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Abstract

A k-tuple coloring of a graph G assigns a set of k colors to each vertex of GG such that if
two vertices are adjacent, the corresponding sets of colors are disjoint. The k-tuple chromatic
number of G, xi(G), is the smallest ¢ so that there is a k-tuple coloring of G using ¢ colors.
It is well known that x(GOH) = max{x(G),x(H)}. In this paper, we show that there exist
graphs G and H such that xx(GOH) > max{xk(G), xx(H)} for k > 2. Moreover, we also show
that there exist graph families such that, for any & > 1, the k-tuple chromatic number of their
cartesian product is equal to the maximum k-tuple chromatic number of its factors.
keyword: k-tuple colorings, Cartesian product of graphs, Kneser graphs, Cayley graphs, Hom-
idempotent graphs.

1 Introduction

A classic coloring of a graph G is an assignment of colors (or natural numbers) to the vertices of G
such that any two adjacent vertices are assigned different colors. The smallest number ¢ such that
G admits a coloring with ¢ colors (a t-coloring) is called the chromatic number of G and is denoted
by x(G). Several generalizations of the coloring problem have been introduced in the literature, in
particular, cases in which each vertex is assigned not only a color but a set of colors, under different
restrictions. One of these variations is the k-tuple coloring introduced independently by Stahl [11]
and Bollobds and Thomason [3]. A k-tuple coloring of a graph G is an assignment of k colors to
each vertex in such a way that adjacent vertices are assigned distinct colors. The k-tuple coloring
problem consists into finding the minimum number of colors in a k-tuple coloring of a graph G,
which we denote by xx(G).

The cartesian product GOH of two graphs G and H has vertex set V(G) x V(H), two vertices
being joined by an edge whenever they have one coordinate equal and the other adjacent. This
product is commutative and associative up to isomorphism. There is a simple formula expressing
the chromatic number of a cartesian product in terms of its factors:

X(GOH) = max{x(G), x(H)}. (1)
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The identity (1) admits a simple proof first given by Sabidussi [10].

The Kneser graph K(m,n) has as vertices all n-element subsets of the set [m] = {1,...,m}
and an edge between two subsets if and only if they are disjoint. We will assume in the rest of
this work that m > 2n, otherwise K (m,n) has no edges. The Kneser graph K (5,2) is the well
known Petersen Graph. Lovész [9] showed that x (K (m,n)) = m—2n+2. The value of the k-tuple
chromatic number of the Kneser graph is the subject of an almost 40-year-old conjecture of Stahl
[11] which asserts that: if &k = gn — r where ¢ > 0 and 0 < r < n, then xx(K(m,n)) = gm — 2r.
Stahl’s conjecture has been confirmed for some values of k, n and m [11, 12].

An homomorphism from a graph G into a graph H, denoted by G — H, is an edge-preserving
map from V(G) to V(H). It is well known that an ordinary graph coloring of a graph G with m
colors is an homomorphism from G into the complete graph K,,. Similarly, an n-tuple coloring of
a graph G with m colors is an homomorphism from G into the Kneser graph K (m,n). A graph G
is said hom-idempotent if there is an homomorphism GUG — G. We denote by G 4 H if there
exists no homomorphism from G to H. The clique number of a graph G, denoted by w(G), is the
maximum size of a clique in G (i.e., a complete subgraph of G). Clearly, for any graphs G and H, we
have that x(G) > w(G) (and so, xx(G) > xk(Ky(@)) = kw(G)) and, if there is an homomorphism
from G to H then, x(G) < x(H) and, moreover, x(G) < xr(H).

In this paper, we show that equality (1) does not hold in general for k-tuple colorings of
graphs. In fact, we show that for some values of k > 2, there are Kneser graphs K (m,n) for which
Xk (K (m,n)OK(m,n)) > xp(K(m,n)). Surprisingly, there exist some Kneser graphs K (m,n) for
which the difference xi (K (m,n)0OK(m,n)) — xx(K(m,n)) can be as large as desired, even when
k = 2. We also show that there are families of graphs for which equality (1) holds for k-tuple
colorings of graphs for any k > 1. As far as we know, our results are the first ones concerning the
k-tuple chromatic number of cartesian product of graphs.

2 Cartesian products of Kneser graphs

We start this section with some upper and lower bounds for the k-tuple chromatic number of Kneser
graphs.

Lemma 1. Let G be a graph and let k > 0. Then, xx(GOG) < kx(G).

Proof. Clearly, x,x(GOG) < kx(GOG). However, by equality (1) we know that x(GOG) = x(G),
and thus the lemma holds. ]

Corollary 1. xx(K(m,n)0K(m,n)) < kx(K(m,n)) = k(m —2n + 2).

We can obtain a trivial lower bound for the k-tuple chromatic number of the graph
K(m,n)OK(m,n) in terms of the clique number of K(m,n). In fact, notice that
w(K(m,n)0K(m,n)) = w(K(m,n)) = |7]. Thus, we have that xx(K(m,n)0K(m,n)) >
kw(K(m,n)) = k[™Z].

Larose et al. [8] showed that no connected Kneser graph K (m,n) is hom-idempotent, that is,
for any m > 2n, there is no homomorphism from K (m,n)0K (m,n) to K(m,n).

Lemma 2 ([8]). Let m > 2n. Then, K(m,n)OK (m,n) 4 K(m,n).



Concerning the k-tuple chromatic number of some Kneser graphs, Stahl [11] showed the follow-
ing results.

Lemma 3 ([11]). If 1 < k <mn, then xx(K(m,n)) =m —2(n — k).
Lemma 4 ([11]). xx(K(2n+1,n)) =2k + 1+ [E2L], for k > 0.
Lemma 5 ([11]). xpn(K(m,n)) =rm, for r >0 and m > 2n.

By using Lemma 5 we have the following result.
Lemma 6. Let m > 2n. Then, xn(K(m,n)OK (m,n)) > xn(K(m,n)).

Proof. By Lemma 5 when r = 1, we have that x,(K(m,n)) = m. If x,(K(m,n)0K(m,n)) = m,
then there exists an homomorphism from the graph K (m,n)0K (m,n) to K(m,n) which contradicts
Lemma 2. O

By Lemma 3, Lemma 6 and by using Corollary 1, we have that,

Corollary 2. Let n > 2. Then, 2n+ 2 < xn(K(2n + 1,n)0K(2n + 1,n)) < 3n. In particular,
when n = 2, we have that x2(K(5,2)0K(5,2)) = 6.

In the case k = 2 we have by Lemma 6, Lemma 3 and by Corollary 1, the following result.
Corollary 3. Let ¢ > 0. Then, g+ 4 < x2(K(2n + ¢,n)0K(2n + ¢q,n)) < 2q + 4.

By Corollary 3, notice that in the case when k¥ = n = 2 and ¢ > 1, we must have that
x2(K(¢+4,2)0K(¢+4,2)) > q+4, otherwise there is a contradiction with Lemma 2. This provides
a gap of one unity between the 2-tuple chromatic number of the graph K(q+4,2)0K(¢+4,2) and
the graph K(q+4,2). In the following, we will prove that, for some Kneser graphs, such a gap can
be as large as desired. In order to do this, we need the following technical tools.

A stable set S C V is a subset of pairwise non adjacent vertices of G. The stability number of
G, denoted by a(G), is the largest cardinality of a stable set in G. Let m > 2n. An element i € [m]
is called a center of a stable set S of the Kneser graph K (m,n) if it lies in each n-set in S.
Lemma 7 (Erdés-Ko-Rado [5]). If m > 2n, then a(K(m,n)) = (Z‘:ll) A stable set of K(m,n)
with size (7:__11) has a center i, for some i € [m].

Lemma 8 (Hilton-Milner [7]). If m > 2n, then the maximum size of a stable set in K(m,n) with

no center is equal to 1 + (:’;__11) — (mgfl_l)

A graph G = (V, E) is vertez transitive if its automorphism group acts transitively on V', that
is, for any pair of distinct vertices of G there is an automorphism mapping one to the other one.
It is well known that Kneser graphs are vertex transitive graphs.

Lemma 9 (No-Homomorphism Lemma, Albertson-Collins [1]). Let G, H be graphs such that H is
vertex transitive and G — H. Then,

a(G)/[V(G)| = a(H)/|V(H)]

Lemma 10. Let m > 2n. Then, x;(K(m,n)0K(m,n)) > k R o AR ) -




Proof. Let t = xi(K(m,n)0OK(m,n)). Then, K(m,n)0K(m,n) — K(t,k) and from the No-
Homomorphism Lemma, ﬁ%ﬁ?&%gi(&%{' > |‘o/‘((][((((ilz))))| The result follows from the fact that

a(K(tk)) k
VREGR] = & H

An edge-coloring of a graph G = (V, E) is an assignment of colors to the edges of G such that
any two incident edges are assigned different colors. The smallest number ¢ such that G admits an
edge-coloring with ¢ colors is called the chromatic index of G and is denoted by x/'(G). It is well
known that the chromatic index of a complete graph K, on n vertices is equal to n — 1 if n is even
and n if n is odd (see [2]). Besides, in the case n even each color class i (i.e. the subset of pairwise
non incident edges colored with color i) has size § and if n is odd each color class has size ”T_l
Therefore, using this fact, we obtain the following result.

Lemma 11. Let ¢ > 5. If q is even then the set of vertices of the Kneser graph K(q,2) can be
partitioned into ¢ — 1 disjoint cliques, each one with size 4 and if q is odd then the set of vertices
q—1

of the Kneser graph K(q,2) can be partitioned into q disjoint cliques, each one with size 45=.

Proof. Notice that there is a natural bijection between the vertex set of K(q,2) and the edge set
of the complete graph K, with vertex set [¢]: each vertex {7, j} in K(g,2) is mapped to the edge
{i,j} in K,. Now, if ¢ is even there is a (¢ — 1)-edge coloring of K, where each color class is a set of
pairwise non incident edges with size 4 and if ¢ is odd there is a g-edge coloring of K, where each
color class is a set of pairwise non incident edges with size q;21. Notice that two edges e, e’ € K,
are non incident edges if and only if e Ne’ = (). Therefore, a color class of the edge-coloring of K
represents a clique of K(q,2). O

Now, we are able to obtain an upper bound for the stability number of the graph K (¢, 2)00K (¢, 2)
as follows.

Lemma 12. Let ¢ > 5. Then,
e a(K(q,2)0K(q,2)) < %(Sq —2) if q is even and,
o a(K(q,2)0K(q,2)) < M (3¢ — 1) if ¢ is odd.

Proof. Let q even. First, recall that a stable set X in K(q,2) has size at most ¢ — 1 if X has
center (see Lemma 7) and |X| <1+ (¢—1)— (¢ —2—1) =3 if X has no center (see Lemma 8).
Besides, observe that the vertex set of K(g,2) can be partitioned in ¢ — 1 sets S1,...,S;—1 such
that each S; induces a complete subgraph graph K% in K(q,2), fori =1,...,q — 1 (see Lemma
11). Consider the subgraph H; of K(q,2)0K(q,2) induced by S; x V(K (q,2)) fori=1,...,q— 1.
Let I be a stable set in K(q,2)0K(q,2) and I; = INH; fori =1,...,q— 1. Then, for each v € 5;,
I' =N ({v} x V(K (q,2))) is a stable set in K (g,2)0K(q,2) for each i =1,...,¢— 1. Finally, for
each m € S;, with 1 <i < ¢ —1, let I]"y be the stable set in K(g,2) such that I® = {m} x I].
Now, for a fixed i € {1,...,q — 1}, assume w.l.o.g. that r (r < 1) stable sets I&Q, ooy I7 o of
K(q,2) have distinct center ji,...,J, respectively (the case when two of these stable sets have
the same center can be easily reduced to this case). Let W be the set of subsets with size two of
{j1,...,7r}. Therefore, for allm € {1,...,r}, I — ({m} x W) has size at most g—1—(r—1) = g—r
since each center j,, belongs to r — 1 elements in W. Besides, each element of W belongs to exactly
one set I] for m € {1,...,7}, since S; induces a complete subgraph in K(q,2) and {1,...,7} C S;.



Then, [I}U...uIf| < (OO0 ]qIZ-m —{m} x W)+ |W|<r(g—r)+ @ Next, each remaining
stable set (if exist) I'3',...,I2, has no center, then [I¢| < 3 for all d € {r +1,..., 2}. Thus,

|| <r(g—r)+ @ +3(d-r)= —% +7(qg— %)+ 2q. Since the last expression is non decreasing
for r € {1,...,4}, we have that
2
@ g, Ty .q_q3 1
Ll<-L %4438 _ =
il < =g +5la—5)+35 =54 3)
Therefore, |I;| < %(%q — %) for every i = 1,...,q — 1. Since |I| = 23;11 |I;], it follows that
|I| < q(qigl)(%q — 1) and thus,

qlg —1
o(K (g, 20K (.2) < WD (3g - 9)

We analyze now the case for ¢ odd, with a similar reasoning. First, recall that a stable set X in
K(q,2) has size at most ¢—1 if X has center (see Lemma 7) and | X| <1+ (¢—1)—(¢—2—1) =3 if
X has no center (see Lemma 8). Besides, observe that the vertex set of K(q,2) can be partitioned
in g sets Si,..., 5, such that each S; induces a complete subgraph Kq-1 in K(gq,2), fori=1,...,¢

2

(see Lemma 11). Consider the subgraph H; of K(q,2)0K(q,2) induced by S; x V(K(q,2)) for
i =1,...,q. Let I be a stable set in K(q,2)0K(q,2) and I; = I N H; for i = 1,...,q. Then, for
each v € S;, I'! = I; N ({v} x V(K (q,2))) is a stable set in K(¢,2)0K(g,2) for each i =1,...,q.
Finally, for each m € S;, with 1 < < g, let IT" be the stable set in K (g, 2) such that I/* = {m} x I]%;.

Now, for a fixed i € {1,...,q}, assume w.l.o.g. that r (r < q;zl) stable sets I%Q,... Ify of
K(q,2) have distinct center ji,...,J, respectively (the case when two of these stable sets have
the same center can be easily reduced to this case). Let W be the set of subsets with size two of
{j1,...,7r}. Therefore, for allm € {1,...,r}, I'" — ({m} x W) has size at most g—1—(r—1) =qg—r
since each center j,, belongs to r — 1 elements in W. Besides, each element of W belongs to exactly
one set I/ for m € {1,...,r}, since S; induces a complete subgraph in K(q,2) and {1,...,7} C ;.
Then, |1 U U] < (S 117 = {m} x W)+ W] < rlg =) + det

Next, each remaining stable set (if exist) I7 S 122 has no center, then |I¢| < 3 for all
de{r+1,...,%5 ). Thus, || <r(g—r)+ =Y D 4 38 Loy = -2 (g— 1)+ 3(g—1). Since
the last expression is non decreasing for r € {0, .. q%} we have that

(@-1?,q¢-1, 7,3 g—13 1
L < - )4+ = (S -
|1i] < st ol +5le-1)="—--(a-7)

Therefore, |I;] < @(4q — 1) for every i = 1,...,q. Since |I| = 3%, |I;|, it follows that |[I| <

ala— 1)(4q 1) and thus,

q(g—1
o(K(0,2)0K(9,2)) < 103y 1)
From Lemmas 10 and 12 we have the following result.
Theorem 1. Let ¢ > 5. Then,

o xk(K(q,2)0K (q,2)) > 2k%1 if g is even and,



o Xk(K(q.2)0K(q,2) > 2k%1 if g is odd.

In the particular case when ¢ = 2s+4, with s > 0, and k = 2, we have, by Lemma 5 and Theorem
1, the following result that shows that the difference x2(K (2544, 2)0K (25+4,2)) —x2(K (25+4,2))
can be as large as desired.

Corollary 4. For any integer s > 0 and for k = 2, we have that,
2 2
X2 (K (25 + 4,2)0K (25 + 4,2)) > 25 + 35| +5= X2 (K (25 +4,2)) + 35+ 1

From Lemmas 4 and 5, Corollary 1, and Theorem 1, we obtain the results that we summarize
in Table 1.

G | k| x(G) | xk(GOG) = | xk(GOG) > | xx(GOG) <
KG,2)[2] 5 6 - -
- 31 38 9 - -
- 41 10 12 - -
- 5| 13 15 - -
- 6| 15 18 - -
- 7] 18 ? 20 21
K©6,2) [2] 6 8 - -
- 3] 7 12 - -
- 11 12 ? 15 16
- 51 7 ? 19 20
K@T2) 2] 7 ? 9 10
- 3] 7 ? 13 15
K®2) (2] 8 ? 11 12
- 3] 7 ? 16 18

Table 1: Summary of results

Finally, by applying some known homomorphisms between Kneser graphs, we obtain the fol-
lowing result.

Theorem 2. Let k > n and let t = xx(K(m,n)dK(m,n)), where m > 2n. Then, either t >
m+2(k—n) ort <m+ (k—n).

Proof. Suppose that m + (k —n) <t < m+ 2(k —n). Therefore, there exists an homomorphism
K(m,n)0OK(m,n) — K(t, k). Now, Stahl [11] showed that there is an homomorphism K (m,n) —
K(m — 2,n — 1) whenever n > 1 and m > 2n. Moreover, it is easy to see that there is an
homomorphism K (m,n) — K(m—1,n—1). By applying the former homomorphism t—(m+(k—n))
times to the graph K(¢,k) we obtain an homomorphism K(t,k) — K(2(m + k —n) — t,2k +
m — n — t). Finally, by applying 2k + m — t — 2n times the latter homomorphism to the graph
K(2(m+k—n)—t,2k+m—n—t) we obtain an homomorphism K(2(m+k—n)—1¢,2k+m—n—
t) — K(m,n). Therefore, by homomorphism composition, K (m,n)0K(m,n) — K(m,n) which
contradicts Lemma 2. O



3 Cases where x;,(GOH) = max{x(G), xx(H)}

Theorem 3. Let G and H be graphs such that x(G) < x(H) = w(H). Then, xx(GOH) =
max{xx(G), xx(H)}-

Proof. Let t = w(H) and let {hy,...,h} be the vertex set of a maximum clique K; in H with size
t. Clearly, xx(G) < xx(H) = xx(K:). Let p be a k-tuple coloring of H with xx(H) colors. By
equality (1), there exists a t-coloring f of GLJH. Therefore, the assignment of the k-set p(hf((a,p)))
to each vertex (a,b) in GOH defines a k-tuple coloring of GOH with xx(K}) colors. O

Notice that if G and H are both bipartite, then xx(GOH) = xx(G) = xx(H). In the case when
G is not a bipartite graph, we have the following results.

An automorphism o of a graph G is called a shift of G if {u,o(u)} € E(G) for each u € V(G)
[8]. In other words, a shift of G maps every vertex to one of its neighbors.

Theorem 4. Let G be a non bipartite graph having a shift o € AUT(G), and let H be a bipartite
graph. Then, x(GOH) = max{xx(G), xx(H)}.

Proof. Let AU B be a bipartition of the vertex set of H. Let f be a k-tuple coloring of G with
Xk(G) colors. Clearly, xx(G) > xr(H). We define a k-tuple coloring p of GOH with x;(G) colors
as follows: for any vertex (u,v) of GOH with v € G and v € H, define p((u,v)) = f(u) if v € A,
and p((u,v)) = f(o(u)) if v € B. O

We may also deduce the following direct result.

Theorem 5. Let G be an hom-idempotent graph an let H be a subgraph of G. Thus, xx(GOH) =
max{xx(G), xx(H)} = xx(G)-

Let A be a group and S a subset of A that is closed under inverses and does not contain the
identity. The Cayley graph Cay(A,S) is the graph whose vertex set is A, two vertices u, v being
joined by an edge if u=!'v € S. If a='Sa = S for all a € A, then Cay(A,S) is called a normal
Cayley graph.

Lemma 13 ([6]). Any normal Cayley graph is hom-idempotent.

Note that all Cayley graphs on Abelian groups are normal, and thus hom-idempotent. In
particular, the circulant graphs are Cayley graphs on cyclic groups (i.e., cycles, powers of cycles,
complements of powers of cycles, complete graphs, etc). By Theorem 5 and Lemma 13 we have the
following result.

Theorem 6. Let Cay(A,S) be a normal Cayley graph and let Cay(A’,S’) be a subgraph of
Cay(A,S), with A C A and S" C S. Then,
Xk(Cay(A, S)OCay(A’, §')) = max{xx(Cay(4, 5)), xx(Cay(A’, 5"))}.

Definition 1. Let G be a graph with a shift o. We define the order of o as the minimum integer
i such that o* is equal to the identity permutation.

Theorem 7. Let G be a graph with a shift o of minimum odd order 2s+1 and let Cor11 be a cycle
graph, where t > s. Then,

Xk(GOC241) = max{xx(GQ), xx(Cat+1)}-



Proof. Let {0,...,2t} be the vertex set of Cory1, where for 0 < i < 2¢, {i,i+1 mod (2t +1)} €
E(Ca41). Let G; be the it! copy of G in GOy 1, that is, for each 0 < i < 2t, G; = {(g,7) : g € G}.
Let f be a k-tuple coloring of G with x;(G) colors. We define a k-tuple coloring of GOC9.+1 with
xx(G) colors as follows: let 0% denotes the identity permutation of the vertices in G. Now, for
0 < i < 2s, assign to each vertex (u,i) € G; the k-tuple f(o'(u)). For 25+ 1 < j < 2¢, assign to
each vertex (u,j) € G; the k-tuple f(u) if j is odd, otherwise, assign to (u, j) the k-tuple f(o'(u)).
It is not difficult to see that this is in fact a proper k-tuple coloring of GLICo;, 1. O
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