. Then,

1. If R = ) then,G has only two maximal sequengesand p., with |p;| = |C| and
Ip2] = |C| + 1, wherep, [i] = 2 for 1 <i < |C|, andpy[1] = |C| andp,]i] = 1 for
2 <i<|C|+1.

2. If R # (0 then, the number of maximal sequences;/aé equal to the number of
maximal sequences 6f R]. Moreover, for each maximal sequengef G| R] there
exists only one maximal partitiogf of G with |¢'| = |¢| + |C| and whereg'[1] =
q[1] +1C1, ¢'li] = qli} for 2 < < |q|, andq/[i] = 1for || +1 < i < [q] + |C.

Proof. LetS = {sy,...,s:}andC = {cy,...,cx}, with £ > 3. LetS;,...,S; be a
partition of the vertex set afr into independent sets, with> 1, such that its associated
sequence is maximal. Then,
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1. By hypothesis, we have th@ = (). As each vertex; € C must belong to a

different independent se&t; thent > k. Now, by definition of a thick spider, each
vertexs; is adjacent to vertex; if and only if i # 5. We claim that the sequence
p is equal either tdi) p[1] = k (i.e.,S; = S)andpli] = 1for2 < i < k+1
(i.e., eachs; if formed by only one vertex irC’, with ¢ > 1); or (ii) p[i] = 2 for

1 <1 < k (eachs; if formed by a vertexs; € S and its only vertex non-adjacent
¢; € C). Assume that sequenpas not as claimed. Thus, there are positive integers
iy < 19 such that :(a) S;,S;, € Sor(b)sS;, C SandsS; = {s,c.}, Where
u,v € {1,2},u # v, s, € S,andc, € C. Clearly, Case (a) gives a contradiction
to the maximality ofp. In the Caséb), if u = 1 andv = 2 then we can construct

a partitionS?, ..., S; such thatS! = S, forall i € {1,...,t} \ {i1,i2}, and where

S = Si, U{sw} ands; = S;, \ {s,}. Now, by reordering (if necessarily) in a
non increasing size the sei§ for i, < i < ¢, we have that the sequence associated
with this new partition dominates that is a contradiction. Thus for Cage, we
have thatS;, = {s.,,c,} andS;,, C S. Asp is maximal, thenl < |S;,| < 2 and
thus, there exist; > iy, s, € S;,, and¢;, € C such thatS;, = {¢;}. Notice that
|S:,| = 2, otherwise we can migrate vertexinto S;, removing in this way the part
S;, and obtaining again a sequence that domingtésat is a contradiction. So, let
s, € Sy, With s, # 5. Swapping verticeg; ands, we must obtain a new partition
such that its associated sequence is equaktad it verifies the hypothesis of Case
(b), but wherei, is greater that the previous one. Now, repeating the same process
to the current partition, we will obtain a partition such that its associated sequence
dominate9, that is again a contradiction.

Therefore, there are only two maximal sequengeasndp, for G such thap,[1] =
kandp,[i] = 1for2 <i < k+1, andpy[i] = 2for1 < i < k. Moreover, we
have thap ||p.. In fact, letj; = £ — 2 andyj, = k. Then,> 7' pi[i] = 2k — 3 >

2k —4 = 231:1 pai] andZ?il i =2k—-1<2k= 252:1 pt].

. By hypothesis, we have th&t # (). Letp be a maximal sequence 6fand letp,

andp, be sequences associated withy C' and defined asp; [1] = k andp, [i] = 1
for2 <i < k+ 1;andp,[i] = 2for1 <i < k. Infact,p, (resp.p:) represents
the only two maximal partitions of the Cagke) whenR = (). Let Sy, ..., S; be the
partition of the vertex set aff into independent sets associated with the sequence
p, with¢ > k. LetS],...,S) (resp.SY,...,S") be the partition that results from
Sy, ..., Sy after eliminating on it the sets,, such thats,, C R (resp.S, € SuU(C),
and letQ, ..., Q, (resp. Ry, ..., R,) be a partition of the vertex sétU C (resp.
R), whereQ; = S\ SiNR (resp.R; = S7\S7N(SUC)). By definition of a spider
partition, all vertices inR are adjacent to all vertices ifi and non-adjacent to all
the vertices in5. First, we will show that the patrtitiofi,, . . . S; can be transformed
(if necessarily) into another one having as associated sequengesaidavhere the
sequence’ associated with the partitia, . . ., @, of SUC' is equal either te, or
to po. For this, let; be the minimum positive integer such tiatcontains vertices
of R. Consider the following two cases:

- Casej = 1. If S; C R then we can migrate all vertices 6finto S; obtaining
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in this way a partition ofG' such that its associated sequence domingtes
that is a contradiction. Thereforé; must contain vertices aR and of S.
However, as no vertex iR is adjacent to any vertex ifi, thenS C S, which
implies thatQ); = S and so, sequencgis equal to sequengs.

- Casej > 1. By definition, every vertex i’ is adjacent to all vertices IiR.
So, each independent s&t must contains one vertex ifi, for 1 < ¢ < j.
Moreover, if vertexc; € C'isin S;, for 1 < i < j, then vertexs; € S must
be also inS;, otherwise sequengeis not maximal. Now, a® is maximal,
thenl < [S5;| < 2. If |5;| = 1 then it is clear thaj must be equal té& + 1,
otherwisep is not maximal, and so in this case, sequeyide equal tap,. Let
|S;| = 2. We have two possibilities fo; : (i) S; C R; (i¢) S; contains one
vertex in R and one vertex iry. In Case(i), all vertices inS must be in the
setsS;, with i < j, otherwisep is not maximal. So, in this case, sequepte
is equal top,. In Case(ii), let S; = {z, s;}, wherex € R ands; € S. Again,
asp is maximal, there is no vertex ¢f in the setsS;, with 7 > j. As vertex
¢, € C'must be alone in some independent$gtwith w > j, then swapping
verticesc; andx such thatS; becomes the sdts;, ¢;} and.S,, becomes{z},
we obtain a new partition where its associated sequence is equahio the
sequence’ is equal tap,.

As we can assume that the sequegicassociated with the partitio; ..., @, of
SUC'is equal either tp, or top,, then the sequencegassociated with the partition
Ry ..., R, of R must be a maximal sequence for the graglk], otherwise there
is a contradiction with the maximality of

Now, for the sequencewe define the following parameters : let= [{i : ¢[i] >

ko1 <i<|gl}sra={i: 1 <qli] <k,1<i<|q};andrs=[{i:qli]=1,1<

i < |q|}|. By the observations made above, we have only two possibilities for the
sequence :

(&) The sequenceg associated with the partitio, ..., Q, of S U C is equal
to p;. As p is maximal, then we have thatp{l] = ¢[1] + & (all vertices in
S U Ry); pli] = q[i] for 2 < i < |g| (vertices inR \ R;); andp[i] = 1 for
lg| +1 < i < |q| + k (vertices inC).

(b) The sequencg associated with the partitio; ..., Q, of S U C is equal to
p2. As p is maximal, then we have thatp[i] = ¢[i] for 1 < i < ry + 9
(vertices iNRy, ..., Ry 4p); pli]l =2f0rr +ro+1 <i<r;+mr+k(all
vertices inS U C); andp[i] = 1forry + o+ k+1 <1 < |q| + k (vertices in
Rigj—rgt1-- -, Rjq))-

It is not difficult to show that the sequence of the Caspdominates the one of
Case (b). In fact, let; (resp. ¢2) be the sequence a@F in Case(a) (resp. in
Case(b)). Then,q[i] > il for 1 < i < |gq| + k — 3 and¢1[i] = go]i] for
lq| + k — 2 <i < |q| + k. Therefore, it is the only maximal sequencechf

O
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Notice also that the trivial graph has only one maximal sequenedth |p| = 1,
wherep|[1] = 1. Therefore, we have the following theorems.

Theorem 35 Let G be a P,-sparse graph such that in its modular decomposition there
are no thick spidergS, C, R) with R = (). Then,

1.

s(G) = x(G), andX(G) and an optimal coloring o€y can be computed from its
modular decomposition in polynomial time.

In such an optimal coloring, each independentsas a maximum independent set
of G\ U, S; which verifiesy (G \ U,<;<; Sj) = x(G\ U,<,-,; 5;) — 1.

Proof. LetT be the decomposition rooted tree associated witht is well known that
T can be computed in linear time [47].

1.

Letn be the number of vertices i@. In order to compute an optimal coloring
with s(G) = x(G) and sumX(G) for this case, we proceed from the leaves to the
root in T as follows. Ifx is a leaf inT then its associated partition i = {z}
having as maximal sequengewith [p| = 1 andp[l] = 1. Ifnodez € T is a
union-node (resp. join-node) then, by Corollary 7 (resp. Lemma 23), the unique
maximal sequence and its corresponding optimal partition of the vertex-é&t of
into independent sets can be computed from the unique maximal sequences and
their corresponding optimal partitions of the childrenzof Moreover, by defini-

tion of union and join, it is clear thaf(G,) = x(G,) and the sum of the colors is
equal toX(G,). If nodex € T is a spider-partition node representing the spider
o = (S,C, R) then, the unigue maximal sequence and its corresponding optimal
partition of the vertex-set of/, into independent sets can be computed from the
unique maximal sequences and their corresponding optimal partitions of the chil-
dren ofz, either as shown in either the Lemma 254(iils a thin spider) or as shown

in Case(2) of Lemma 26 (ifo is a thick spider with? # ()). Moreover, by Lem-

mas 25 and 26, it is clear tha{G,) = y(G.) and the sum of the colors is equal

to X(G,). Finally, notice that each node € 7" needsO(n) time to compute its
optimal partition. As there are at mast — 1 nodes inl’, then the complexity time

of the algorithm is bounded by (n?).

By using Theorem 7 and by using Corollary 7 (resp. Lemma 23)ig a disjoint
union (resp. join) ofP;-sparse graphs, and Cagé$ and(2) of Lemma 25 (resp.
Case(2) of Lemma 26) ifGG is a spider partition then, by induction on the number
of vertices ofz, the result holds.

Theorem 36 Let G be a P;-sparse graph om vertices. Letk be the number of thick
spiders(S, C, R) with R = () in the modular decomposition 6f. Then,s(G) < x(G)+k,
the number of maximal sequences’bis at most2*, and an optimal coloring of can
be computed i* P(n) time, whereP(n) is a polynomial om.
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Proof. By Case(1) of Lemma 26, each thick spidef = (S;, C;, ) in the decomposition
treeT of G have exactly two maximal sequences with their corresponding optimal parti-
tions, with1 < i < k. Clearly, there ar@* ways of choosing maximal sequences (and
their corresponding partitions) for thethick spiderss;. Now, given a fixed choice for
the thick spidersr; and by using the algorithm in the proof of Cade of Theorem 35,

we can compute ¥ (n?) time a maximal sequence and its corresponding partition into
independent sets fa@¥. This shows that has at mos2* maximal sequences and that an
optimal coloring withs(G) colors and sunt(G) can be computed i®(2n?) time. Fi-
nally, note that for each thick spidey, one of its maximal sequences has length;) + 1

and thus, the number of colors used in an optimal solutiorGfas upper bounded by
X(G) + k. O

4.2 MSEC problem in multicycles

The following well-known result has been proved bgri{g in 1916.

Theorem 37 (Konig's theorem [55]) Let G = (V, E') be a bipartite multigraph and let
A denotes its maximum degree. Thg() = A.

Hajiabolhassarmt al. [34] mention thats'(G) = x/(G) for every bipartite grapliz. In
fact, by using the same technique as in the classical proobafds theorem, it is easy
to deduce that'(G) = x/(G) for every bipartite multigrapl.

Theorem 38 Let G = (V, E) be a bipartite multigraph and lef\ denote its maximum
degree. Ther'(G) = x/(G) = A.

Multicycles are cycles in which we can have parallel edges between two consecutive
vertices. We consider the chromatic edge strength of multicycles.

The chromatic edge strength(G) of a graphG is bounded from below by both
and[2], whereA is the maximum degree i& and7 is the cardinality of a maximum
matching inG. In this section, we show that the lower boumdx{A, [} is indeed
tight for multicycles. We assume that the multiplicity of each edge in the multicycle is at
least one, so that the sizeof a maximum matching is equal t@./2].

We first give a closed-form expression for the chromatic index of multicycles.

Theorem 39 ([5]) LetG = (V, E)) be a multicycle om vertices withm edges and maxi-
mum degreé\. Let7 denote the maximum cardinality of a matchinginThen

(@) = A, if n is even,
X max {A, [2]},  ifnis odd.

We now introduce some useful notations. Givénhe set of colors used in an edge
coloring of a multigrapitz, we denote by, the subset of colors af' assigned to edges
incident to vertex: of G. Given two colorsy and 3, we call a path afia, 3)-path if the
colors of its edges alternate betweerand 5. We also denote by (z) the degree of
vertexz in G. We now state our main result.
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Theorem 40 Let G = (V, E)) be a multicycle om vertices withm edges and maximum
degreeA, and letr denote the maximum cardinality of a matchinginThen

/ o A if n is even,
(G) =X(G) _{ max {A, [m]},  ifnis odd.

Proof. If n is even, then the result follows from Theorem 38. Thus, we assume that
n = 2k + 1 for a positive integek and lets’ = s'(G). Letr = max {A, [%]}. As

T = k, then itis clear that'(G) = r. Moreover, as’ > x/(G) then, it suffices to prove
thats’ < r. Assume that’ > r andG is a smallest counterexample. We claim that there
exists a minimum sum edge colorirfgof GG in which there is only one edge colored with
color s’. Otherwise, delete one of the edges with cafoisaye. From the minimality of

G, there exists a minimum sum edge coloring®f e with x’ colors. Then we obtain the
desired edge coloring @f by assigning the colot’ =\’ +1=r+ 1toe.

Let E; denote the set of edges @fwith color: and let[q, b], be the only edge i~
colored with colors’. Moreover, lelG' = G\ [a, bly. By the minimality ofG;, we have that
§(G') = X' (G') = max {A/, [2=]} <r. LetC = {1,...,r}. The following properties
for the edge coloring of’ can be easily deduced:

(1) There exists a colar € C' such thatE,| < k.
(2) |Oa U Ob‘ =T

(3) There exist at least two colossand3 in C such thair € C, \ C, andj € Gy, \ C,,
with a # .

For (1), notice that if there is no colos € C such that|E,| < k, thenm — 1 =
S |Bi| = kr, hencer = 21 < & contradicting the definition of. Property(2)
holds, otherwise edgfe, b], can be colored with a color i@ which contradicts the fact
that G’ is a counterexample. Finally, notice that the degree of verticasdb in G’ is

at most equal ta\ — 1. Sincer > A, there is a colopp ¢ C, and a coloiv ¢ C}, with

a, 3 € C. Clearlya # 3, otherwis€a, b], can be colored with such a color, contradicting
the fact that is a counterexample. Moreover, ¥), we have thatr € C, \ C, and

B e Cy\ C,, which proveq3).

By Property2), it is sufficient to analyze the casese C, \ C, (oro € C, \ C,) and
o € C, N C,. The two cases are illustrated on Figures 4.1 and 4.2, respectively.

If o € G\ C, then, by Property3), there exists a color € C, \ C, with o #
o. Let G(«, o) denote the subgraph ¢ induced by the edges of colarando. Let
Gy (a, o) denote the connected componentify, o) containingb. Clearly,Gy(a, o) is a
simple(o, a)-path having as last vertex and not containing verte)otherwise we have
a contradiction to Propertyl). Hence we can recolor the edges of the gatb, o) by
swapping colorsy ando in such a way that ¢ . Sinces ¢ C,, we assign color
o to [a, b]o, and obtain an edge coloring of G usingr colors. Figure 4.1 provides an
example of this case.
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R

Figure 4.1: An illustration of the case € C, \ C, in the proof of Theorem 40, on a
multicycle G with s’ = x’ = 3. The edg€q, b], is the only edge colored with color
s’ 4+ 1 = 4. In this example, colos = 3 and colora € C,, \ Cy is equal tol.

[a.blo

Nt

Figure 4.2: An illustration of the case € C, N C, in the proof of Theorem 40, on a
multicycle G with s = x/ = 3. Again, edg€a, b], is the only edge colored with color
s'+1=4ando = 3.

We now want to show that

> o)< fle), (*)

ecE ecl

contradictings’(G) > r. If the length of the patltr,(a, o) is even, therd . f”"(e) —
Yoeepfle)=0—r—1<r—r—1<0. Ifthe length of the patli-;(«, o) is odd, say
2s+1, with s > 0, then the difference i& + (s + 1)a+s0) — (r+ 1+ (s+1)o +sa) =
a—r—1<r—r—1<0.Thus, inequality*) always holds.

The other case is whene C, N C,,. By Property(3), there exista colog € C,,\ C,.
Let us assume that vertices are ordered clockwise andldetthe clockwise vertex of
edgela, b]y. Recolor edgea, b], with color 5 and the edge of colgs incident tob with
color s = r 4+ 1. This recoloring does change neither the value of the sum nor the
number of colors. Lefz, y]o be the edge that is recolored with cokdr with = being its
counterclockwise vertex.

By Property(3) again, a color, such thats, € C, \ C, exists. We can therefore
repeat the above procedure until the eflge|, is such thatr € C, \ C, oro € C,, \ C,.
This is always possible, because the cycle is odd,| &gt < k; hence by moving around
the cycle this way, we will eventually find an edgey|, that is adjacent to only one edge
of coloro. Assume, without loss of generality, that= C', \ C,. Then lettingz = « and
b = y leads us back to the first case. Figure 4.2 gives an example of this case. O
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4.2.1 Algorithms

We now present algorithms for minimum sum coloring of multicycles. Our algorithms
assume that the encoding of the multicycle given as input ha®size m). This does not
allow for implicit representations consisting of, for instance, the number of vertices and
the number of parallel edges between each pair of consecutive vertices. This assumption
is natural since we expect the resulting coloring to be represented by an encoding of size
linear in the number of edges.

The line graph of a multicycle is a proper circular arc graph. Hence the problem of
coloring edges of multicycles is a special case of proper circular arc graph coloring. It
is easy to realize that not all proper circular arc graphs are line graphs of multicycles,
though. Proper circular arc graphs were shown by Orlin, Bonuccelli, and Bovet [70] to
admitequitable coloringsthat is, colorings in which the sizes of any two color classes
differ by at most one, that only use colors. Therefore, a corollary of our results is
that multicycles admit both equitable and minimum sum edge colorings with the same,
minimum, number of colors, and that both types of colorings can be computed efficiently.

We first present a general algorithm, then focus on the case whsreven.

The general case

A natural idea for solving minimum cost coloring problems is to use a greedy algo-
rithm that iteratively removes maximum independent sets (or maximum matchings in the
case of edge coloring) [3, 26]. It can be shown that this approach fails here. Instead we
use an algorithm in which the smallest color class, corresponding to €olisrremoved
iteratively.

We first consider the case whefrei/k] > A andk dividesm. Then the number of
colors must be equal ta/ k. But since each color class can contain at niostiges, ev-
ery color class in a minimum sum coloring must have size exact§uch a coloring can
be easily found in linear time by a sweeping algorithm that assigns each aotat ' in
turn. This is a special case of the algorithm of Odiral.(Lemma 2, [70]) for circular arc
graph coloring. In the remainder of this section, we refer to this case as the "easy case”.

Algorithm MuLTICYCLECOLOR.
1l.i—5(G),G —G

2. if [|[E(G))|/k] > A(G;) andk divides|E(G;)| then apply the "easy case” algo-
rithm and terminate

3. else

(a) Find a matching/ of minimum size such that (G, \ M) = s'(G;) — 1
(b) color the edges al/ with color:

€ Gy — G \M,i—i—1

(d) if G; # 0 thengo to step 2
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The correctness of the algorithm relies on the following lemma.
Lemma 27 Given a matching!/ in a multicycleG such that

1. §(G\ M) =5(G) -1,

2. M has minimum size among all matchings satisfying condition 1,

there exists a minimum sum edge coloringzo$uch that) is the set of edges colored
with color s'(G).

Proof. We distinguish three cases, a), b), and c), depending on the relative values of
[m/k] andA.

Case a) We first assume that/k] > A andk does not dividem, thusm =
lm/k| - k + q, with ¢ > 0. In that caseM has size exactly. To find a minimum
sum coloring, we color the edges df with color [m/k|. The remaining edges are col-
ored using the “easy case” algorithm, which applies simeg¢k | > A and the number of
remaining edges is a multiple &f This coloring must have minimum sum, because only
one color class has not size

Case b) Wher\ > [m/k], we haves'(G) = A from Theorem 40. We claim that
in that case)M is a minimum matching that hits all vertices of degree To prove this,
suppose otherwise. Thérr \ M) has maximum degred, and thus from Theorem 40,
(G \ M) = §'(G), contradicting condition 1. Now we have to ensure that there exists a
minimum sum coloring such that is the color class’(G) = A.

We consider a minimum sum coloring and the color clasm this coloring. This
class, sayll’, must also be a matching hitting all vertices of degfeéNe now describe
a recoloring algorithm that, starting with this coloring, produces a coloring whose sum
is not greater and whose color claisis exactly M. We define alock as a maximal
sequence of adjacent vertices of degheel he algorithm examines each block, and shifts
the edges of\/’ if they do not match with those af/. Two cases can occur, depending
on the parity of the block length.

The first case is when a block contains an odd number of vertices of dégree
say vy, vg, ..., 0,1 fOr some integert. In that case, the only way in which/ and
M' can disagree is, without loss of generality, whefi contains edges of the form
VU1, Va3, . . . , UoyUorr1, While M containsvivy, vsvy, . .., vy 1912 (S€€ figure 4.3(a)-
4.3(b)), wherev, andwy, 5 are the predecessor of and the successor of; ., respec-
tively. Since the degree of, is, by definition of a block, strictly less thah, there must
exist a color € C,, \ C,,. Furthermore, since all vertices within the block have degree
A, the color class for cola containst + 1 edges of the formy; vy, for 0 < i < t.
Hence we can recolor the edgesidf of the formuvy;ve; 1 for 0 < i < ¢ with color «,
and thet + 1 edges of colory within the block with colorA. Note that at this point, the
coloring might be not proper anymore, as two edges coldreaight be incident ta o, , 5.

The other case is when a block contains an even number of vertices of degsag
vy, vg, . . ., Uy fOr Some integet. In that case, sincé/ is minimum, it contains edges of
the formuv vy, v3vy, . . ., vo;_109;. The only way in which)M/’ can disagree withd/ is by
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v v
Vo ! V2 Yo ! V2

< A A 3 <A A 3

<A <A

(c) even case: edges of’ (d) even case: edges of

Figure 4.3: lllustration of the proof of Lemma 27.

containing edgesyvy, vavs, . . ., o U9:41 (S€€ figure 4.3(c)-4.3(d)). Like in the previous
case, there must be a coterz C,,, so we can recolor the edgesiaf of the formuvg;vy;41

for 0 < i < t with color «,, and the edges of colaer within the block with colorA. Note
that the edge, vy, 1 Of color A has not been recolored, thug_; vy, andwvyvy, 1 both
have colorA, and at this point the coloring is not proper anymore.

We proceed in this way for each block. Notice that the sum of the coloring is unal-
tered, and that the set of edges of calois now a superset af/. Also, while G is not
necessarily properly colored anymore, the gréph M is properly colored with at most
A colors. But since removing/ decreases the strength, we know we can reaslpr}/
with A — 1 colors without increasing the sum. Doing that and gluing back the edges of
M colored with colorA, we obtain a minimum sum coloring where only the edge&/of
have colorA, as claimed.

Case c) Finally, in the case whem /k| = A, withm = |m/k| - k + ¢, the matching
M consists of at leagt edges that together hit all vertices of degteelf M has exactly
sizeq, then case a) above applies, since we know that by remadvinge also decrease
the maximum degree. Otherwise case b) applies. O

We have to make sure that the main step of the algorithm can be implemented effi-
ciently.

Lemma 28 Finding a matchingl/ in a multicycleG such thats’(G \ M) = §'(G) — 1
and M has minimum size can be done(rin) time.

Proof. The three cases of the previous proof must be checked. In the case|wiére>
A andm = |m/k]-k+q, we can pick any matching of sizewhich can clearly be done in
linear time. In the second case, whien/k] < A, we need to find a minimum matching



4.2. MSEC PROBLEM IN MULTICYCLES 65

hitting all vertices of degred. This can be achieved in linear time as well by proceeding
in a clockwise greedy fashion.

Finally, in the last case, we need to find a minimum set of at leadges that together
hit all vertices of degreé\. This can also be achieved @n(n) time as follows. We first
find the minimum matching hitting all maximum degree vertices. If the resulting match-
ing has size at least then we are done and back to the previous case. Otherwise, we need
to include additional edges. For that purpose, we can proceed in the clockwise direction
and iteratively extend each block in order to include the exact number of additional edges.
This can take linear time as well if we took care to count the size of each block and of the
gaps between them in the previous pass. O

Theorem 41 AlgorithmMuLTICYCLECOLOR finds a minimum sum coloring of a multi-
cycle onn vertices and with maximum degreein time O(An).

Proof. The number of iterations of the algorithm is at meSiz) = max{[m/k], A}.
Hence the running time i©(max{[m/k|n, An}) = O(max{m, An}) = O(An). O

We deliberately ignored the situation in which after some iterations, the multityle
does not contain a full cycle anymore, that is, one of the edge multipticjtgdrops to
0. We are then left with a collection of disjointultipaths for which the minimum sum
coloring problem becomes easier. This special case is described in the following section.

A linear time algorithm for even length multicycles

We turn to the special case= 2k, that is, the number of vertices is even. We show
that in that case, minimum sum colorings have a convenient property that can be exploited
in a fast algorithm. This algorithm first colors a uniform multicycle containe@ isuch
that the remaining edges 6fform a (possibly unconnected) multipath. This multipath is
then colored separately.

We begin this section by the following result on multipaths. We consider multipaths
with vertices labelled 1,2, ..., n}, such that edges are only between vertices of the form
i1+ 1.

Lemma 29 There always exists a minimum sum edge coloring of a multigatuch that

its color classedr; are maximum matchings in the grapbs = H \ U§;11Ej; furthermore
these matchings contain all the edges appearing in odd position from left to right in each
connected component ff;.

Proof. SupposeH has been colored optimally. We want to transform such an edge
coloring into another one that verifies the hypothesis of the theoren bledhe minimum
positive integer for whichE; does not verify the hypothesis. Note that the color of every
edge inH,; is at least.

We can assume thai; is connected, the following reasoning being applicable to each
connected component. We first remark tiiatis a maximal matching, otherwise one
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edge can be recolored with colgrcontradicting the optimality of the given edge color-

ing. ThusE; can be partitioned iblocks defined as maximal sequences of consecutive
vertices{yi, y2, . . ., 2.} such that one of the edges betwegy ; andy,; has color, for

1 < j <t. Two consecutive blocks are separated by a single vertex whose incident edges
have colors strictly greater than We now show that if a block starts at an even vertex,

it can be recolored without decreasing the color sum. W lbe the vertex preceding.

Recoloring: Let«; # i be any color appearing on the edges betwgesndy,. We
recolor an edge of cola¥; with color: and color the edge between vertiggsandy, of
color with color «;. Now, for eachy, with 1 < j < ¢, we recolor the edgg,,_,y.; of
color i with a coloro; appearing on the edges;_»y.;_1, and color the edgg,;_2v2;1
of color a; with colori. The colora; is chosen such that; = o;_, if color o;_; appears
on edgesy,;_»y»;—1, and it is any color appearing on edggs _,y»,_; otherwise. At the
end, we have two cases. Eithgr is the last vertex of the path, and we are done, or there
exist edges betweep, and, sayy.,.1. One of these edges may be of calgr and can
be recolored with coloi. Otherwise, any such edge can be recolored with colSince,
by definition,ys,,1 was not incident to any edge with colgtthis yields a proper coloring
whose sum is not greater than the original one.

Now, it is clear that we can assume that every block starts at an odd vertex. This im-
plies that there is only one block. Furthermore, this block must start with the first vertex
of the path. Hencé’; is a maximum matching containing all the edges appearing in odd
position. O

From Lemma 29, we can deduce the following result, that settles the case of multi-
paths.

Theorem 42 The greedy algorithm that iteratively picks a maximum matching formed
by all edges appearing in odd position in each connected component of a mullipath
computes a minimum edge sum coloringfin time O(m).

We now consider the case of even multicycles. We assume that the vertices in the
multicycleG onn = 2k vertices are labelled clockwise with integérd, ..., n — 1, and
arithmetic operations are taken moduloFor each) < i < n, letm; denote the number
of parallel edges between two consecutive verticasd: + 1 in GG. Letp be a positive
integer. A multicyclez with m = pn edges is called-uniformif m; = p for everyi such
that0 < i < n.

Lemma 30 Let G be a multicycle of even length and let= min; m;. Let f be any
minimum sum edge coloring 6f Then,f can be transformed into another minimum sum
edge coloringf’ such that the firsRp color classest; induced byf’, with1 < i < 2p,
are such that£;| = k and their union induces g-uniform multicycle.

Proof. Let G be a multicycle om vertices, withn = 2k for some integek > 1. Let
f be any minimum sum edge coloring 6f. Clearly, asf is minimum, we have that
|Ey| > |Ey| > --- > |Ey/|. Let us consider the following claim.
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Claim 3 The coloringf can be transformed into a minimum sum edge colofihigaving
the property that the edges colored with colb@nd2 induce a subgraph @ isomorphic
to acycle.

Notice that, by using Claim 3, the lemma follows directly by inductiorpo&o, in order
to prove Claim 3, first notice that, by using a similar recoloring argument as in the proof
of Lemma 29, we can deduce that, | = k.

Now, without loss of generality, assume thfats such that there is an edge colored
with color 1 between vertice8; and2; + 1 for eachjy with 0 < 5 < k. Moreover, let
¢ > 2 be the minimum color appearing on the edges between vetjcesl and2j + 2,
forall0 <j < k.

Suppose that there exists a maximal sequénce. , io; Of consecutive vertices if¥,
such that colord andc belong to the set of colors assigned pyo the edges between
verticesiy,—; andiy,, with 1 < ¢ < t. Then by using the same recoloring argument as in
the proof of Lemma 29, we can move coloin order to transform such a sequence into
a(c,1)-path. Moreover, again by using the same recoloring argument as in the proof of
Lemma 29, we can deduce that,.| = k.

So, if ¢ = 2 we are done, otherwise, we can swap the cdlaadc so that| E;| = k
and F; U E, induce a cycle. O

Theorem 43 There exists a (m)-time algorithm for computing a minimum sum edge
coloring of a multicycle~ of even length withn edges.

Proof. Letn = 2k be the number of vertices ii and letp = min;{m,}, for0 <i < n.
For each0 < j < k, assign top edges between vertic@g and2; + 1 the odd colors
1,3,...,2p — 1 and assign tp edges between verticeg + 1 and2;j + 2 the even colors
2.4,...,2p.

The previouspn colored edges induce a subgraph(éfisomorphic to ap-uniform
multicycle. When removing thig-uniform multicycle fromG, we obtain a multipath
or a set of disjoint multipaths, the edges of which can be colored with colof8pin-
1,...,5(G)}, from Theorem 42.

Such a coloring can be computeddr{m) time, and by Lemmas 30 and 29, itis a
minimum sum edge coloring @f. O

4.2.2 Generalization

In the generalized optimal cost chromatic partition problem [49], each color has an
integer cost, but this cost is not necessarily equal to the color itself. The cost of a vertex
coloringis)_ ., c(f(v)), wherec(i) is the cost of colot. For any set of costs, our proofs
can be generalized to show that on one hand, the minimum number of colors needed in a
minimum cost edge coloring @¥ is equal toy’(G) whenG is bipartite or a multicycle,
and on the other hand that a minimum cost coloring can be compute@in) time for
multicycles.
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In fact, our results can be generalized to an even broader class of edge coloring prob-
lems. Given an edge colorinf: £ — N, we define a cost'( f) of the form:

C(f) = el [F@)),

7

wherec : N x N — R is a real function of a coloi and an integek, and f~1(i) is the
set of edges such thatf(e) = i. Hence the cost to minimize is a sum of the cost of each
color class, itself defined as some function of the color and the size of the color class.

In the minimum sum coloring problem, the functiors defined by
c(i,k)=1-k.

We further suppose that the functiar(g, k) satisfy the following property:
Given two nonincreasing integer sequenees> a, ... > a, andb; > by... > b, such
that

we have

c(iya;) <Y (i by). (4.1)

This property clearly holds in the minimum sum coloring problem. It formalizes the
fact that when minimizing the cost(f), we are looking for a distribution of the color
class sizes that is as nonuniform as possible. In particular, when an element (edge or
vertex) in a color classis recolored with a coloj < i, whose class is larger, then the
objective function decreases. This is the argument that we implicitly used in our proof of
Theorem 40. It is also the argument that ensures the correctness of the algorithms.

Property (4.1) can also be shown to hold (see [27]) when the following two conditions
are satisfied:

1. c(i, k) = c(j, k) Vi, j, that is, when the cost of a class only depends on its size, in
which case we will say that the functions a&parable

2. the functions:(i, k) = c(k) are concave.

This is the case for instance in the minimum entropy edge coloring problem [12], for
which ¢(k) = —% log % A number of other coloring problems falling in that class were
recently studied by Fukunaga, Hadldson, and Nagamochi [27].

For all minimum cost edge coloring problems whose objective function satisfies (4.1),
all our results apply. In fact, the colorings that we computerabeistcolorings, in the
sense that they minimize every objective function satisfying the above property.
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4.3 MSSC problem in block graphs

Assume that we are given a gragh= (V, F) with a demand function : V- — Z*.

We will denoten = |V, d(v) the degree of a vertex € V, A = max,cy d(v) and
wmax = Max,ey w(v). The neighborhood of a vertexwill be denoted byVs (v).

We can consider that the input of our problem is a grapk (V, £') with a demand
functionw : V' — Z*, so the input size would b@g’| + [E| + 3 ., log(w(v)). In the
preemptive case it makes some sense to consider as the size of the pidblen®| +
> wev w(v), since it is the output size. Nevertheless, we will call (pseudo)polynomial
time algorithms to those that are polynomial|df) + |E| + >~ ., w(v).

It is known than the minimum number of colors that can be used in an optimum solu-
tion of the MSC problem on a gragghis bounded byA(G) +1. Assume that we are given
a graphG = (V, E) with a demand functioo : V' — Z*. Denote byC(G,w) (resp.
C'(G,w)) be the minimum number of colors that can be used in an optimum solution of
the non-preemptive (resp. preemptive) MSSC problenamith demand functior. It
is easy to generalize the bound above and &, w) < wnax(A(G)+1). We now show
the following lemma.

Lemma 31 Let G be a graph and lewv be a demand function from the vertices(oto
the set of positive integers. TheRG, w) < 2w (A + 1).

Proof. Let v be the vertex using the highest color. Since the goal is to minimize the
total sum of colors, it uses at most the interial- 1, ¢ + w(v)], wherec is the maximum
color used by one of its neighbors. In the worst case, all of its neighbors use disjoint
intervals, the smaller beginning at(v) and separated by intervals of siz¢v) — 1.

Soc < 3 engw(Ww) +w) = 1) < (2wmax — DA = 2wpaA — A, and thus

¢+ w) < 2Wmax(A+1) = A < 2wpa (A + 1). O

Let P = Vi,...,V, be a patrtition of the vertices of a graphwith demandv. We
will call P-goodto a coloring of(G,w) where eachV;, i = 1,...,t, is colored with sum
Y(G[V;],w). Clearly, aP-good coloring is optimum for the MSSC problem, andif
admits aP-good coloring, then every optimum coloring Gfmust beP-good.

4.3.1 Minimum sum set-coloring of trees

In this section we deal with the MSSC problem on trees. First, we show that the non-
preemptive version of the MSSC problem on trees can be computed in (pseudo)polynomial
time. Next, we show that the preemptive version of the MSSC problem on trees is NP-
hard.

Non-preemptive case

The algorithm for solving the non-preemptive MSSC problem for trees is based on the
idea of dynamic programming. For, we first choose an arbitrary vertéx” as the root.

For each vertex of T, we denote byl the subtree of’ rooted at vertex. Let C' be

an upper bound fo€' (7, w). We have an x C table S such that,S[v, j] represents the
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minimum sum for the subtreE, when vertex is assigned the intervdl, j + w(v) — 1],
for every vertexwo € T'and everyl < j < C.

First, we define for each vertexin 7" and each integer < j < C the valueg,(j) as
follows:

wi) = | ZE = je) + (), i e -1<6,
v} 00, otherwise.

The algorithm computes the values of tablén a bottom-up way, from the leaves of the
tree up to the root. If vertexis a leaf therS|v, j] = ¢,(j) forall 1 < j < C. Assume that
vertexv is an internal vertex iff’. Letwvy, vo, ..., v, be the children vertices of internal
vertexv. Assume thab|[v;, s] is computed, foil < i < kandl < s < C, and we want to
compute the value df[v, j| (for somej, with 1 < j < C). Now, for each children vertex
v; we compute the valug, (v;, j) as follows:

fo(vi,j) = min {Sfv;, 1] : [t,t +w(vi) =1 N[, j +w(v) —1] = 0}.

1<t<C

The algorithm also can keep track the following informatign(v;, 7) = min{t : Sv;, t] =
fo(vi, 7)}, which will be used for reconstruct the coloring. Once the valy¢s;, j) have
been determined for eadh< i < k, we can compute the value §fv, j] as follows:

S[ _Qv + va vza

1<i<k

Now, knowing how to compute the value 8fv, j] from the computed values of children
of v, the algorithm starts from the leaves’df and fills in the table, from bottom to up,
until it computes the value of|r, C|, wherer is the root of7. One can easily verify
that the minimum value of|r, j], for 1 < j < C, is the value of an optimal sum for
the non-preemptive MSSC df,w) and the root vertex can be assigned the interval
[7,7 +w(r) —1], wherej is the minimum valuen for which S|r, m| is minimum. Finally,
assuming that an internal vertexhas been assigned an interyalj + w(v) — 1], the
interval assigned to each one of its childrerwill be the interval(g,(v;, 7), g»(vi, j) +
w(v;) —1].

Notice that the complexity of computingjv, j] is O(d(v)C), whered(v) is the num-
ber of children of vertex andC' is the upper bound for the minimum number of colors
needed in any optimal solution of the non-preemptive MSSCIow). In fact, in order
to determine the value df[v, j], we need to compute the valyg(v;, j) for each children
v; of v, each one of these values takifgC') steps. Therefore the overall complexity of
the previous algorithm for computing an optimal solution for the non-preemptive MSSC
problem on the entire tree is proportional to the number of edges, which, in a tree, gives
rise to anO(nC?) algorithm. Thus, by Lemma 31, we have the following result.

Theorem 44 The non-preemptive MSSC problem on trees can be solvehin?w
that is, in (pseudo)polynomial time.

max)
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Preemptive case
We will show that the preemptive MSSC problem on trees is in general NP-hard, even
consideringy ., .y w(v) as the input size.

Theorem 45 The preemptive MSSC problem on trees is NP-hard.

Proof. The reduction is from 3-SAT. First we give some definitions and we introduce
some families of special trees that will be used as gadgets in the NP-hardness proof.
Fora, b positive integersy < b, letT}, ;) be a tree with root with demandu(r) = b—a+1

and, ifa > 1, two childrenv;, v, with demandv(v;) = w(ve) = a — 1 (see Figure 4.4).

T

oy

Figure 4.4: The treéj,; for 1 <a <.

The treesI},; admit P-good colorings for suitable partition8 : if « = 1 then the
partition P is trivial, if « > 1 then the partition® = {r, v, }, {v,} is such thafl}, ; admits
a P’-good coloring. Moreover, in every-good coloring ofl}, ;), vertexv, should receive

colors1,...,a — 1 and therefore vertex should receive colors, ..., b (and vertexv,
colorsl,...,a — 1 as well).
Let {a4,...,a;} be a set of positive integers; < --- < a;, and letS = Zle a; —

(") + 1. We will define the trely,, . .,;- The rootr has demand(r) = 1. The
children ofr are the following: a child» with demandv(v) = k£ — 1; S children each

of them being the root of}; ,,_;), whena; > 1; S children each of them being the
root of Tio, +1,4,,, -1, Whena,,; > a; + 1 foreachi = 1,... k — 1. Besides, vertex

hasS children each of them being the root 6f ,,_1;, whena; > 1; S children each

of them being the root of{,, 414, ,-1), Whena;.; > a; +1foreachi = 1,... k —1

(see Figure 4.5). We will analyze now the possible solutions to the MSSC problem on
77777 o} If all the treesTj,; are colored in an optimum way, thenandv should
receive colorgay, ..., a;}, and the overall sum igle a; + D whereD is the sum of
Y(Tiap), w) over all the treed, ) involved inTY,, . .. On the other hand, suppose that

r andwv receive a set of coloréa’, . .., a)} different from{a,, ..., a;} in an optimum
coloring of Ty, .,y SinceD is locally optimum, ther> " a; < 3% a,, so at least

one of the colors not i{ay,...,ax} is less or equal than, — 1, and thus at leas$
treesT,; are colored in a non-optimum way. Therefore the overall sum would be at

leasty"F | )+ D + S and since>_"_ a; > ("), this contradicts the optimality of the
coloring. Moreover, itis not difficult to see that for eack 1, . . ., k, there is an optimum
coloring of Ty, ..., Wherer receives color;.

.....
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S copiesof each

S copies of each
Tan  Ta+ary Tasla

T1,a-1] Ta+1a.:1 Tl +La-1]

Figure 4.5: The tre€y,, o,

Now, letZ be an instance of 3-SAT, with variables andn clauses. We will construct
T as follows: it has a root with demandu(r) = n; the root has: + m + 1 children
ULy« vy Up,y W1, . . ., Wy, all of them with demand, andz with demandv(z) = n; eachv;

(1 <@ < n)isthe root of a copy 02— 2;}; €achw; (1 < i < m) is the root of a copy

Of Thai i a1} Whereay, ajy, a3 are the values corresponding to the three literals of-the
clause off in increasing order, assigning to variasléhe value2k — 1 and to its negation
the value2k. Let P = {{r, 2z}, V(T7) \ {r, z}} be a partition of the vertices af;. We

will show thatZ is satisfiable if and only if77, w) admits aP-good coloring, that is, a
coloring with sum(*’"") + X(77 \ {r, z},w) (please note that this value can be computed
in polynomial time based on the constructiori/éfand the observations above). Suppose
first thatZ is satisfiable and consider a truth assignment satisfying it. Then assign to
the values corresponding to true literals,rtthe values corresponding to false literals,
to eachw; the value of a literal satisfying its corresponding clause (and then extend this
coloring to an optimum coloring df,: ,; .;;), and to each; the value in{2i — 1, 24}

not used inr (and then extend this coloring to an optimum coloringlf;_; »;;). The
coloring obtained is”-good. Conversely, suppose tiat admits aP-good coloring. For

i = 1,...,n, sincely_,2; is colored in an optimum way, each uses either color

2i —1or color2z Moreover, sincgr, z} use the colorg1,...,2n}, r uses exactly one
of {2i — 1,2i} for eachi = 1,...,n, andz the other one. Let the variablebe true if

2i — lis used inz and false otherwise. For each-1,...,m, sinceTy, . ., is colored

in an optimum wayjw; uses one of the colofs:}, a, a} and then that color should not
be used imr, so it should be used in If itis an odd color then the corresponding variable
is true and appears in theth clause, otherwise the corresponding variable is false but
its negation appears in theth clause. In both cases, the clause is satisfied andiso
satisfiable. a

However, if the maximum value of the demand functiorfrom vertices of a tree
to the set of positive integers is bounded by a constant, then there is a polynomial-time
algorithm for the preemptive MSSC problem on trees as it is shown in the next theorem.

Theorem 46 LetT = (V, F) be atree and leb : V' — Z* be a demand function fdf.
Then the preemptive MSSC problem®@ican be solved i (n(Awyay ) *m>) time. In
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particular, if w,,., IS bounded by a constant, it can be solved in polynomial time.

Proof. Letn be the number of vertices i and letA be the maximum degree of
the vertices inl". Let m, k be positive integers, and Iét:]* denote the set of alt-
subsets ofm|, where[m| denotes the sefl,...,m}. Given an arbitrary finite setl
of positive integers, we denote lggA) the value of the sum of the elementsAn(i.e.
q(A) =3 ... 7). LetC be an upper bound f@’ (7', w), thusC'is bounded by) (W A).
The algorithm is based on the idea of dynamic programmingr betan arbitrary vertex
in T' chosen as the root. For each verteaf 7', we denote by, the subtree of’ rooted
at vertexv. Now, for each vertex in 7', we construct an array, of length (wa)) such
that .S, [X'] represents the minimum sum for the subtféeavhen vertex is assigned the
subsetX ¢ [C]“(). The algorithm computes the values of the arrélysn a bottom-up
way, from the leaves of the tree up to the root as follows.

If v is a leaf thenS,[X] = ¢(X), for each subsek € [C]“("). Now, assume that
vertexv is an internal vertex i’. Let vy, v, ..., v; be the children vertices of internal
vertexv. Assume thab,, [X] is computed, for all < i <t and for all.X < [C]“*), and
we want to compute the value 6f[Y] for some fixed subsét ¢ [C]“(*). First, for each
children vertex); we compute the valug,(v;, Y') as follows:

fo(vi,Y)= min {S,[X]: XNY =0}.
Xe[C)e )
Once the valueg,(v;, Y) have been computed for dll < i < ¢, we can compute the
value of S, [Y'] as follows:

S,[Y] = q(Y) + Z Folv:,Y).

Now, knowing how to compute the values of the arigyfrom the computed values
of children of v, the algorithm starts from the leaves Bf from bottom to up, until it
computes the values ¢f,[Z] for all Z € [C]“("). Itis clear that the minimum value of
S,[Z] taken over all subsets € [C]“(") is the value of an optimal sum for the preemptive
MSSC problem fo(7", w). Notice that additional information can be maintained in order
to reconstruct the coloring without affecting the overall time complexity of the algorithm.
The length of each array, is bounded b),(wc ) Therefore, the time complexity in

max

order to compute the value &f,[Y] for a given vertex and a fixed subsét ¢ [C]~(*)
is at mostd(v)(,© ), whered(v) denote the degree of vertexin 7. Thus, the time

complexity needed to fulfill the array, is at mostd(v) (WC )2. Therefore, the overall

max

complexity of the previous algorithm is proportional to the number of edgé5stimes
( N )2’ that iS’O(n(AwmaX)sz‘ax). O

Wmax

4.3.2 Minimum sum set-coloring of line graphs of trees

The MSSC problem on the line gragh{G) of a graphG and demand function
is equivalent to the Minimum Sum Edge Coloring (MSEC) of a multigréplobtained



74 CHAPTER 4. SUM-COLORING OF GRAPHS

from G by multiplying each edge by w(e). Therefore, in the sequel, we assume that we
have as input to the MSEC problem a tfEBe- (V, £') and a demand functian from the
edge-set to the set of positive integers.

Non-preemptive case

In the following, we show that the non-preemptive MSSC problem on line graphs
of trees is in general NP-hard, even conside}ng. ,, w(e) as the input size. The
reduction we use is based on the results given by Marx in [65] for a similar optimization
problem. First we give some definitions and we introduce three families of special trees
that will be used as gadgets in the NP-hardness proof. For any two positive integers
with i < j, let[s, j|] denote the consecutive interval i + 1,...,5 — 1, j} of integers.
Denote byE, the set of edges incident to vertex Leti(v) be the minimum sum taken
on E, in any non-preemptive sum set edge-coloring. Cleafly, > W LetG =
(AUB, E) be a bipartite multigraph. A lower bound fa L(G), w) isli(A) = >, ., 1(v).

A non-preemptive edge-coloring will be called A-goodif )" __, ¥(e) = I(A). Notice

that everyA-good non-preemptive edge-coloring is clearly an optimum coloring, and if
there is anA-good non-preemptive edge-coloring, then every optimum coloring-is
good.

We define the tre&;, for i > 1, as follows. The tred’ is an edge-v, wherer is the root
vertex and where (rv) = 1. Fori > 1, the tre€T; is a path on five vertices v, vy, vy, vs,
beingr the root vertex and whete(rv) = 1, w(vvy) = w(vavs) =i — 1, andw(vivg) = i
(see Figure 4.6). Vertices andv, are in A (black vertices in the figure), the remain-
ing ones are iMB. Consider the colorin@ (rv) = i, ¥(vvy) = Y(vuz) = [1,7 — 1]),
U(vvy) = [i,2i — 1]. This is anA-good coloring, thus it is an optimum coloring and
every optimum coloring isA-good. Therefore, ifb is an optimum coloring fofl’; then

it must be anA-good coloring with vertices andwv, in A, and it is easy to see that this
implies edge-v is assigned colorin every optimum coloring.

T (>1)

i—1 edges
i edges

i-1 edge:

Figure 4.6: The treé&; fori > 1.

AtreeT,, . (for a < b < ¢) has rootr having a single child with w(rv) = 1; vertexv
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hasc—1 childrenz, y, vy, ..., v._sWithw(vz) = w(vy) = w(vvy) = -+ = w(Vve_3) =1
(see Figure 4.7). Every vertex is the root of &/}, T, and7, tree, as defined in the pre-
vious paragraph. The black vertices in Figure 4.7 ard.ifNotice that in everyd-good
(optimum) coloring off, ;. the edge-v is colored with colow, b or ¢, and there are three
A-good colorings assigning, b, andc to edgerv, respectively. The proof of this fact is
exactly as appear in [65].

or

Figure 4.7: The tre&, , . withc = 6

Finally, we define tred; as follows. the vertex-set df; is composed by the vertices
r,x,v, v, Ve, U3, vy andvs wherer is the root vertex, and the edge-setf@fis the set
{rv, v, vuy, V109, Vav3, V3V, V4Us }, Wherew(rv) = w(vr) = 2, w(vvy) = w(vevs) =
w(vavs) = 4, w(vve) = 4, andw(vsvy) = i + 4 (see Figure 4.8). We show that
in every A-good (optimum) coloring off} the set of colors assigned to edges between
verticesr andwv is either{i + 1,7 + 2} or {i + 3,7 + 4}. Let U be anA-good color-
ing of ﬂ Notice that vertices, v, andv, are in A. Thus, ¥ (v3v,) can be equal to
[1,7 + 4] or equal to[i + 1,2i + 4]. However, if U(vgvy) = [1,i + 4] then ¥ (vqvs)
must befi + 5,2i + 4], but asvs isin A, i > 0, andw(v,v) = 4 then it contradicts
that ¥ is an A-good coloring. Thereforel (vs, v4) = [i + 1, 2i + 4] which implies that
U(vgvs) = V(vgug) = W(vwy) = [1,4], U(vive) = [i + 1,7 + 4]. Moreover, as vertex
isin A andw(rv) = w(vz) = 2 then in anA-good non-preemptive coloring faF;, we
have only two possibilities W (rv) = {i + 1,7 + 2} and ¥ (vz) = {i + 3,7 + 4}, or
U(rv) ={i+3,i+4}andV¥(vz) = {i+ 1,7+ 2}.

Now, based in the three families of trees defined previously (i.e., the Tieds , .
with @ < b < ¢, andT}, resp.), we can prove the NP-hardness of the non-preemptive
MSSC problem on line graphs of trees. The reduction is from 3-occurrence 3SAT, which
is the restriction of 3SAT where every variable occurs at most three times. This problem
is NP-complete even if every variable occurs at most twice positively and at most twice
negatively (cf. [71]). Given a formula with variables andn clauses, we construct a
treeT = (V, F) and a demand functian : £ — Z* such thatl’ has an non-preemptive
A-good edge-coloring if and only if the formula is satisfiable. Consider a varigple
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i edges

i edges
i+4 edees

i edges

Figure 4.8: The tred} fori > 1

(0 < k < n), which is theh-th literal of the:-th clause. Letl; ;, be4k +1 if this is the first
positive occurrence afy, 4k + 2 if this is the second positive occurrendé,+ 3 if this is

the first negated occurrence, afid+ 4 if this is the second negated occurrence. The tree
T has a vertex which is the root of» + m trees (assume that¢Z A). To each variable

x; corresponds a treEj, and to each clausea treeTy, , 4, ,.4,,- This definesl” and the
demand functiorw. The proof follows exactly as the one given by Marx (see Theorem
3.1 in [65]) for a similar optimization problem on trees. In fact, assume that a non-
preemptive edge-coloring i4-good, then it is am-good non-preemptive edge-coloring
for all then + m subtrees (since ¢ A). Therefore, the root edge Gﬁj corresponding

to variablex; uses either the sdtlj + 1,45 + 2} or the set{4; + 3,45 + 4}. Assign

to the variabler; the value "false” in the first case and "true” in the second case. Itis a
satisfying assignment: if the root edge of the tree corresponding to claisss a color
from {4+ 1,45+ 2,45 + 3,45 + 4}, the variabler; satisfies clause¢ Precisely, if it uses

47 4+ 1or4j + 2 (resp.4j5 + 3 or 45 + 4), thenz; has the value "true” (resp. "false”),
and by constructionz; appears in clausé positively (resp. negatively). Conversely,
given a satisfying assignment, we constructfagood non-preemptive edge-coloring of
the tree as follows. Take aA-good non-preemptive edge-coloring of the subﬂép
corresponding to variable; such that its root edge uses the col¢dg + 1,45 + 2}
(resp{4j + 3,45 + 4}) if x; is "false” (resp. "true”). Since every clause is satisfied by
some variable, we can choose argood non-preemptive edge-coloring for each subtree
corresponding to a clause such that it does not conflict with any of the trees corresponding
to the variables. Clearly, this will be afrgood non-preemptive edge-coloring of the tree.
Therefore, as the previous reduction can be done in polynomial time, thus we have the
following theorem.

Theorem 47 The non-preemptive MSSC problem on line graphs of trees is NP-hard.

In the following, we will show that under some constraints, there is a (pseudo)polynomial
time complexity algorithm to solve the non-preemptive MSSC problem on line graphs of
trees. Before, we need some preliminaries.

Letm, k be positive integers. Let C [m| be a subset of consecutive positive integers.
Letny, ns, ..., niy1 be positive integers (no necessarily different) suchEéjf n;<m
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and such that,,, = |J|. LetP(m, J,ny,...,n;) be the set where each element is-a
set of intervals of consecutive integdts, . . ., I, } pairwise disjoint contained ifm] \ J,
such that/;| = n; for 1 <1 < k. Thus, we have the following result.

Lemma 32 The cardinality of the séB(m, J,ny,...,n;) is bounded byn*, and it can
be computed i (k2m*).

Proof. Since the set$/y, ..., I} are intervals of consecutive integers, they are univo-
cally defined by their starting point. So there are at mo’spossibilities for choosing the
starting points of thé sets within the intervdln| satisfying the constraints above. They

can be generated by simple enumeration, and for each of them, the constraints satisfaction
can be checked i®(k?) time. O

Theorem 48 LetT = (V, E) be atree and leb : £ — Z* be a demand function defined
on the edge-set df. The non-preemptive MSSC problem for the line graph’) of 7'
can be solved i (nA23wA+1) . In particular, if A is bounded by a constant, then it

can be solved in (pseudo)polynomial-time.

Proof. The algorithm uses the dynamic programming method.rLieé the number of
vertices of7". Without loss of generality, we choose as roof/oé vertexr with degree
equal tol. As usual, we denote ¥, the subtree rooted at vertexn 7. Moreover, for
each vertex in T' different fromr, we denote by’ the father vertex of.. Finally, for
each vertex in T different fromr, we denote by}, the subtree of formed byT, to
which we join tow its father vertex)’. Given a subtre&,.,, we say that’ is its root.

Assume now tha€’ is an upper bound fo€'(L(T),w). SinceA(L(T)) < 2A(T),
by Lemma 31,C is bounded byO(Aw.,.x). We construct a» x C table S such that
Slv, j] represents the minimum sum for the subtfég when edge: = v'v is assigned
the intervallj, j + w(e) — 1], for every vertexo € 7" and everyl < j < C. First, we
define for every vertex (v # r) and everyl < j < C'the valuey,(;j) as follows:

(j) = Jjw('v) + (‘”(g”)), if j+wv)—1<C,
©I)= 00, otherwise.

The algorithm computes the values of tablén a bottom-up way, from the leaves of
T up to the root. If vertexv is a leaf thenS|v, j] = ¢,(j) forall 1 < j < C. Otherwise,
let v be an internal vertex ifi" with v # r. Letvy, vs, . . ., v, be the children vertices of.
Assume that[v;, s] is computed, for all < i < kand foralll < s < C, and we want to
compute the value of[v, j] for a fixed valuej such thatj + w(v'v) — 1 < C (otherwise,
S, j] = 0).
Consider now the sé,(j) = P(C, [j, j+w(@'v)—1],w(vv1), ..., w(vvg)). If [Py(j)] =0
then S[v, j] = oo. Otherwise, letX be an element of the sét,(j). By definition,
X = {6L,..., I}, where for each we have thatl;,| = w(vv;), I; is an interval of
consecutive integer$, N [j, j + w(v'v) — 1] = D and; N I, = ) whenever # t. For each
i, leta(X, i) be the minimum integer in the interval of X.
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Now, the value of5[v, j] can be computed as follows:

S[v,gl = (i) + min {3 S[oi, (X, )]}

Let =z be the only children of root vertexin 7. Knowing how to compute the value
of S[v, j] from the computed values of childrenafthe algorithm starts from the leaves
filling the table, from bottom to up, until it computes the value&®f, C]. Itis easy to ver-
ify that the minimum value of |z, j|, for 1 < j < C, is the value of an optimal sum for
the non-preemptive MSSC 6f.(T'), w). Notice that additional information can be main-
tained in order to reconstruct the coloring without affecting the overall time complexity
of the algorithm.

Now, in order to compute the valugv, j| for a given vertex and a fixed integey,
the algorithm need®(C*) time steps. In fact, by Lemma 32, the &&tj) has cardinal-
ity O(C#) and can be computed in(A2C*). Thus, the time complexity of compute the
valuesS|v, j], forall 1 < j < C, isO(A2CA*1). Finally, the overall time complexity of
the previous algorithm off is O(nA2CA2 1Y), thusO (nAAH3wiih). O

max

4.4 Conclusions

In Section 4.1, we have studied the Minimum Sum Coloring (MSC) problerf,en
sparse graphs. We have introduced the concept of maximal sequence associated with
an optimal solution of the MSC problem of any graph. Next, based in such maximal
sequences, we have shown that there is a large sub-famity-gibarse graphs for which
the MSC problem can be solved in polynomial-time. An interesting open problem is the
complexity of the MSC problem oR;-sparse graphs.

In Section 4.2, we have studied the MSEC problem on multicycles and we have given
a closed-form expression for the chromatic edge strength for such familly of multigraphs,
thereby extending a theorem due to Berge. It is shown that the minimum sum can be
achieved with a number of colors equal to the chromatic index. We also propose simple
algorithms for finding a minimum sum edge coloring of a multicycle. Finally, these results
are generalized to a large family of minimum cost coloring problems.

Finally, in Section 4.3, we have defined the Minimum Sum Set Coloring (MSSC)
problem which consists in assign a setugfv) positive integers to each vertexof a
graph so that the intersection of sets assigned to adjacent vertices be empty and the sum
of the assigned set of numbers to each vertex of the graph is minimum. Clearly, when
w(v) = 1 for each vertex of the graph, the MSSC problem becomes the MSC problem.
We have shown that the MSSC problem on trees is polynomial-time solvable mothe
preemptivecase (i.e. the set of integers assigned to each vertex is a consecutive interval)
but NP-hard in thggreemptivecase. Finally, we have shown that then-preemptivease
of the MSSC problem is NP-hard for line graphs of trees.



Chapter 5

Conclusions and Perspectives

In this manuscript, | have shown the recent progress on some variations of the famous
classical problem of graph Theory : (i) the b-coloring problem, (ii) coloring properties
on direct product graphs, and (iii) the Minimum Sum coloring problem. For each one of
these problems, | have given some conclusions and some open problems.

In this section, | propose some research perspectives for each one of the coloring
problems discussed in this manuscript.

b-coloring

- The computational complexity of the b-chromatic problem for chordal graphs is not
known. A related problem consists in constructing polynomial-time approximation
algorithms for computing the b-chromatic number of chordal graphs, or for sub-
classes of b-continuous graphs. In fact, even for subfamilies of chordal graphs like
interval graphs, the complexity of this problem is unknown.

- Aninteresting research perspective on this topic is the study of exact and parametrized
algorithms for some classes of graphs. A graduate thesis on this perspective, which
| co-supervised with Flavia Bonomo, is actually in execution by a Ph.D. student at
the Computer Science Department of the University of Buenos Aires, Argentina.

Direct products of graphs

One of the most famous open problem on this topic is the Hedetniemi conjecture :
X(G x H) = min{x(G), x(H)}. This problem is open even @& and H are both finite
undirected vertex-transitive graphs. In Chapter 3, we have obtained a positive answer
to Hedetniemi conjecture for some families of vertex-transitive graphs : Kneser graphs,
Circular Graphs and powers of cycles. Notice that the last two subfamilies of graphs
belong to the family of circulant graphs, that is, Cayley graphs of cyclic groups.

- It will be very interesting to study the chromatic number of the direct product of

finite many undirected circulant graphs. Clearly, if Hedetniemi conjecture holds in
this case, it means that it holds for Cayley graphs of finite Abelian groups.

79
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- Another way to attack the Hedetniemi conjecture on vertex-transitive graphs can be
the study of a more strong conjecture, proposed by Tardif, on such family of graphs
t k(G x H) = max{ay(G).|H|, ax(H).|G|}, whereay (G) is the maximal size of
an induced:-colorable subgraph df.

- Concerning the idomatic partitions of direct product of finite many complete graphs,
it will be interesting to know if there are other relations between properties of the
direct product of some groups associated to such Cayley graphs, as the one found
in[78].

Minimum Sum Coloring
Concerning this problem, two research perspectives may be suggested :

- As mentioned in Section 4.2 of Chapter 4, the line graph of a multicycle is a proper
circular arc graph. However, not all proper circular arc graphs are line graphs of
multicycles. Therefore, it will be interesting to extend our results to this family of
graphs. In fact, it is known that the MSC problem is NP-hard for general interval
graphs, but polynomial-time solvable for proper interval graphs. The former re-
sult implies that this problem is also NP-hard for general circular arc graphs. The
computational complexity of this problem for proper circular arc graphs is an open
question.

- The results presented in Section 4.1 of Chapter 4 are the first ones for the MSC
problem on the family ofP,-sparse graphs. However, neither the computational
complexity nor approximation algorithms are known for such a family of graphs.
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