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elementary combinatorial techniques.
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1. Introduction

The chromatic polynomial P (G, λ) gives the number of ways of coloring a graph G when
λ colors are used. The most recent results (see [1,2] and ref.) use algebraic methods to
compute chromatic polynomials for some class of graphs called bracelets. In this note, we
compute the chromatic polynomial for some circulant graphs using pure and elementary
combinatorial techniques, avoiding the deletion/contraction method.

Let χ(G) denote the chromatic number of a graph G, and let Pn,λ = P (Kn, λ) denote
the chromatic polynomial of the complete graph Kn, that is, Pn,λ = λ(λ−1)(λ−2) . . . (λ−

n + 1), in particular, Pn,n+i = (n+i)!
i!

for any integer i ≥ 0, and P0,λ = 1. Notice that
the chromatic polynomial P (G, λ) of a graph G on n vertices can be expressed in the
complete graph basis, i.e., P (G, λ) =

∑n

k=0 C(G, k)Pn−k,λ, where C(G, k) is the number
of color partitions of the vertices of G (i.e. partitions of the vertices of G induced by
proper colorings) into exactly n − k non-empty indistinguishable classes. Given a graph
G on n vertices, a matching in G is a set of pairwise non-adjacent edges of G. For any
integer k ≥ 0 we denote by M(G, k) the number of different matchings of size k in
G. In particular, M(G, 0) = 1. The matching polynomial µ(G, λ) of G is defined by

µ(G, λ) =
∑bn

2
c

k=0(−1)kM(G, k)λn−2k (see [3,6] and ref.). Let pn and cn be the simple path
graph and the cycle graph with n edges respectively. The following lemma is a well known
result (see [3]).

Lemma 1. Let n be a positive integer. Then,

(1) M(pn, k) =
(

n−k+1
k

)

if 1 ≤ k ≤ dn
2
e. Otherwise, M(pn, k) = 0.

(2) M(cn, k) =
(

n
n−k

) (

n−k

k

)

if 1 ≤ k ≤ bn
2
c. Otherwise, M(cn, k) = 0.
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bia



2 Camilo Garcia et al.

Farrell and Whitehead shown in [4] a connection between the matching and chromatic
polynomials of a graph. The results given in [4] generalize previous ones given by Frucht
and Giudici in [5]. In particular, it is shown in [4] the following result.

Lemma 2. (Corollary 1.1 in [4]) Let G be a graph and let Ḡ denote its complement graph.
Then, M(G, k) = C(Ḡ, k), for any non-negative integer k, if and only if G is triangle-free.

The following result is a direct consequence of the Lemma 2.

Corollary 1. Let G be a graph on n vertices such that Ḡ is triangle-free. Then, χ(G) =
n − t where t is the maximum cardinality of a matching in Ḡ.

As an example of application of Lemma 2, by using Lemma 1, we can compute the
chromatic polynomials for the graphs Kn \ pi and Kn \ ci, the graphs obtained from Kn

deleting the edges of a path pi or a cycle ci respectively, with i ≤ n.

Lemma 3. Let n, i be positive integers with i ≤ n. Then,

(1) P (Kn \ pi, λ) =

d i

2
e

∑

j=0

(

i − j + 1

j

)

Pn−j,λ.

(2) P (Kn \ ci, λ) =

b i

2
c

∑

j=0

i

i − j

(

i − j

j

)

Pn−j,λ, for i > 3.

Our first result is a formula to compute the coefficients of the matching polynomial of
a triangle-free graph from the chromatic polynomial of its complement graph as follows.

Theorem 1. Let G be a triangle-free graph on n vertices. Let χ = χ(Ḡ). Then,

M(G, k) =

n−χ−k
∑

j=0

P (Ḡ, n − k − j)

j!(n − k − j)!
(−1)j, where 0 ≤ k ≤ n − χ.

Let G = (A∪B, E) be a bipartite graph and let Ḡ its complement graph. Thus, Ḡ can
be formed by two disjoint complete graphs that we denote by KA and KB respectively,
joined by the set of edges E ′ = {{a, b} : a ∈ A, b ∈ B, {a, b} /∈ E}, and let G′ = (A∪B, E ′).
Also let |A| = n1 and |B| = n2 and assume that n1 ≤ n2.

Theorem 2. P (Ḡ, λ) =
∑n1

k=0(−1)kM(G′, k)Pn1,λPn2−k,λ−k.

Notice that as G is a bipartite graph, by using Lemma 2, we can compute the chromatic
polynomial of Ḡ via the matchings of G. However, if G has so many edges, the result given
in Theorem 2 is a more efficient method to compute the chromatic polynomial of Ḡ.

Finally, we start the study of the chromatic polynomial of circular graphs.

2. Main results

Proof of Theorem 1: Let i be an integer such that 0 ≤ i ≤ n − χ. We will prove by

induction on i that M(G, n−(χ+ i)) =
∑i

j=0
P (Ḡ,χ+i−j)
j!(χ+i−j)!

(−1)j. By Lemma 2 and Corollary

1, we know that P (Ḡ, λ) =
∑n−χ

k=0 M(G, k)Pn−k,λ. Thus, P (Ḡ, χ) = M(G, n − χ)Pχ,χ and
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so, M(G, n−χ) = P (Ḡ,χ)
χ!

which proves the basis case. Now, let i ≥ 0. We assume that for
any j ≤ i the theorem holds. By Lemma 2 and Corollary 1 we have that

P (Ḡ, χ + i + 1) =

i+1
∑

j=0

M(G, n − (χ + i + 1 − j))Pχ+i+1−j,χ+i+1

= (χ + i + 1)!
i+1
∑

j=0

M(G, n − (χ + i + 1 − j))

j!
,

and therefore,

M(G, n − (χ + i + 1)) =
P (Ḡ, χ + i + 1)

(χ + i + 1)!
−

i+1
∑

j=1

M(G, n − (χ + i + 1 − j))

j!
.

Then, by induction hypothesis, we have

M(G, n − (χ + i + 1)) =
P (Ḡ, χ + i + 1)

0!(χ + i + 1)!
−

i
∑

s=0

[

1

(s + 1)!

i−s
∑

k=0

P (Ḡ, χ + i − k − s)

k!(χ + i − k − s)!
(−1)k

]

=
P (Ḡ, χ + i + 1)

0!(χ + i + 1)!
−

i
∑

j=0

[

(−1)j P (Ḡ, χ + i − j)

(χ + i − j)!

j
∑

s=0

(−1)s 1

(s + 1)!(j − s)!

]

=
P (Ḡ, χ + i + 1)

0!(χ + i + 1)!
+

i+1
∑

j=1

[

(−1)j P (Ḡ, χ + i + 1 − j)

(χ + i + 1 − j)!

j
∑

s=1

(−1)s−1 1

s!(j − s)!

]

.

For any positive integer j we have that,

j
∑

s=1

(−1)s−1 1

s!(j − s)!
=

1

j!

j
∑

s=1

(−1)s−1

(

j

s

)

=
1

j!
,

and thus,

M(G, n − (χ + i + 1)) =

i+1
∑

j=0

P (Ḡ, χ + i + 1 − j)

j!(χ + i + 1 − j)!
(−1)j.

�

Proof of Theorem 2: To compute the chromatic polynomial of Ḡ we use an inclusion-
exclusion technique. We begin by computing Nk, the number of (non necessarily proper)
colorings of Ḡ where KA and KB are properly colored and there are at least k monochro-
matic edges in E ′. Fix one of such colorings, by assumption any monochromatic edge
belongs to E ′ and there are not two adjacent ones, otherwise there will be two vertices
in one of the complete graphs having the same color. Therefore the set of monochromatic
edges correspond to a matching in G′. On the other hand, given any matching M in G′

of size k we can produce a coloring for Ḡ were all the edges in M are monochromatic and
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there is not monochromatic edges in each one of the graphs KA and KB. For this, just do
a proper coloring of KA, fix the color of the k endpoints of M in KB, and next color the
remaining n2 − k vertices in B using the remaining λ − k colors. From this argument we
get Nk = M(G′, k)Pn1,λPn2−k,λ−k. �

As an example we consider the Cayley graph for the cyclic group Z2n with connector
set {±1,±2,±4,±6, . . . ,±2(n − 1)} where n is a positive integer. Let G2n denote such a
Cayley graph.

Corollary 2. P (G2n, λ) = Pn,λ

∑n

k=0(−1)k 2n
2n−k

(

2n−k

k

)

Pn−k,λ−k.

Proof : Notice that, by construction, the graph G2n can be formed from two disjoint
copies of Kn (one induced by the odd integers and the other one induced by the even
integers in {0, 1, . . . , 2n−1}) joined by the edges {i, i+1} for 0 ≤ i ≤ 2n−1. Notice that
the complement of G2n is Kn,n \ E(c2n), the complete (n, n)-bipartite graph without the
edges of a cycle of length 2n. Applying Theorem 2 and Lemma 1 the result follows. �

Let n, a be positive integers such that n ≥ 2a. The circular graph Cn
a is the Cayley

graph for the cycle group Zn with connector set {a, a + 1, . . . , n − a}. These graphs play
an important role in the definition of the star chromatic number defined by Vince in [7].
It is well known that χ(Cn

a ) = dn
a
e. Moreover, if a > 1 then, the complement graph of Cn

a

is the (a− 1)-th power of a cycle Cn, that is, a Cayley graph for the cycle group Zn with
connector set {±1,±2, . . . ,±(a− 1)}, which we denote by C(n, a− 1). Figure 1 shows an
example of a circular graph and its complement graph.
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C(8,2)

Fig. 1. Circular graph C8
3 and its complement graph C(8, 2).

First, note that the graph Cn
2 is isomorphic to a complete graph Kn without the edges

of a Hamiltonian cycle. Therefore, the following result is a consequence of the part (2) of
Lemma 3.

Corollary 3. P (Cn
2 , λ) =

∑bn

2
c

i=0
n

n−i

(

n−i

i

)

Pn−i,λ.

In order to compute the chromatic polynomial for the graph Cn
3 , we first generalize

Lemma 1 as follows.

Definition 1. Let G be a graph. We denote by M
G(m1, m2, . . . , mk) the number of ways

of choosing k pairwise disjoint subsets of vertices from V (G), in such a way that for
1 ≤ i ≤ k, the ith subset of vertices contains mi disjoint paths each one with i edges.
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Lemma 4. M
pn(m1, m2, . . . , mk) =

(

n+1−
P

k

i=1
i.mi

m1,m2,...,mk

)

.

Proof : The result follows from the fact that M
pn(m1, m2, . . . , mk) is equal to number of

ways of choosing k pairwise disjoint sets of vertices from a path of size n+ 1−
∑k

i=1 i.mi,
where the ith subset has size mi. To prove this fact, fix a selection A1, . . . , Ak of pairwise
disjoint subsets of V (pn), such that for each 1 ≤ i ≤ k, Ai contains mi disjoint paths
each one with i edges. Now let B the path obtained by contracting the vertices in each
of the elements in each of the Ai’s, and let Bi be the set of vertices of B corresponding
to the contractions of the elements of Ai. The Bi’s correspond to a selection of k pairwise
disjoint sets of vertices from B, with |Bi| = mi. It is straight forward to see that this
procedure corresponds to a bijection. �

Lemma 5. M
cn(m1, m2, . . . , mk) = n

n−
P

k

i=1
i.mi

.Mpn−1(m1, m2, . . . , mk).

Proof : We are going to prove

(

n −
k
∑

i=1

i.mi

)

M
cn(m1, m2, . . . , mk) = nM

pn−1(m1, m2, . . . , mk),

by a counting argument. For this we consider the number of ways of choosing k pair-
wise disjoint subsets of vertices A1, . . . , Ak and an edge e from cn in such a way that
for 1 ≤ i ≤ k, the Ai contains mi disjoint paths each one with i edges all different
from e. We count this number in two ways. First we choose e and then the Ai’s (in
the path cn \ e). There are nM

pn−1(m1, m2, . . . , mk) ways to do this. Second we first
choose the Ai’s and then choose e between the edges no appearing in the Ai’s. There are

M
cn(m1, m2, . . . , mk)

(

n −
∑k

i=1 i.mi

)

ways to do this. �

Now, we are ready to compute the chromatic polynomial of Cn
3 .

Theorem 3. Let n ≥ 7,

P (Cn
3 , λ) =

n
∑

k=0

∑

(n1,n2,n3,n4)∈Γk

M
cn(n1, n2 + n3, n4)

(

n2 + n3

n2

)

Pn−k+n3,λ,

where Γk = {(n1, n2, n3, n4) ∈ N
4 : n1 + n2 + 3n3 + 2n4 = k}.

Proof : First, we define the exterior cycle of C(n, 2) as the set of edges of the form
{i, i + 1}, 0 ≤ i < n. We also define the interior of C(n, 2) as the set of edges in C(n, 2)
that are not in the exterior cycle. Let k ≥ 0 be an integer and consider the proper colorings
of Cn

3 with λ colors for which there are exactly k monochromatic edges in the complement
graph C(n, 2). We are interested in counting these proper colorings. For this purpose, we
use the following property of the graph C(n, 2):

Property 1. The clique number of C(n, 2) is 3 and all triangles in C(n, 2) have two edges
in the exterior cycle.

Property 1 implies that any path of monochromatic edges in C(n, 2) of length greater
than 1 can be completed to a triangle, with two edges in the exterior cycle. In particular
any path of monochromatic edges in the interior has length 1.
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Now, we define the projection of an edge e ∈ C(n, 2) into the exterior cycle; if e is in
the exterior cycle, the projection of e is e. If e is in the interior, the projection of e is the
path formed by the two consecutive edges in the exterior, which are adjacent to e.

Fix a proper coloring of Cn
3 with k monochromatic edges in C(n, 2). Let P be the union

of all the projections of these monochromatic edges into C, the exterior cycle of C(n, 2).
By Property 1, P can not have paths of length greater than 3, thus, P is the union of
disjoint paths in C of length less than 4. For i = 1, 2, 3 let Ai the set of such paths of
length i. Again, by Property 1 we have,

– All the elements of A1 are the projection of an isolated monochromatic edge in the
exterior.

– All the elements of A2 correspond to either the projection of an isolated interior edge
or the projection of a triangle (see Figure 2a).

– All the element of A3 correspond to the projection of two crossing non-consecutive
interior edges (see Figure 2b) .

(a) (b)

Fig. 2. (a) Projection of an isolated interior edge of C(n, 2). (b) Projection of a pair of crossing
interior edges of C(n, 2).

Thus, if n1 is the number of isolated monochromatic edges belonging to the exterior
cycle, n2 is the number of isolated monochromatic interior edges, n3 is the number of
monochromatic triangles, and n4 is the number of pairs of crossing monochromatic interior
edges, then |A1| = n1, |A2| = n2 + n3, |A3| = n4 and n1 + n2 + 3n3 + 2n4 = k.

Therefore, the number of ways of choosing k monochromatic edges in C(n, 2) derived
from proper colorings of Cn

3 is equal to

∑

(n1,n2,n3,n4)∈Γk

M
cn(n1, n2 + n3, n4)

(

n2 + n3

n2

)

,

where the binomial term
(

n2+n3

n2

)

is used to distinguish a monochromatic triangle from an
isolated interior monochromatic edge. Therefore, the total number of proper colorings of
Cn

3 with λ colors is equal to
∑n

k=0

∑

(n1,n2,n3,n4)∈Γk
M

cn(n1, n2 +n3, n4)
(

n2+n3

n2

)

Pn−k+n3,λ. �

An interesting problem is to compute the chromatic polynomial of circular graphs Cn
a

for a > 3.
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