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Abstract

In this note, we deal with the characterization of the idomatic
partitions and b-colorings of direct products of complete graphs. We
recall some known results on idomatic partitions of direct products of
complete graphs and we present new results concerning the b-colorings
of the direct product of two complete graphs. Finally, some open
problems are given.
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1 Introduction and preliminary results

Let G = (V,E) be an undirected finite simple graph without loops (see
reference [3] for classical concepts in graph theory). A set S ⊆ V is called
a dominating set if for every vertex v ∈ V \ S there exists a vertex u ∈ S
such that u is adjacent to v. A set S ⊆ V is called independent if no two
vertices in S are adjacent. A set S ⊆ V is called an independent dominating
set of G if it is both independent and dominating. A partition of the vertex
set V into independent dominating sets is called an idomatic partition of G
[1, 2]. The maximum size of an idomatic partition of G is called the idomatic
number id(G). An idomatic partition of a graph G into k parts is called an
idomatic k-partition of G. Notice that not every graph has an idomatic
k-partition, for any k. For example, the cycle graph on five vertices C5 has
no idomatic k-partition for any k. A proper coloring (coloring for short) of
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G is an assignment of colors to the vertices of G such that adjacent vertices
are assigned different colors. A k-coloring of G is a coloring using exactly
k different colors. The smallest number k such that G admits a k-coloring
is called the chromatic number of G and is denoted by χ(G). Given a k-
coloring of G, a vertex v is said to be dominant if v is adjacent to at least one
vertex receiving each of the k − 1 colors not assigned to v. As remarked by
Dunbar et al. in [4], an idomatic partition of a graph G represents a proper
coloring of the vertices of G where all vertices are dominant. A b-coloring of
G [7] is a coloring such that every color class admits at least one dominant
vertex. So, b-colorings are relaxed versions of idomatic partitions. Notice
that every coloring of G with χ(G) colors is a b-coloring. The b-chromatic
number of G, denoted by χb(G), is the maximum number k such that G
admits a b-coloring with k colors.

The direct productG×H of two graphsG andH is defined by V (G×H) =
V (G)×V (H), and where two vertices (u1, u2), (v1, v2) are joined by an edge
in E(G × H) if {u1, v1} ∈ E(G) and {u2, v2} ∈ E(H). This product is
commutative and associative in a natural way (see reference [6] for a detailed
description on product graphs).

Let n be a positive integer. We denote by [n] the set {1, . . . , n}. The
complete graph Kn will usually be on the vertex set [n].

Idomatic partitions of graphs were studied in [4] as a special coloring
problem on graphs defined as fall colorings. In that work, the authors show
the following result.

Theorem 1 ([4]). Let n1 > 1 and n2 > 1 be two integers. The direct
product graph Kn1 ×Kn2 admits an idomatic n1-partition and an idomatic
n2-partition. Furthermore, if t > 1 is an integer such that t ̸∈ {n1, n2}, then
Kn1 ×Kn2 has no idomatic t-partition.

Moreover, in [4] it is posed the question of characterizing the idomatic
partitions of the direct product of three or more complete graphs. Recently,
in [9] it is given a full characterization of the idomatic partitions of the direct
product of three complete graphs. By following the same ideas given in [9],
in [8] it is given a characterization of the idomatic sets of a direct product
of four complete graphs.

The direct product of graphs G1, G2, . . . , Gn will be denoted ×n
i=1Gi.

Let G = ×k
i=1Kni and let u = (u1, . . . , uk) and v = (v1, . . . , vk) be vertices

of G. Then, let
e(u, v) = |{i : ui = vi}|

be the number of coordinates in which u and v coincide. With this notation
we can state that u and v are adjacent in G = ×k

i=1Kni if and only if
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e(u, v) = 0. Therefore, I ⊆ V (G) is independent if and only if e(u, v) > 0
for any u, v ∈ I. Note also that e(u, v) ≤ k − 1 holds for any u ̸= v.

Let X ⊂ V (G), where G = ×k
i=1Kni , and let

{e(u, v) : u, v ∈ X and u ̸= v} = {j1, . . . , jr}.

Then, we say that X is a Tj1,...,jr -set.

This note is organized as follows. Let G = ×k
i=1Kni . In Section 2, we

summarize the results concerning independent dominating sets and idomatic
partitions of G and we pose two problems. Finally, Section 3 contains some
new results concerning b-colorings of the direct product of two complete
graphs and an interesting conjecture is posed.

2 Independent dominating sets and idomatic par-
titions in ×k

i=1Kni

In this section we give two open problems concerning the independent dom-
inating sets and idomatic partitions in the graph G = ×k

i=1Kni , with k ≥ 2
and ni ≥ 2. We start by rephrasing known results in terms of Tj1,...,jr -sets.

Notice first that if G = ×2
i=1Kni , with ni ≥ 2, and if I ⊆ V (G) is an

independent dominating set, then I is a T1-set (see [4]). For k > 2 we have:

Proposition 1 ([9]). Let G = ×3
i=1Kni, with ni ≥ 2, and let I be an

independent dominating set of G. Then, I is either a T1-set or a T1,2-set.

Moreover, in [9] it is characterized the structure of the independent dom-
inating sets of ×3

i=1Kni . Such results have been extended to the case k = 4
as follows :

Proposition 2 ([8]). Let G = ×4
i=1Kni, with ni ≥ 2, and let I be an

independent dominating set of G. Then, I is either a T1-set, or a T1,2-set
or a T1,2,3-set

Problem 1. Let G = ×k
i=1Kni, with k, ni ≥ 2. Then, for all i ∈ [k − 1],

does there exist an independent dominating set of G which is a T1,2,...,i-set ?

Notice that problem 1 holds for k = 2, 3 and 4 (see [4, 9, 8]). For k > 4
this is an open problem.

Let pri denote the projection homomorphism from G to the ith fac-
tor Kni . It is not difficult to deduce that for each i = 1, . . . , k, the sets
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pr−1
i (1), . . . , pr−1

i (ni) form an idomatic partition of G into T1,2,...,k−1-sets
and such partitions are the only idomatic partitions of such type (see [9] for
details).

For k = 3, it has been characterized in [9] the idomatic partitions into
idomatic T1-sets. Moreover, in [9] it is also proved that there exist idomatic
partitions composed of T1-sets and T1,2-sets, and it is described how to
construct such partitions. Therefore, from the total characterization of the
idomatic partitions of the graph G = ×3

i=1Kni , the idomatic number of G
can be easily deduced.

For k = 4, it has been characterized in [8] the idomatic partitions into
idomatic T1-sets and an example of idomatic partition into idomatic T1,2-
sets is given. However, it is not known whether there are idomatic partitions
formed by various types of idomatic sets.

Problem 2. For k ≥ 4, a complete characterization of the idomatic parti-
tions of the graph ×k

i=1Kniis still open.

3 b-colorings of ×k
i=1Kni

In this section we study the b-colorings of the graph Kn × Km, with 2 ≤
n ≤ m. The main result of this section is the following theorem.

Theorem 2. Let G = Kn×Km, with 2 ≤ n ≤ m. Let Φ be a coloring of G.
Thus, Φ is a b-coloring of G if and only if Φ induces an idomatic partition
of G.

As a consequence of Theorem 2, we have that G has only two b-colorings
corresponding to the only two idomatic partitions of G, one with n colors
and the other with m colors. Therefore, the b-chromatic number of G is
equal to m.

It is clear that any idomatic partition of G is in fact a b-coloring of G. In
order to prove the converse statement, we will prove the following lemmas.

Lemma 1. Let G = Kn ×Km with 2 ≤ n ≤ m. Assume that G is b-colored
and that vertices (i, j) and (i, t) are dominant vertices for different colors a
and b respectively, where i ∈ [n] and j, t ∈ [m] with j ̸= t. Then, for any
k ∈ [n], with k ̸= i, there exists no dominant vertex (k, s), with s ∈ {j, t},
for a color c ̸∈ {a, b}.

Proof. Let a ̸= b be the colors of vertices x = (i, j) and y = (i, t) respectively.
By hypothesis, x and y are dominant vertices. So, by definition of direct
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product, there exist two vertices x′ = (i′, j) and y′ = (i′′, t), with i′, i′′ ̸= i,
such that vertex x′ is colored with color a and vertex y′ is colored with color
b. Now, assume that there is a dominant vertex z = (k, j), with k ̸= i, i′,
colored with a color c different from a and b. Clearly, this is impossible
because vertex z has no neighbor colored with color a. Therefore, z can not
be a dominant vertex for the color c. In an analogous way we can deduce
that no vertex (k, t), with k ̸= i, i′′, can be a dominant vertex for a color
different from a and b.

Lemma 2. Let G = Kn ×Km with 2 ≤ n ≤ m. Assume that G is b-colored
and that vertices (i, j) and (i, t) are dominant vertices for different colors a
and b respectively, where i ∈ [n] and j, t ∈ [m], with j ̸= t. For any k ̸∈ {j, t}
and i′, i′′ ∈ [n]\{i}, with i′ ̸= i′′, there exist no dominant vertices (i′, k) and
(i′′, k) for different colors c and d respectively, with c and d different from a
and b.

Proof. By Lemma 1, we have that k ̸= j, t and i′, i′′ ̸= i. Without loss of
generality, assume that i < i′ < i′′. As in the proof of Lemma 1, we can
deduce that there are vertices (s1, j), (s2, t), (i

′, p1) and (i′′, p2) colored with
colors a, b, c and d resp. with s1, s2 ̸= i and p1, p2 ̸= k. Now, consider vertex
(i, k). Such a vertex can not be colored with any color in {a, b, c, d}. Thus,
let e be the color of (i, k). Now, as (i, j) is a dominant vertex for color a, it
must have a neighbor (u, v) colored with color e. By construction, u ̸= i and
v = k. Moreover, as (i′, k) is a dominant vertex for color c, it must have a
neighbor (u′, v′) colored with color e, with v′ ̸= k, which is not possible. An
analogous contradiction is obtained for vertices (i, j), (i, t) and (i′′, t).

By the commutativity of the direct product, a direct consequence of the
previous lemma is the following corollary.

Corollary 1. Let G = Kn ×Km, with 2 ≤ n ≤ m. Then, the b-chromatic
number of G is equal to m.

Lemma 3. Let G = Kn × Km, with 2 ≤ n ≤ m. Then, G has only
b-colorings with n and m colors. Moreover, such b-colorings are always
idomatic partitions of G.

Proof. Assume that G has a b-coloring with k colors. By Corollary 1, we
know that k ≤ m. Moreover, it is well known that the chromatic number
of G is equal to min{n,m} = n, and thus k ≥ n. So, assume first that
n < k < m. Let s be the minimum number of columns containing at least
one dominant vertex for each one of the k color classes. Reordering the
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columns representing G, we can assume w.l.o.g. that these are the first s
columns. Moreover, by Lemmas 1 and 2, we can reorder the rows in such a
way that the first p ones contain at least one dominant vertex for each one
of the k colors classes, where p is the smallest positive integer for which this
property holds. Moreover, we can assume that the first t rows of these p
ones contain at least two dominant vertices of different colors. We consider
the following cases :

- Case t = 0. In this case, by applying Lemma 1 to the columns of G,
we have that k is at most equal to n, which is a contradiction to the
definition of k.

- Case t > 0. By Lemmas 1 and 2, we can assume that dominant vertices
for different colors in row i occur in consecutive positions, with i ∈
{1, . . . , t}. Suppose that t = 2 and assume w.l.o.g. that the dominant
vertices for different colors in rows 1 and 2 are (1, 1), . . . , (1, u0) and
(2, u0 + 1), . . . , (2, u0 + u1), with u0, u1 > 1 respectively. Now, by
using arguments as in the proof of Lemma 1, we know that for each
vertex (1, h), with 1 ≤ h ≤ u0, there exists at least one vertex (r, h),
with r ̸= 1, having the same color as (1, h). Therefore, the color
of vertex (1, u0 + w), with 1 ≤ w ≤ u1, must be equal to the color
assigned to vertex (2, u0 + w). Otherwise, there is a contradiction to
the assumption that dominant vertices in row 1 occur in consecutive
positions. Moreover, each vertex (1, u0 + w) is a dominant vertex as
(2, u0 +w) which is a contradiction to the minimality of p. Therefore,
we have t = 1. By repeating the previous reasoning, we can deduce
that p must be equal to 1. Now, we claim that s = m. Suppose that
s < m and consider vertex (1, s + 1). By construction, such a vertex
has at least one neighbor colored with each color in {1, . . . , k}, and so,
it must be assigned a color not in {1, . . . , k}, which is a contradiction
to the definition of k. So, the only possibility that remains is that
s = m, and so in all cases there is a contradiction to the definition of
k. Therefore, k must be equal to n or m. Finally, note that each vertex
(1, i) is a dominant vertex for the color class i, for i = 1, . . . ,m. So,
each column i is colored with color i, which is an idomatic partition
of G into m idomatic sets.

The same arguments can be used for the rows in order to prove that any
b-coloring of G with n colors is an idomatic partition of G into n idomatic
sets, where each row i is colored with color i.

We present the main open question of this section as a conjecture.
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Conjecture 1. Let G = ×k
i=1Kni, with k, ni ≥ 2. Then, any b-coloring of

G is an idomatic partititon of G.
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