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INTRODUCTION

The use of random samples to approximate properties of geometric configurations
has been an influential idea for both combinatorial and algorithmic purposes. This
chapter considers two related notions—ε-approximations and ε-nets—that capture
the most important quantitative properties that one would expect from a random
sample with respect to an underlying geometric configuration. An example problem:
given a set P of points in the plane and a parameter ε > 0, is it possible to choose
a set N of O( 1

ε ) points of P such that N contains at least one point from each disk
containing ε|P | points of P? More generally, what is the smallest non-empty set
A ⊆ P that can be chosen such that for any disk D in the plane, the proportion of
points of P contained in D is within ε to the proportion of points of A contained
in D? In both these cases, a random sample provides an answer “in expectation,”
establishing worst-case guarantees is the topic of this chapter.

47.1 SET SYSTEMS DERIVED FROM GEOMETRIC CONFIG-
URATIONS

Before we present work on ε-approximations and ε-nets for geometric set systems,
we briefly survey different types of set systems that can be derived from geometric
configurations and study the combinatorial properties of these set systems due to
the constraints induced by geometry. For example, consider the fact that for any set
P of points in the plane, there are only O(|P |3) subsets of P induced by containment
by disks. This is an immediate consequence of the property that three points of
P are sufficient to “anchor” a disk. This property will be abstracted to a purely
combinatorial one, called the VC-dimension of a set system, from which can be
derived many analogous properties for abstract set systems.

GLOSSARY

Set systems: A pair Σ = (X,R), where X is a set of base elements and R is a
collection of subsets of X, is called a set system. The dual set system to (X,R)
is the system Σ∗ = (X∗,R∗), where X∗ = R, and for each x ∈ X, the set
Rx := {R ∈ R : x ∈ R} belongs to R∗.

VC-dimension: For any set system (X,R) and Y ⊆ X, the projection of R
on Y is the set system R|Y :=

{
Y ∩ R : R ∈ R

}
. The Vapnik-Chervonenkis

dimension (or VC-dimension) of (X,R), denoted as VC-dim(R), is the minimum
integer d such that |R|Y | < 2|Y | for any finite subset Y ⊆ X with |Y | > d.
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Shatter function: A set Y is shattered by R if |R|Y | = 2|Y |. The shatter
function, πR : N → N, of a set system (X,R) is obtained by letting πR(m) be
the maximum number of subsets in R|Y for any set Y ⊆ X of size m.

Shallow-cell complexity: A set system (X,R) has shallow-cell complexity
ϕR : N× N→ N, if for every Y ⊆ X, the number of sets of size at most l in
the set system R|Y is O

(
|Y | · ϕR(|Y |, l)

)
. For convenience, dropping the second

argument of ϕR, we say that (X,R) has shallow-cell complexity ϕR : N→ N, if
there exists a constant c(R) > 0 such that for every Y ⊆ X and for every positive
integer l, the number of sets of size at most l in R|Y is O

(
|Y | · ϕR(|Y |) · lc(R)

)
.

Geometric set systems: Let R be a family of (possibly unbounded) geometric
objects in Rd, and X be a finite set of points in Rd. Then the set system (X,R|X)
is called a primal set system induced by R. Given a finite set S ⊆ R, the dual
set system induced by S is the set system (S,S∗), where S∗ = {Sx : x ∈ Rd}
and Sx :=

{
S ∈ S : x ∈ S

}
.

Union complexity of geometric objects: The union complexity, κR : N→ N,
of a family of objects R is obtained by letting κR(m) be the maximum number
of faces of all dimensions that the union of any m members of R can have.

δ-Separated set systems: The symmetric difference of two sets R,R′ is denoted
as ∆(R,R′), where ∆(R,R′) = (R \ R′) ∪ (R′ \ R). Call a set system (X,R)
δ-separated if for every pair of sets R,R′ ∈ R, |∆(R,R′)| ≥ δ.

VC-DIMENSION

First defined by Vapnik and Chervonenkis [VC71], a crucial property of VC-dimension
is that it is hereditary—if a set system (X,R) has VC-dimension d, then for any
Y ⊆ X, the VC-dimension of the set system (Y,R|Y ) is at most d.

LEMMA 47.1.1 [VC71, Sau72, She72]

Let (X,R) be a set system with VC-dim(R) ≤ d for a fixed constant d. Then for
all positive integers m,

πR(m) ≤
d∑
i=0

(
m

i

)
= O

((em
d

)d)
.

Conversely, if πR(m) ≤ cmd for some constant c, then VC-dim(R) ≤ 4d log(cd).

Throughout this chapter, we usually state the results in terms of shatter func-
tions of set systems; the first part of Lemma 47.1.1 implies that these results carry
over for set systems with bounded VC-dimension as well. Geometric set systems
often have bounded VC-dimension, a key case being the primal set system induced
by half-spaces in Rd, for which Radon’s lemma [Rad21] implies the following.

LEMMA 47.1.2

Let H be the family of all half-spaces in Rd. Then VC-dim(H) = d + 1. Conse-
quently, πH(m) = O(md+1).

Lemma 47.1.2 is the starting point for bounding the VC-dimension of a large
category of geometric set systems. For example, it implies that the VC-dimension
of the primal set system induced by balls in Rd is d + 1, since if a set of points
is shattered by the primal set system induced by balls, then it is also shattered
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by the primal set system induced by half-spaces1. More generally, sets defined by
polynomial inequalities can be lifted to half-spaces in some higher dimension by
Veronese maps and so also have bounded VC-dimension. Specifically, identify each
d-variate polynomial f(x1, . . . , xd) with its induced set Sf :=

{
p ∈ Rd : f(p) ≥ 0

}
.

Then Veronese maps—i.e., identifying the d′ =
(
D+d
d

)
coefficients of a d-variate

polynomial of degree at most D with distinct coordinates of Rd′—together with
Lemma 47.1.2 immediately imply the following.

LEMMA 47.1.3 [Mat02a]

Let Rd,D be the primal set system induced by all d-variate polynomials over Rd of

degree at most D. Then VC-dim(Rd,D) ≤
(
D+d
d

)
.

Set systems derived from other bounded VC-dimension set systems using a fi-
nite sequence of set operations can be shown to also have bounded VC-dimension.
The number of sets in this derived set system can be computed by a direct com-
binatorial argument, which together with the second part of Lemma 47.1.1 implies
the following.

LEMMA 47.1.4 [HW87]

Let (X,R) be a set system with VC-dim(R) ≤ d, and k ≥ 1 an integer. Define the
set system

Fk(R) :=
{
F (R1, . . . , Rk) : R1, . . . , Rk ∈ R

}
,

where F (S1, . . . , Sk) denotes the set derived from the input sets S1, . . . , Sk from a
fixed finite sequence of union, intersection and difference operations. Then we have
VC-dim

(
Fk(R)

)
= O(kd log k).

LEMMA 47.1.5 [Ass83]

Given a set system Σ = (X,R) and its dual system Σ∗ = (X∗,R∗), VC-dim(R∗) <
2VC-dim(R)+1.

Note that if πR∗(m) = O
(
md
)

for some constant d, then the second part
of Lemma 47.1.1 implies that VC-dim (R∗) = O(d log d), and Lemma 47.1.5 then
implies that VC-dim (R) = 2O(d log d) = dO(d).

On the other hand, the primal set system induced by convex objects in R2 has
unbounded VC-dimension, as it shatters any set of points in convex position.

SHALLOW-CELL COMPLEXITY

A key realization following from the work of Clarkson and Varadarajan [CV07] and
Varadarajan [Var10] was to consider a finer classification of set systems than just
based on VC-dimension, namely its shallow-cell complexity, first defined explicitly
in Chan et al. [CGKS12]. Note that if (X,R) has shallow-cell complexity ϕR(m) =
O(mt) for some constant t, then πR(m) = O

(
m1+t+c(R)

)
for an absolute constant

c(R), and so R has bounded VC-dimension. On the other hand, while the shatter
function bounds the total number of sets in the projection of R onto a subset Y , it
does not give any information on the distribution of the set sizes, which has turned

1Assume that a set X of points in Rd is shattered by the primal set system induced by balls.
Then for any Y ⊆ X, there exists a ball B with Y = B ∩X, and a ball B′ with X \ Y = B′ ∩X.
Then any hyperplane that separates B \B′ from B′ \B also separates Y from X \ Y .
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TABLE 47.1.1 Combinatorial properties of some primal (P) and dual (D) ge-

ometric set systems.

OBJECTS SETS ϕ(m) VC-dim π(m)

Intervals P/D O(1) 2 Θ(m2)

Lines in R2 P/D O(m) 2 Θ(m2)

Pseudo-disks in R2 P O(1) 3 O(m3)

Pseudo-disks in R2 D O(1) O(1) O(m2)

Half-spaces in Rd P/D O
(
mbd/2c−1

)
d+ 1 Θ(md)

Balls in Rd P O
(
mdd/2e−1

)
d+ 1 Θ(md+1)

Balls in Rd D O
(
mdd/2e−1

)
d+ 1 Θ(md)

Triangles in R2 D O(m) 7 O(m7)

Fat triangles in R2 D O(log∗m) 7 O(m7)

Axis-par. rect. in R2 P O(m) 4 Θ(m4)

Axis-par. rect. in R2 D O(m) 4 Θ(m2)

Convex sets in Rd P O
(
2m/m

)
∞ Θ(2m)

Translates of a convex set in Rd, d ≥ 3 P O
(
2m/m

)
∞ Θ(2m)

out to be a key parameter (as we will see later in, e.g., Theorem 47.4.5). Tight
bounds on shatter functions and shallow-cell complexity are known for many basic
geometric set systems.

LEMMA 47.1.6 [CS89]

Let H be the family of all half-spaces in Rd. Then ϕH(m) = O(mbd/2c−1). Fur-
thermore, this bound is tight, in the sense that for any integer m ≥ 1, there exist
m points for which the above bound can be attained.

The following lemma, a consequence of a probabilistic technique by Clarkson
and Shor [CS89], bounds the shallow-cell complexity of the dual set system induced
by a set of objects in R2.

LEMMA 47.1.7 [Sha91]

Let R be a finite set of objects in R2, each bounded by a closed Jordan curve, and
with union complexity κR(·). Further, each intersection point in the arrangement of
R is defined by a constant number of objects of R. Then the shallow-cell complexity

of the dual set system induced by R is bounded by ϕR∗(m) = O
(κR(m)

m

)
.

Table 47.1.1 states the shatter function as well as the shallow-cell complexity
of some commonly used set systems. Some of these bounds are derived from the
above two lemmas using known bounds on union complexity of geometric objects
(e.g., pseudo-disks [BPR13], fat triangles [ABES14]).

A packing lemma. A key combinatorial statement at the heart of many of the
results in this chapter is inspired by packing properties of geometric objects. It
was first proved for the primal set system induced by half-spaces in Rd by ge-
ometric techniques [CW89]; the following more general form was first shown by
Haussler [Hau95]2 (see [Mat99, Chapter 5.3] for a nice exposition of this result).

2The theorem as stated in [Hau95] originally required that VC-dim(P) ≤ d. It was later ver-
ified that the proof also works with the assumption of polynomially bounded shatter functions;
see [Mat95] for details.



Chapter 47: ε-approximations and ε-nets 1245

LEMMA 47.1.8 [Hau95]

Let (X,P), |X| = n, be a δ-separated set system with δ ≥ 1 and πP(m) = O(md)

for some constant d > 1. Then |P| ≤ e (d+ 1)
(

2en
δ

)d
= O

((
n
δ

)d)
. Furthermore,

this bound is asymptotically tight.

A strengthening of this statement, for specific values of δ, was studied for
some geometric set systems in [PR08, MR14], and for any δ ≥ 1 for the so-called
Clarkson-Shor set systems in [Ezr16, DEG16]. This was then generalized in terms
of the shallow-cell complexity of a set system to give the following statement.

LEMMA 47.1.9 [Mus16]

Let (X,P), |X| = n, be a δ-separated set system with πP(m) = O(md) for some
constant d > 1, and with shallow-cell complexity ϕP(·, ·). If |P | ≤ k for all P ∈ P,
then |P| ≤ O

(
n
δ · ϕP( 4dn

δ , 24dk
δ )
)
.

A matching lower-bound for Clarkson-Shor set systems was given in [DGJM17].

47.2 EPSILON-APPROXIMATIONS

Given a set system (X,R) and a set A ⊆ X, a set R ∈ R is well-represented in A if
|R|
|X| ≈

|R∩A|
|A| . Intuitively, a set A ⊆ X is an ε-approximation for R if every R ∈ R

is well-represented in A; the parameter ε captures quantitatively the additive error

between these two quantities. In this case the value |R∩A||A| · |X| is a good estimate

for |R|. As an example, suppose that X is a finite set of points in the plane, and
let A be an ε-approximation for the primal set system on X induced by half-spaces.

Then given a query half-space h, one can return |h∩A||A| ·|X| as an estimate for |h∩X|.
If |A| � |X|, computing this estimate is more efficient than computing |h ∩X|.

GLOSSARY

ε-Approximation: Given a finite set system (X,R), and a parameter 0 ≤ ε ≤ 1,
a set A ⊆ X is called an ε-approximation if, for each R ∈ R,∣∣∣∣ |R||X| − |R ∩A||A|

∣∣∣∣ ≤ ε.
Sensitive ε-approximation: Given a set system (X,R) and a parameter 0 <
ε ≤ 1, a set A ⊆ X is a sensitive ε-approximation if for each R ∈ R,∣∣∣∣ |R||X| − |R ∩A||A|

∣∣∣∣ ≤ ε

2

(√
|R|
|X|

+ ε

)
.

Relative (ε, δ)-approximation: Given a set system (X,R) and parameters 0 <
δ, ε ≤ 1, a set A ⊆ X is a relative (ε, δ)-approximation if for each R ∈ R,∣∣∣∣ |R||X| − |R ∩A||A|

∣∣∣∣ ≤ max
{
δ · |R|
|X|

, δ · ε
}
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Discrepancy: Given a set system (X,R), and a two-coloring χ : X → {−1, 1},
define the discrepancy of R ∈ R with respect to χ as discχ(R) =

∣∣∑
p∈R χ(p)

∣∣,
and the discrepancy of R with respect to χ as discχ(R) = maxR∈R discχ(R).
The discrepancy of (X,R) is disc(R) = minχ:X→{−1,1} discχ(R).

EPSILON-APPROXIMATIONS AND DISCREPANCY

When no other constraints are known for a given set system (X,R), the following
is the currently best bound on the sizes of ε-approximations for R.

THEOREM 47.2.1 [Cha00]

Given a finite set system (X,R) and a parameter 0 < ε ≤ 1, an ε-approximation
for (X,R) of size O

(
1
ε2 log |R|

)
can be found in deterministic O

(
|X| · |R|

)
time.

If VC-dim(R) = d, the shatter function πR(m) for (X,R) is bounded by O(md)
(Lemma 47.1.1). In this case, |R| = O

(
|X|d

)
, and Theorem 47.2.1 guarantees an

ε-approximation of size at most O
(
d
ε2 log |X|

)
. An influential idea originating in the

work of Vapnik and Chervonenkis [VC71] is that for any set system (X,R) with
VC-dim(R) ≤ d, one can construct an ε-approximation of R by uniformly sampling

a subset A ⊆ X of size O
(d log 1

ε

ε2

)
. Remarkably, this gives a bound on sizes of ε-

approximations which are independent of |X| or |R|. To get an idea behind the
proof, it should be first noted that the factor of log |R| in Theorem 47.2.1 comes
from applying union bound to a number of failure events, one for each set in R.
The key idea in the proof of [VC71], called symmetrization, is to “cluster” failure
events based on comparing the random sample A with a second sample (sometimes
called a ghost sample in learning theory literature; see [DGL96]). Together with
later work which removed the logarithmic factor, one arrives at the following.

THEOREM 47.2.2 [VC71, Tal94, LLS01]

Let (X,R) be a finite set system with πR(m) = O(md) for a constant d ≥ 1, and
0 < ε, γ < 1 be given parameters. Let A ⊆ X be a subset of size

c ·

(
d

ε2
+

log 1
γ

ε2

)

chosen uniformly at random, where c is a sufficiently large constant. Then A is an
ε-approximation for (X,R) with probability at least 1− γ.

The above theorem immediately implies a randomized algorithm for comput-
ing approximations. There exist near-linear time deterministic algorithms for con-
structing ε-approximations of size slightly worse than the above bound; see [STZ06]
for algorithms for computing ε-approximations in data streams.

THEOREM 47.2.3 [CM96]

Let (X,R) be a set system with VC-dim(R) = d, and 0 < ε ≤ 1
2 be a given param-

eter. Assume that given any finite Y ⊆ X, all the sets in R|Y can be computed ex-
plicitly in time O

(
|Y |d+1

)
. Then an ε-approximation for (X,R) of size O

(
d
ε2 log d

ε

)
can be computed deterministically in O

(
d3d
)(

1
ε2 log d

ε

)d|X| time.

Somewhat surprisingly, it is possible to show the existence of ε-approximations
of size smaller than that guaranteed by Theorem 47.2.2. Such results are usually
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established using a fundamental relation between the notions of approximations
and discrepancy: assume |X| is even and let χ : X → {−1,+1} be any two-coloring
of X. For any R ⊆ X, let R+ and R− denote the subsets of R of the two colors,

and w.l.o.g., assume that |X+| = |X|
2 + t and |X−| = |X|

2 − t for some integer t ≥ 0.

Assuming that X ∈ R, we have
∣∣|X+| − |X−|

∣∣ ≤ discχ(R), and so t ≤ discχ(R)
2 .

Take A to be any subset of X+ of size |X|2 . Then for any R ∈ R,

∣∣|R+| − |R−|
∣∣ =

∣∣|R+| − (|R| − |R+|)
∣∣ ≤ discχ(R) =⇒

∣∣∣|R+| − |R|
2

∣∣∣ ≤ discχ(R)

2
.

As |R ∩A| ≥ |R+| − t, this implies that
∣∣∣|R ∩A| − |R|2

∣∣∣ ≤ discχ(R). Thus

∣∣∣ |R||X| − |R ∩A||A|

∣∣∣ ≤ ∣∣∣ |R||X| −
|R|
2 ± discχ(R)

|X|
2

∣∣∣ ≤ 2 · discχ(R)

|X|
,

and we arrive at the following.

LEMMA 47.2.4 [MWW93]

Let (X,R) be a set system with X ∈ R, and let χ : X → {+1,−1} be any two-

coloring of X. Then there exists a set A ⊂ X, with |A| = d |X|2 e, such that A is an

ε-approximation for (X,R), with ε =
2·discχ(R)
|X| .

The following simple observation on ε-approximations is quite useful.

OBSERVATION 47.2.5 [MWW93]

If A is an ε-approximation for (X,R), then any ε′-approximation for (A,R|A) is
an (ε+ ε′)-approximation for (X,R).

Given a finite set system (X,R) with X ∈ R, put X0 = X, and compute a se-

quence X1, X2, . . . , Xt, where Xi ⊆ Xi−1 satisfies |Xi| =
⌈
|Xi−1|

2

⌉
, and is computed

from a two-coloring of (Xi−1,R|Xi−1
) derived from Lemma 47.2.4. Assume that Xi

is an εi-approximation for (Xi−1,R|Xi−1
). Then Observation 47.2.5 implies that Xt

is a ε-approximation for (X,R) with ε =
∑t
i=1 εi. The next statement follows by

setting the parameter t to be as large as possible while ensuring that
∑t
i=1 εi ≤ ε.

LEMMA 47.2.6 [MWW93]

Let (X,R) be a finite set system with X ∈ R, and let f(·) be a function such that
disc

(
R|Y

)
≤ f

(
|Y |
)

for all Y ⊆ X. Then, for every integer t ≥ 0, there exists an
ε-approximation A for (X,R) with |A| = d n2t e and

ε ≤ 2

n

(
f(n) + 2f

(⌈n
2

⌉)
+ · · ·+ 2tf

(⌈ n
2t

⌉))
.

In particular, if there exists a constant c > 1 such that we have f(2m) ≤ 2
cf(m)

for all m ≥ d n
2t
e, then ε = O

(f(d n2t e)2t
n

)
.

Many of the currently best bounds on ε-approximations follow from applications
of Lemma 47.2.6; e.g., the existence of ε-approximations of size O

(
1
ε2 log 1

ε

)
for set
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systems (X,R) with πR(m) = O(md) (for some constant d > 1) follows immediately
from the fact that for such R, we have disc(R|Y ) = O

(√
|Y | log |Y |

)
. The next two

theorems, from a seminal paper of Matoušek, Welzl, and Wernisch [MWW93], were
established by deriving improved discrepancy bounds (which turn out to be based
on Lemma 47.1.8), and then applying Lemma 47.2.6.

THEOREM 47.2.7 [MWW93, Mat95]

Let (X,R) be a finite set system with the shatter function πR(m) = O
(
md
)
, where

d > 1 is a fixed constant. For any 0 < ε ≤ 1, there exists an ε-approximation for

R of size O

(
1

ε2−
2
d+1

)
.

The above theorem relies on the existence of low discrepancy colorings, whose
initial proof was non-algorithmic (using the “entropy method”). However, recent
work by Bansal [Ban12] and Lovett and Meka [LM15] implies polynomial time
algorithms for constructing such low discrepancy colorings and consequently ε-
approximations whose sizes are given by Theorem 47.2.7; see [Ezr16, DEG16].

Improved bounds on approximations are also known in terms of the shatter
function of the set system dual to (X,R).

THEOREM 47.2.8 [MWW93]

Let (X,R) be a finite set system and 0 < ε ≤ 1 be a given parameter. Suppose
that for the set system (X∗,R∗) dual to (X,R), we have πR∗(m) = O

(
md
)
, where

d > 1 is a constant independent of m. Then there exists an ε-approximation for R

of size O

(
1

ε2−
2
d+1

(
log

1

ε

)1− 1
d+1

)
.

Theorems 47.2.7 and 47.2.8 yield the best known bounds for several geomet-
ric set systems. For example, the shatter function (see Table 47.1.1) of the pri-
mal set system induced by half-spaces in R2 is O(m2), and thus one obtains ε-
approximations for it of size O

(
1
ε4/3

)
from Theorem 47.2.7. For the primal set

system induced by disks in R2, the shatter function is bounded by Θ(m3); Theo-
rem 47.2.7 then implies the existence of ε-approximations of size O

(
1
ε3/2

)
. In this

case, it turns out that Theorem 47.2.8 gives a better bound: the shatter function
of the dual set system is bounded by O(m2), and thus there exist ε-approximations

of size O
(

1
ε4/3

(log 1
ε )

2
3

)
.

Table 47.2.1 states the best known bounds for some common geometric set
systems. Observe that for the primal set system induced by axis-parallel rectangles
in Rd, there exist ε-approximations of size near-linear in 1

ε .

RELATIVES OF EPSILON-APPROXIMATIONS

It is easy to see that a sensitive ε-approximation is an ε-approximation and an ε′-net,
for ε′ > ε2 (see the subsequent section for the definition of ε-nets) simultaneously.
This notion was first studied by Brönnimann et al. [BCM99]. The following result
improves slightly on their bounds.
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TABLE 47.2.1 Sizes of ε-approximations for geometric set systems

(multiplicative constants omitted for clarity).

Objects SETS UPPER-BOUND

Intervals Primal 1
ε

Half-spaces in Rd Primal/Dual 1

ε
2− 2

d+1

[MWW93, Mat95]

Balls in Rd Primal 1

ε
2− 2

d+1

(log 1
ε
)
1− 1

d+1 [MWW93]

Balls in Rd Dual 1

ε
2− 2

d+1

[MWW93, Mat95]

Axis-par. rect. in Rd Primal 1
ε
· (log2d 1

ε
) · logcd (log 1

ε
) [Phi08]

THEOREM 47.2.9 [BCM99, HP11]

Let (X,R) be a finite system with VC-dim(R) ≤ d, where d is a fixed constant. For
a given parameter 0 < ε ≤ 1, let A ⊆ X be a subset of size

c · d
ε2

log
d

ε

chosen uniformly at random, where c > 0 is an absolute constant. Then A is
a sensitive ε-approximation for (X,R) with probability at least 1

2 . Furthermore,
assuming that given any Y ⊆ X, all the sets in R|Y can be computed explicitly in
time O

(
|Y |d+1

)
, a sensitive ε-approximation of size O

(
d
ε2 log d

ε

)
can be computed

deterministically in time O(d3d) · 1
ε2d

(log d
ε )d · |X|.

On the other hand, a relative (ε, δ)-approximation is both a δ-approximation
and an ε′-net, for any ε′ > ε. It is easy to see that a (ε · δ)-approximation is a
relative (ε, δ)-approximation. Thus, using Theorem 47.2.2, one obtains a relative
(ε, δ)-approximation of size O

(
d

ε2·δ2
)
. This bound can be improved to the following.

THEOREM 47.2.10 [LLS01, HPS11]

Let (X,R) be a finite set system with shatter function πR(m) = O(md) for some
constant d, and 0 < δ, ε, γ ≤ 1 be given parameters. Let A ⊆ X be a subset of size

c ·

(
d log 1

ε

εδ2
+

log 1
γ

εδ2

)
chosen uniformly at random, where c > 0 is an absolute constant. Then A is a
relative (ε, δ)-approximation for (X,R) with probability at least 1− γ.

A further improvement is possible on the size of relative (ε, δ)-approximations
for the primal set system induced by half-spaces in R2 [HPS11] and R3 [Ezr16],
as well as other bounds with a better dependency on 1

δ (at the cost of a worse
dependence on 1

ε ) for systems with small shallow-cell complexity [Ezr16, DEG16].

47.3 APPLICATIONS OF EPSILON-APPROXIMATIONS

One of the main uses of ε-approximations is in constructing a small-sized repre-
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sentation or “sketch” A of a potentially large set of elements X with respect to an
underlying set system R. Then data queries from R on X can instead be performed
on A to get provably approximate answers. Suppose that we aim to preprocess a
finite set X of points in the plane, so that given a query half-space h, we can ef-
ficiently return an approximation to |h ∩ X|. For this data structure, one could
use an ε-approximation A ⊆ X for the set system (X,R) induced by the set of

all half-spaces in R2. Then given a query half-space h, simply return |h∩A||A| · |X|;
this answer differs from |h ∩X| by at most ε · |X|. If instead A is a relative (δ, ε)-
approximation, then our answer differs from the true answer by at most δ · |h∩X|,
provided |h ∩ X| ≥ ε|X|. Two key properties of approximations useful in appli-

cations are (a) |R∩A||A| approximates |R∩X||X| simultaneously for each R ∈ R, and (b)

ε-approximations exist of size independent of |X| or |R|. This enables the use of
ε-approximations for computing certain estimators on geometric data; e.g., a com-
binatorial median q ∈ Rd for a point set X can be approximated by the one for an
ε-approximation, which can then be computed in near-linear time.

GLOSSARY

Product set systems: Given finite set systems Σ1 = (X1,R1) and Σ2 = (X2,R2),
the product system Σ1 ⊗ Σ2 is defined as the system (X1 × X2, T ), where
T consists of all subsets T ⊆ X1 × X2 for which the following hold: (a) for
any x2 ∈ X2, {x ∈ X1 : (x, x2) ∈ T} ∈ R1, and (b) for any x1 ∈ X1,
{x ∈ X2 : (x1, x) ∈ T} ∈ R2.

Centerpoints: Given a set X of n points in Rd, a point q ∈ Rd is said to be
a centerpoint for X if any half-space containing q contains at least n

d+1 points
of X; for ε > 0, q is said to be an ε-centerpoint if any half-space containing q
contains at least (1−ε) n

d+1 points of X. By Helly’s theorem, a centerpoint exists
for all point sets.

Shape fitting: A shape fitting problem consists of the triple (Rd,F ,dist), where
F is a family of non-empty closed subsets (shapes) in Rd and dist : Rd×Rd → R+

is a continuous, symmetric, positive-definite (distance) function. The distance of
a point p ∈ Rd from the shape F ∈ F is defined as dist(p, F ) = minq∈F dist(p, q).
A finite subset P ⊂ Rd defines an instance of the shape fitting problem, where
the goal is to find a shape F ∗ = arg minF∈F

∑
p∈P dist(p, F ).

ε-Coreset: Given an instance P ⊂ Rd of a shape fitting problem (Rd,F ,dist),
and an ε ∈ (0, 1), an ε-coreset of size s is a pair (S,w), where S ⊆ P , |S| = s,
and w : S → R is a weight function such that for any F ∈ F :∣∣∣∑

p∈P
dist(p, F )−

∑
q∈S

w(q) · dist(q, F )
∣∣∣ ≤ ε ∑

p∈P
dist(p, F ).

APPROXIMATING GEOMETRIC INFORMATION

One of the main uses of ε-approximations is in the design of efficient approximation
algorithms for combinatorial queries on geometric data. An illustrative example
is that of computing a centerpoint of a finite point set X ⊂ Rd; the proof of the
following lemma is immediate.
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LEMMA 47.3.1 [Mat91a]

Let X ⊂ Rd be a finite point set, 0 ≤ ε < 1 be a given parameter, and A be an
ε-approximation for the primal set system induced by half-spaces in Rd on X. Then
any centerpoint for A is an ε-centerpoint for X.

We now describe a more subtle application in the same spirit, in fact one of the
motivations for considering products of set systems, first considered in Brönnimann,
Chazelle, and Matoušek [BCM99]. For i = 1, 2, let Xi be a finite set of lines in
R2 such that X1 ∪ X2 is in general position, and let Ri be the family of subsets
of Xi that contains every subset X ′ ⊆ Xi such that X ′ is precisely the subset
of lines intersected by some line segment. The VC-dimension of the set system
Σi = (Xi,Ri) is bounded by some constant. We can identify (r, b) ∈ X1 ×X2 with
the intersection point of r and b.

Considering the product set system Σ1 ⊗ Σ2 = (X1 × X2, T ), it is easy to
see that for any convex set C, the set of intersection points between lines of X1

and X2 that lie within C is an element of T . The VC-dimension of Σ1 ⊗ Σ2 is in
fact unbounded. Indeed, notice that any matching

{
(r1, b1), (r2, b2), . . . , (rk, bk)

}
⊂

X1 × X2 is shattered by Σ1 ⊗ Σ2. Nevertheless, it is possible to construct small
ε-approximations for this set system:

LEMMA 47.3.2 [Cha93, BCM99]

For i = 1, 2 and 0 ≤ εi ≤ 1, let Ai be an εi-approximation for the finite set system
Σi = (Xi,Ri). Then A1 ×A2 is an (ε1 + ε2)-approximation for Σ1 ⊗ Σ2.

We can apply this general result on Σ1⊗Σ2 to estimate V (X1×X2, C)—defined
to be the number of intersections between lines in X1 and X2 that are contained
in a query convex set C—by |V (A1×A2,C)|·|X1|·|X2|

|A1|·|A2| . Lemma 47.3.2 implies that the

error of this estimate can be bounded by∣∣∣V (X1 ×X2, C)

|X1| · |X2|
− V (A1 ×A2, C)

|A1| · |A2|

∣∣∣ ≤ ε1 + ε2.

The notion of a product of set systems and Lemma 47.3.2 can be generalized to
more than two set systems [BCM99, Cha00].

SHAPE FITTING AND CORESETS

Consider the scenario where the shape family F contains, as its elements, all possible
k-point subsets of Rd; that is, each F ∈ F is a subset of Rd consisting of k points. If
the function dist(·, ·) is the Euclidean distance, then the corresponding shape fitting
problem (Rd,F ,dist) is the well-known k-median problem. If dist(·, ·) is the square
of the Euclidean distance, then the shape fitting problem is the k-means problem.
If the shape family F contains as its elements all hyperplanes in Rd, and dist(·, ·)
is the Euclidean distance, then the corresponding shape fitting problem asks for
a hyperplane that minimizes the sum of the Euclidean distances from points in
the given instance P ⊂ Rd. The shape fitting problem as defined is just one of
many versions that have been considered. In another well-studied version, given an
instance P ⊂ Rd, the goal is to find a shape that minimizes maxp∈P dist(p, F ).

Given an instance P , and a parameter 0 < ε < 1, an ε-coreset (S,w) “approxi-
mates” P with respect to every shape F in the given family F . Such an ε-coreset
can be used to find a shape that approximately minimizes

∑
p∈P dist(p, F ): one
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simply finds a shape that minimizes
∑
q∈S w(q) · dist(q, F ). For this approach to

be useful, the size of the coreset needs to be small as well as efficiently computable.
Building on a long sequence of works, Feldman and Langberg [FL11] (see also
Langberg and Schulman [LS10]) showed the existence of a function f : R→ R such
that an ε-approximation for a carefully constructed set system associated with the
shape fitting problem (Rd,F ,dist) and instance P yields an f(ε)-coreset for the
instance P . For many shape fitting problems, this method often yields coresets
with size guarantees that are not too much worse than bounds via more specialized
arguments. We refer the reader to the survey [BLK17] for further details.

47.4 EPSILON-NETS

While an ε-approximation of a set system (X,R) aims to achieve equality in the
proportion of points picked from each set, often only a weaker threshold property
is needed. A set N ⊆ X is called an ε-net for R if it has a non-empty intersection
with each set of R of cardinality at least ε|X|. For all natural geometric set sys-
tems, trivial considerations imply that any such N must have size Ω( 1

ε ): one can
always arrange the elements of X into disjoint b 1

ε c groups, each with at least ε|X|
elements, such that the set consisting of the elements in each group is induced by
the given geometric family. While ε-nets form the basis of many algorithmic and
combinatorial tools in discrete and computational geometry, here we present only
two applications, one combinatorial and one algorithmic.

GLOSSARY

ε-Nets: Given a finite set system (X,R) and a parameter 0 ≤ ε ≤ 1, a set N ⊆ X
is an ε-net for R if N ∩R 6= ∅ for all sets R ∈ R with |R| ≥ ε|X|.

Weak ε-nets: Given a set X of points in Rd and family of objects R, a set
Q ⊆ Rd is a weak ε-net with respect to R if Q ∩R 6= ∅ for all R ∈ R containing
at least ε|X| points of X. Note that in contrast to ε-nets, we do not require Q
to be a subset of X.

Semialgebraic sets: Semialgebraic sets are subsets of Rd obtained by taking
Boolean operations such as unions, intersections, and complements of sets of the
form {x ∈ Rd | g(x) ≥ 0}, where g is a d-variate polynomial in R [x1, . . . , xd].

ε-Mnets: Given a set system (X,R) and a parameter 0 ≤ ε ≤ 1, a collection of
sets M = {X1, . . . , Xt} on X is an ε-Mnet of size t if |Xi| = Θ(ε|X|) for all i,
and for any set R ∈ R with |R| ≥ ε|X|, there exists an index j ∈ {1, . . . , t} such
that Xj ⊆ R.

EPSILON-NETS FOR ABSTRACT SET SYSTEMS

The systematic study of ε-nets started with the breakthrough result of Haussler and
Welzl [HW87], who first showed the existence of ε-nets whose size was a function
of the parameter ε and the VC-dimension. A different framework, with somewhat
similar ideas and consequences, was independently introduced by Clarkson [C87].
The result of Haussler and Welzl was later improved upon and extended in sev-
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eral ways: the precise dependency on VC-dim(R) was improved, the probabilistic
proof in [HW87] was de-randomized to give a deterministic algorithm, and finer
probability estimates were derived for randomized constructions of ε-nets.

THEOREM 47.4.1 [HW87, KPW92]

Let (X,R) be a finite set system, such that πR(m) = O(md) for a fixed constant d,
and let ε > 0 be a sufficiently small parameter. Then there exists an ε-net for R
of size

(
1 + o(1)

)
d
ε log 1

ε . Furthermore, a uniformly chosen random sample of X of
the above size is an ε-net with constant probability.

An alternate proof, though with worse constants, follows immediately from ε-
approximations: use Theorem 47.2.2 to compute an ε

2 -approximation A for (X,R),

where |A| = O( dε2 ). Observe that an ε
2 -net for (A,R|A) is an ε-net for (X,R),

as for each R ∈ R with |R| ≥ ε|X|, we have
∣∣ |R|
|X| −

|R∩A|
|A|

∣∣ ≤ ε
2 and so |R∩A||A| ≥

ε
2 . Now a straightforward random sampling argument with union bound (or an
iterative greedy construction) gives an ε

2 -net for R|A, of total size O
(

1
ε log |R|A|

)
=

O
(
d
ε log d

ε

)
.

THEOREM 47.4.2 [AS08]

Let (X,R) be a finite set system with πR(m) = O(md) for a constant d, and 0 <
ε, γ ≤ 1 be given parameters. Let N ⊆ X be a set of size

max
{4

ε
log

2

γ
,

8d

ε
log

8d

ε

}
chosen uniformly at random. Then N is an ε-net with probability at least 1− γ.

THEOREM 47.4.3 [BCM99]

Let (X,R) be a finite set system such that VC-dim(R) = d, and ε > 0 a given pa-
rameter. Assume that for any Y ⊆ X, all sets in R|Y can be computed explicitly in
time O

(
|Y |d+1

)
. Then an ε-net of size O

(
d
ε log d

ε

)
can be computed deterministically

in time O(d3d) · ( 1
ε log 1

ε )d · |X|.
It was shown in [KPW92] that for any 0 < ε ≤ 1, there exist ε-nets of size

max
{

2, d 1
ε e − 1

}
for any set system (X,R) with VC-dim(R) = 1. For the case

when VC-dim(R) ≥ 2, the quantitative bounds of Theorem 47.4.1 are near-optimal,
as the following construction shows. For a given integer d ≥ 2 and a real ε > 0,
set n = Θ

(
1
ε log 1

ε

)
and construct a random εn-uniform set system by choosing

Θ
(

1
εd+γ−1

)
sets uniformly from all possible sets of size εn, where γ is sufficiently

small. It can be shown that, with constant probability, this set system has VC-
dimension at most d and any ε-net for it must have large size.

THEOREM 47.4.4 [KPW92]

Given any ε > 0 and integer d ≥ 2, there exists a set system (X,R) such that
VC-dim(R) ≤ d and any ε-net for R has size at least

(
1− 2

d + 1
d(d+2) +o(1)

)
d
ε log 1

ε .

Over the years it was realized that the shatter function of a set system is too crude
a characterization for purposes of ε-nets, and that the existence of smaller sized
ε-nets can be shown if one further knows the distribution of sets of any fixed size in
the set system. This was first understood for the case of geometric dual set systems
in R2 using spatial partitioning techniques, initially in the work of Clarkson and
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Varadarajan [CV07] and then in its improvements by Aronov et al. [AES10]. Later
it was realized by Varadarajan [Var09, Var10] and in its improvement by Chan et
al. [CGKS12] that one could avoid spatial partitioning altogether, and get improved
bounds on sizes of ε-nets in terms of the shallow-cell complexity of a set system.

THEOREM 47.4.5 [Var10, CGKS12]

Let (X,R) be a set system with shallow-cell complexity ϕR(·), where ϕR(n) = O(nd)
for some constant d. Let ε > 0 be a given parameter. Then there exists an ε-net3

for R of size O
(

1
ε logϕR( 1

ε )
)
. Furthermore, such an ε-net can be computed in

deterministic polynomial time.

We sketch a simple proof of the above theorem due to Mustafa et al. [MDG17].
For simplicity, assume that |R| = Θ(εn) for all R ∈ R. Let P ⊆ R be a maximal εn2 -
separated system, of size |P| = O

(
1
εϕR( 1

ε )
)

by Lemma 47.1.9. By the maximality
of P, for each R ∈ R there exists a PR ∈ P such that |R ∩ PR| ≥ εn

2 , and thus
a set N which is a 1

2 -net for each of the |P| set systems (P,R|P ), P ∈ P, is
an ε-net for R. Construct the set N by picking each point of X uniformly with
probability Θ

(
1
εn logϕR( 1

ε )
)
. For each P ∈ P, P ∩N is essentially a random subset

of size Θ
(

logϕR( 1
ε )
)
, and so by Theorem 47.4.2, N fails to be a 1

2 -net for R|P
with probability O

(
1

ϕR(1/ε)

)
. By linearity of expectation, N is a 1

2 -net for all but

expected O
(

1
ϕR(1/ε)

)
· |P| = O( 1

ε ) sets of P, and for those a O(1)-size 1
2 -net can be

constructed individually (again by Theorem 47.4.2) and added to N , resulting in
an ε-net of expected size Θ

(
1
ε logϕR( 1

ε )
)
.

Furthermore, this bound can be shown to be near-optimal by generalizing the
random construction used in Theorem 47.4.4.

THEOREM 47.4.6 [KMP16]

Let d be a fixed positive integer and let ϕ : N→ R+ be any submultiplicative func-
tion4 with ϕ(n) = O(nd) for some constant d. Then, for any ε > 0, there exists
a set system (X,R) with shallow-cell complexity ϕ(·), and for which any ε-net has
size Ω

(
1
ε logϕ( 1

ε )
)
.

On the other hand, there are examples of natural set systems with high shallow-
cell complexity and yet with small ε-nets [Mat16]: for a planar undirected graph
G = (V,E), let R be the set system on V induced by shortest paths in G; i.e., for
every pair of vertices vi, vj ∈ V , the set Ri,j ∈ R consists of the set of vertices on
the shortest path between vi and vj . Further, assume that these shortest paths are
unique for every pair of vertices. Then (V,R) has ε-nets of size O

(
1
ε

)
[KPR93], and

yet ϕR(n) = Ω(n) can be seen, e.g., by considering the star graph. As we will see in
the next part, the primal set system induced by axis-parallel rectangles is another
example with high shallow-cell complexity and yet small ε-nets.

The proof in [Var10, CGKS12] presents a randomized method to construct an ε-
netN such that each element x ∈ X belongs toN with probabilityO

(
1

ε|X| logϕR( 1
ε )
)
.

This implies the following more general result.

3The bound in these papers is stated as O
(
1
ε

logϕR(|X|)
)
, which does not require the assumption

that ϕR(n) = O(nd) for some constant d. However, standard techniques using ε-approximations
imply the stated bound; see [Var09, KMP16] for details.
4A function ϕ : R+ → R+ is called submultiplicative if (a) ϕα(n) ≤ ϕ(nα) for any 0 < α < 1 and
a sufficiently large positive n, and (b) ϕ(x)ϕ(y) ≥ ϕ(xy) for any sufficiently large x, y ∈ R+.
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COROLLARY 47.4.7 [Var10, CGKS12]

Let (X,R) be a set system with shallow-cell complexity ϕR(·), and ε > 0 be a given
parameter. Further let w : X → R+ be weights on the elements of X, with W =∑
x∈X w(x). Then there exists an ε-net for R of total weight O

(
W
ε|X| logϕR( 1

ε )
)
.

The notion of ε-Mnets of a set system (X,R), first defined explicitly and studied
in Mustafa and Ray [MR14], is related to both ε-nets (any transversal of the sets
in an ε-Mnet is an ε-net for R) as well as the so-called Macbeath regions in convex
geometry (we refer the reader to the surveys [BL88, Bár07] for more details on
Macbeath regions, and to Mount et al. [AFM17] for some recent applications).
The following theorem concerns ε-Mnets with respect to volume for the primal set
system induced by half-spaces.

THEOREM 47.4.8 [BCP93]

Given a compact convex body K in Rd and a parameter 0 < ε < 1
(2d)2d

, let R be

the primal set system on K induced by half-spaces in Rd, equipped with Lebesgue
measure. There exists an ε-Mnet for R of size O

(
1

ε
1− 2

d+1

)
. Furthermore, the sets

in the ε-Mnet are pairwise-disjoint convex bodies lying in K.

The role of shallow-cell complexity carries over to the bounds on ε-Mnets; the
proof of the following theorem uses the packing lemma (Lemma 47.1.9).

THEOREM 47.4.9 [DGJM17]

Given a set X of points in Rd, let R be the primal set system on X induced
by a family of semialgebraic sets in Rd with shallow-cell complexity ϕR(·), where
ϕR(n) = O(nt) for some constant t. Let ε > 0 be a given parameter. Then there
exists an ε-Mnet for R of size O

(
1
εϕR( 1

ε )
)
, where the constants in the asymptotic

notation depend on the degree and number of inequalities defining the semialgebraic
sets.

Together with bounds on shallow-cell complexity for half-spaces (Lemma 47.1.6),
this implies the existence of ε-Mnets of size O

(
1

εbd/2c

)
for the primal set sys-

tem induced by half-spaces on a finite set of points in Rd. Further, as observed
in [DGJM17], Theorem 47.4.9 implies Theorem 47.4.5 for semialgebraic set sys-
tems by a straightforward use of random sampling and the union bound.

EPSILON-NETS FOR GEOMETRIC SET SYSTEMS

We now turn to set systems, both primal and dual, induced by geometric objects
in Rd. The existence of ε-nets of size O( 1

ε log 1
ε ) for several geometric set systems

follow from the early breakthroughs of Clarkson [C87] and Clarkson and Shor [CS89]
via the use of random sampling together with spatial partitioning. For the case of
primal and dual set systems, it turns out that all known asymptotic bounds on
sizes of ε-nets follow from Theorem 47.4.5 and bounds on shallow-cell complexity
(Table 47.1.1). The relevance of shallow-cell complexity for ε-nets was realized
after considerable effort was spent on inventing a variety of specialized techniques
for constructing ε-nets for geometric set systems. These techniques and ideas have
their own advantages, often yielding algorithms with low running times and low
constants hidden in the asymptotic notation. Table 47.4.1 lists the most precise
upper bounds known for many natural geometric set systems; all except one are,
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asymptotically, direct consequences of Theorem 47.4.5. The exception is the case
of the primal set system induced by the family R of axis-parallel rectangles in the
plane, which have shallow-cell complexity ϕR(n) = n, as for any integer n there
exist a set X of n points in R2 such that the number of subsets of X of size at most
two induced by R is Θ(n2). However, Aronov et al. [AES10] showed that there
exists another family of objects5 R′ with ϕR′(n) = O(log n), such that an ε

2 -net for
the primal set system on X induced by R′ is an ε-net for the one induced by R;
now ε-nets of size O

(
1
ε log log 1

ε

)
for the primal set system induced by R follow by

applying Theorem 47.4.5 on R′.
Precise sizes of ε-nets for some constant values of ε have been studied for the

primal set system induced by axis-parallel rectangles and disks in R2 [AAG14]. It
is also known that the visibility set system for a simple polygon P and a finite set
of guards G—consisting of all sets Sp, where Sp is the set of points of G visible
from p ∈ P—admits ε-nets of size O

(
1
ε log log 1

ε

)
[KK11]. In the case where the

underlying base set is Rd, bounds better than those following from Theorem 47.4.5
are known from the theory of geometric coverings.

THEOREM 47.4.10 [R57]

Let K ⊂ Rd be a bounded convex body, and let Q = [−r, r]d be a cube of side-length
2r, where r ∈ R+. Let R be the primal set system induced by translates of K
completely contained in Q. Then there exists a hitting set P ⊂ Q for R of size at
most

rd

vol(K)
· (d ln d+ d ln ln d+ 5d) .

Note that Theorem 47.4.5 cannot be used here, as translates of a convex set have
unbounded VC-dimension and exponential shallow-cell complexity. Furthermore,
even for the case where K is a unit ball in Rd, Theorem 47.4.5 would give a worse

bound of O
(

rd

vol(K) · d
2 log r

)
.

Lower bounds for ε-nets for geometric set systems are implied by the following
connection, first observed by Alon [Alo12], between ε-nets and density version of
statements in Ramsey theory. Given a function f : N+ → N+, let (X,R), |X| = n,
be a set system with the Ramsey-theoretic property that for any X ′ ⊂ X of size
n
2 , there exists a set R ∈ R such that |R| ≥ f(n) and R ⊆ X ′. Then any f(n)

n -
net N for (X,R) must have size at least n

2 , as otherwise the set X \ N of size at
least n

2 would violate the Ramsey property. As n
2 = ω

(
n

f(n)

)
for any monotonically

increasing function f(·) with f(n) → ∞ as n → ∞, this gives a super-linear lower

bound on the size of any f(n)
n -net; the precise lower bound will depend on the

function f(·). Using this relation, Alon [Alo12] showed a super-linear lower bound
for ε-nets for the primal set system induced by lines, for which the corresponding
Ramsey-theoretic statement is the density version of the Hales-Jewett theorem. By
Veronese maps6, this implies a nonlinear bound for ε-nets for the primal set system
induced by half-spaces in R5. Next, Pach and Tardos [PT13] showed that, for any

5Constructed as follows: let l be a vertical line that divides X into two equal-sized subsets, say
X1 and X2; then add to R′ all subsets of X induced by axis-parallel rectangles with one vertical
boundary edges lying on l. Add recursively subsets to R′ for X1 and X2.
6Map each point p : (px, py) ∈ R2 to the point f(p) = (px, py , pxpy , p2x, p

2
y) ∈ R5, and each line

l : ax+ by = c to the half-space f(l) : (−2ac) ·x1 + (−2bc) ·x2 + (2ab) ·x3 +a2 ·x4 + b2 ·x5 ≤ −c2.
Then it can be verified by a simple calculation that a point p ∈ R2 lies on a line l if and only if
the point f(p) ∈ R5 lies in the half-space f(l).
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TABLE 47.4.1 Sizes of ε-nets for both primal (P) and dual (D) set systems (ceil-

ings/floors and lower-order terms are omitted for clarity).

Objects SETS UPPER BOUND LOWER BOUND

Intervals P/D 1
ε

1
ε

Lines, R2 P/D 2
ε

log 1
ε

[HW87] 1
2ε

log1/3 1
ε

log log 1
ε

[BS17]

Half-spaces, R2 P/D 2
ε
− 1 [KPW92] 2

ε
− 2 [KPW92]

Half-spaces, R3 P/D O( 1
ε
) [MSW90] Ω( 1

ε
)

Half-spaces, Rd, d ≥ 4 P/D d
ε

log 1
ε

[KPW92]
bd/2c−1

9
1
ε

log 1
ε

[PT13]
[KMP16]

Disks, R2 P 13.4
ε

[BGMR16] 2
ε
− 2 [KPW92]

Balls, R3 P 2
ε

log 1
ε

Ω( 1
ε
)

Balls, Rd, d ≥ 4 P d+1
ε

log 1
ε

[KPW92]
bd/2c−1

9
1
ε

log 1
ε

[KMP16]

Pseudo-disks, R2 P/D O( 1
ε
) [PR08] Ω( 1

ε
)

Fat triangles, R2 D O( 1
ε

log log∗ 1
ε
) [AES10] Ω( 1

ε
)

Axis-par. rect., R2 D 5
ε

log 1
ε

[HW87] 1
9

1
ε

log 1
ε

[PT13]

Axis-par. rect., R2 P O( 1
ε

log log 1
ε
) [AES10] 1

16
1
ε

log log 1
ε

[PT13]

Union κR(·), R2 D O
( log(ε·κR(1/ε))

ε

)
[AES10] Ω( 1

ε
)

Convex sets, Rd, d ≥ 2 P |X| − ε|X| |X| − ε|X|

ε > 0 and large enough integer n, there exists a set X of n points in R4 such that
any ε-net for the primal set system on X induced by half-spaces must have size at
least 1

9ε log 1
ε ; when 1

ε is a power of two, then it improves to the lower bound of
1
8ε log 1

ε . See Table 47.4.1 for all known lower bounds.

Weak ε-nets. When the net for a given primal geometric set system (X,R)
need not be a subset of X—i.e., the case of weak ε-nets—one can sometimes get
smaller bounds. For example, O( 1

ε ) size weak ε-nets exist for the primal set system
induced by balls in Rd [MSW90]. We outline a different construction than the one
in [MSW90], as follows. Let B be the smallest radius ball containing a set X ′ of at
least ε|X| points of X and no point of the current weak ε-net Q (initially Q = ∅).
Now add a set Q′ ⊆ Rd of O(1) points to Q such that any ball, of radius at least
that of B, intersecting B must contain a point of Q′, and compute a weak ε-net for
X \X ′. Weak ε-nets of size O

(
1
ε log log 1

ε

)
exist for the primal set system induced

by axis-parallel rectangles in Rd, for d ≥ 4 [Ezr10].
The main open question at this time on weak ε-nets is for the primal set system

induced on a set X of n points by the family C of all convex objects in Rd. Note that
if X is in convex position, then any ε-net for this set system must have size at least
(1−ε)n. All currently known upper bounds depend exponentially on the dimension
d. In Alon et al. [ABFK92], a bound of O

(
1
ε2

)
was shown for this problem for d = 2

and O( 1
εd+1 ) for d ≥ 3. This was improved by Chazelle et al. [CEG+95], and then

slightly further via an elegant proof by Matoušek and Wagner [MW04].

THEOREM 47.4.11 [MW04]

Let X be a finite set of points in Rd, and let 0 < ε ≤ 1 be a given parameter.
Then there exists a weak ε-net for the primal set system induced by convex objects
of size O

(
1
εd

loga( 1
ε )
)
, where a = Θ

(
d2 ln(d + 1)

)
. Furthermore, such a net can be

computed in time O
(
n log 1

ε

)
.
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The above theorem—indeed many of the weak ε-net constructions—are based
on the following two ideas. First, for a parameter t that is chosen carefully, construct
a partition P = {X1, . . . , Xt} of X such that (a) |Xi| ≤ dnt e for all i, and (b) for any
integer k ≥ 1, there exists a point set Qk of small size such that any convex object
having non-empty intersection with at least εk sets of P must contain a point of Qk.
Note that Qt is a weak ε-net, as any convex set containing εn points must intersect
at least εn

(n/t) = εt sets. Second, compute recursively a weak ε′-net Q′i for each Xi,

for a suitably determined value of ε′. If a convex set C is not hit by
⋃
Q′i, it contains

at most ε′n
t points from each set of P, and so has non-empty intersection with at

least εn
(ε′n/t) = tε

ε′ sets of P. Then
⋃
Q′i together with Q t

ε′
is a weak ε-net; fixing

the trade-off parameters t, ε′ gives the final bound. Theorem 47.4.11 uses simplicial
partitions for P, and centerpoints of some representative points from each set of P
as the set Qk.

There is a wide gap between the best known upper and lower bounds. Ma-
toušek [Mat02b] showed the existence of a set X of points in Rd such that any

weak 1
50 -net for the set system induced by convex objects on X has size Ω

(
e
√
d

2

)
.

For arbitrary values of ε, the current best lower bound is the following.

THEOREM 47.4.12 [BMN11]

For every d ≥ 2 and every ε > 0, there exists a set X of points in Rd such that
any weak ε-net for the primal set system induced on X by convex objects has size
Ω
(

1
ε logd−1 1

ε

)
.

There is a relation between weak ε-nets induced by convex sets and ε-nets for
the primal set system induced by intersections of half-spaces, though the resulting
size of the weak ε-net is still exponential in the dimension [MR08]. The weak ε-net
problem is closely related to an old (and still open) problem of Danzer and Rogers,
which asks for the area of the largest convex region avoiding a given set of n points
in a unit square (see [PT12] for a history of the problem). Better bounds for
weak ε-nets for primal set systems induced by convex objects are known for special
cases: an upper bound of O

(
1
εα( 1

ε )
)

when X is a set of points in R2 in convex
position [AKN+08]; optimal bounds when ε is a large constant [MR09]; a bound of

O
(

1
ε (log 1

ε )Θ(d2 ln d)
)

when the points lie on a moment curve in Rd [MW04].

47.5 APPLICATIONS OF EPSILON-NETS

As ε-nets capture some properties of random samples with respect to a set sys-
tem, a natural use of ε-nets has been for derandomization; the best deterministic
combinatorial algorithms for linear programming [CM96, Cha16] are derived via
derandomization using ε-nets. Another thematic use originates from the fact that
an ε-net of a set system (X,R) can be viewed as a hitting set for sets in R of size
at least ε|X|, and so is relevant for many types of covering optimization problems;
a recent example is the beautiful work of Arya et al. [AFM12] in approximating a
convex body by a polytope with few vertices. At first glance, the restriction that
an ε-net only guarantees to hit sets of size at least ε|X| narrows its applicability. A
breakthrough idea, with countless applications, has been to first assign multiplici-
ties (or weights) to the elements of X such that all multisets have large size; then
ε-nets can be used to “round” this to get a solution. Lastly, ε-nets can be used for
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constructing spatial partitions that enable the use of divide-and-conquer methods;
indeed, one of the earliest applications introducing ε-nets was by Clarkson [C88]
to construct a spatial partitioning data-structure for answering nearest-neighbor
queries.

SPATIAL PARTITIONING

Consider the set system (H,R) where the base set H is a set of n hyperplanes
in Rd, and R is the set system induced by intersection of simplices in Rd with
H. An ε-net for R consists of a subset H′ such that any simplex intersecting at
least εn hyperplanes of H intersects a hyperplane in H′. This implies that for any
simplex ∆ lying in the interior of a cell in the arrangement of H′, the number of
hyperplanes of H intersecting ∆ is less than εn. One can further partition each cell
in the arrangement of H′ into simplices, leading to the powerful concept of cuttings.
After a series of papers in the 1980s and early 1990s [CF90, Mat91b], the following
is the best result in terms of both combinatorial and algorithmic bounds.

THEOREM 47.5.1 [Cha93]

Let H be a set of n hyperplanes in Rd, and r ≥ 1 a given parameter. Then there
exists a partition of Rd into O(rd) interior-disjoint simplices, such that the interior
of each simplex intersects at most n

r hyperplanes of H. These simplices, together
with the list of hyperplanes intersecting the interior of each simplex, can be found
deterministically in time O(nrd−1).

There are many extensions of such a partition, called a 1
r -cutting, known for

objects other than hyperplanes; see Chapter 28. Here we state just one such result.

THEOREM 47.5.2 [BS95, Pel97]

Let S be a set of n (d−1)-dimensional simplices in Rd and let m = m(S) denote the
number of d-tuples of S having a point in common. Then, for any ε > 0 and any
given parameter r ≥ 1, there exists a 1

r -cutting of S with the number of simplices

at most O

(
r +

mr2

n2

)
for d = 2, and O

(
rd−1+ε +

mrd

nd

)
for d ≥ 3.

Cuttings have found countless applications, both combinatorial and algorith-
mic, for their role in divide-and-conquer arguments. A paradigmatic combinato-
rial use for upper-bounding purposes, initiated in a seminal paper by Clarkson
et al. [CEG+90], is using cuttings to partition Rd into simplices, each of which
forms an independent sub-problem where one can apply a worse—and often purely
combinatorial—bound. The sum of this bound over all simplices together with ac-
counting for interaction on the boundaries of the simplices gives an upper bound.
This remains a key technique for bounding incidences between points and various
geometric objects (see the book [Gut16]), as well as for many Turán-type problems
on geometric configurations (see [MP16] for a recent example). Algorithmically,
cuttings have proven invaluable for divide-and-conquer based methods for point lo-
cation, convex hulls, Voronoi diagrams, combinatorial optimization problems, clus-
tering, range reporting and range searching. An early use was for the half-space
range searching problem, which asks for pre-processing a finite set X of points in
Rd such that one can efficiently count the set of points of X contained in any query
half-space [Mat93b]. The current best data structure [AC09] for the related prob-
lem of reporting points contained in a query half-space is also based on cuttings;
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see Chapter 40.
Finally, we state one consequence of a beautiful result of Guth [Gut15] which

achieves spatial partitioning for more general objects, with a topological approach
replacing the use of ε-nets: given a set H of n k-dimensional flats in Rd and a
parameter r ≥ 1, there exists a nonzero d-variate polynomial P , of degree at most
r, such that each of the O(rd) cells induced by the zero set Z(P ) of P (i.e., each
component of Rd \ Z(P )) intersects O(rk−dn) flats of H. Note that for the case
k = d− 1, this is a “polynomial partitioning” version of Theorem 47.5.1.

ROUNDING FRACTIONAL SYSTEMS

We now present two uses of ε-nets in rounding fractional systems to integral ones—
as before, one will be algorithmic and the other combinatorial. Given a set system
(X,R), the hitting set problem asks for the smallest set Y ⊆ X that intersects all
sets in R. Let OPTR be the size of a minimum hitting set for R. Given a weight
function w : X → R+ with w(x) > 0 for at least one x ∈ X, we say that N ⊆ X is
an ε-net with respect to w(·) if N ∩R 6= ∅ for any R ∈ R such that w(R) ≥ ε ·w(X).
The construction of an ε-net with respect to weight function w(·) can be reduced
to the construction of a regular ε-net for a different set system (X ′,R′); the main
idea is that for each x ∈ X we include multiple “copies” of x in the base set X ′,
with the number of copies being proportional to w(x). Using this reduction, many
of the results on ε-nets carry over to ε-nets with respect to a weight function.

THEOREM 47.5.3 [BG95, Lon01, ERS05]

Given (X,R), assume there is a function f : R+ → N+ such that for any ε > 0 and
weight function w : X → R+, an ε-net of size at most 1

ε · f( 1
ε ) exists with respect to

w(·). Further assume a net of this size can be computed in polynomial time. Then
one can compute a f(OPTR)-approximation to the minimum hitting set for R in
polynomial time, where OPTR is the size of a minimum hitting set for R.

The proof proceeds as follows: to each p ∈ X assign a weight w(p) ∈ [0, 1]
such that the total weight W =

∑
p∈X w(p) is minimized, under the constraint

that w(R) =
∑
p∈R w(p) ≥ 1 for each R ∈ R. Such weights can be computed

in polynomial time using linear programming. Now a 1
W -net (with respect to the

weight function w(·)) is a hitting set for R; crucially, as W ≤ OPTR, this net is
of size at most Wf

(
W
)
≤ OPTR ·f

(
OPTR

)
. In particular, when the set system

has ε-nets of size O( 1
ε ), one can compute a constant-factor approximation to the

minimum hitting set problem; e.g., for the geometric minimum hitting set problem
for points and disks in the plane. Furthermore these algorithms can be implemented
in near-linear time [AP14, BMR15]. When the elements of X have costs, and the
goal is to minimize the cost of the hitting set, Varadarajan [Var10] showed that
ε-nets imply the corresponding approximation factor.

THEOREM 47.5.4 [Var10]

Given (X,R) with a cost function c : X → R+, assume that there exists a function
f : N → N such that for any ε > 0 and weight function w : X → R+, there is an

ε-net with respect to w(·) of cost at most c(X)
εn ·f( 1

ε ). Further assume such a net can
be computed in polynomial time. Then one can compute a f(OPTR)-approximation
to the minimum cost hitting set for R in polynomial time.
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We now turn to a combinatorial use of ε-nets in rounding. A set C of n convex
objects in Rd is said to satisfy the HD(p, q) property if for any set C′ ⊆ C of
size p, there exists a point common to at least q objects in C′ (see Chapter 4).
Answering a long-standing open question, Alon and Kleitman [AK92] showed that
then there exists a hitting set for C whose size is a function of only p, q and d—
in particular, independent of n. The resulting function was improved to give the
following statement.

THEOREM 47.5.5 [AK92, KST17]

Let C be a finite set of convex objects in Rd, and p, q be two integers, where p ≥
q ≥ d + 1, such that for any set C′ ⊆ C of size p, there exists a point in Rd
common to at least q objects in C′. Then there exists a hitting set for C of size

O
(
pd

q−1
q−d logc

′d3 log d p
)
, where c′ is an absolute constant.

We present a sketch of the proof. Let P be a point set consisting of a point from
each cell of the arrangement of C. For each p ∈ P , let w(p) be the weight assigned
to p such that the total weight W =

∑
p w(p) is minimized, while satisfying the

constraint that each C ∈ C contains points of total weight at least 1. Similarly,
let w∗(C) be the weight assigned to each C ∈ C such that the total weight W ∗ =∑
C w
∗(C) is maximized, while satisfying the constraint that each p ∈ P lies in

objects of total weight at most 1. Now linear programming duality implies that
W = W ∗, and crucially, we have c ·W ∗ ≤ 1 for some constant c > 0: using the
HD(p, q) property, a straightforward counting argument shows that there exists a
point p ∈ P hitting objects in C of total weight at least c ·W ∗, where c > 0 is a
constant depending only on p, q and d. Thus W = W ∗ ≤ 1

c , and so a weak c-net
for P (with respect to the weight function w(·)) induced by convex objects hits all

objects in C, and has size O
(

1
cd

logΘ(d2 log d) 1
c

)
by Theorem 47.4.11. This idea was

later used in proving combinatorial bounds for a variety of geometric problems;
see [AK95, Alo98, AKMM02, MR16] for a few examples.

47.6 OPEN PROBLEMS

We conclude with some open problems.

1. Show a lower bound of Ω( 1
ε log 1

ε ) on the size of any ε-net for the primal set
system induced by lines in the plane.

2. Prove a tight bound on the size of weak ε-nets for the primal set system
induced by convex objects in Rd. An achievable goal may be to prove the
existence of weak ε-nets of size O

(
1

εdd/2e

)
.

3. Improve the current best bound of O
(

1
ε log log 1

ε

)
for weak ε-nets for the

primal set system induced by axis-parallel rectangles in R2.

4. Show a lower bound of
(
d
2−o(1)

)
1
ε log 1

ε for the size of any ε-net for the primal
set system induced by half-spaces in Rd.

5. Show a lower bound of Ω
(

1
ε log 1

ε

)
for ε-nets for the primal set system induced

by balls in R3.

6. An unsatisfactory property of many lower bound constructions for ε-nets is
that the construction of the set system depends on the value of ε—typically
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the number of elements in the construction is only Θ( 1
ε log 1

ε ); each element
is then “duplicated” to derive the statement for arbitrary values of n. Do
constructions exist that give a lower bound on the ε-net size for every value
of ε?

7. Improve the slightly sub-optimal bound of Theorem 47.5.2 to show the fol-
lowing. Let S be a set of n (d − 1)-dimensional simplices in Rd, d ≥ 3, and
let m = m(S) denote the number of d-tuples of S having a point in common.

Then for any r ≤ n, there is a 1
r -cutting of S with size at most O

(
rd−1+

mrd

nd
)
.

8. Improve the current bounds for ε-approximations for the primal set system
induced by balls in Rd to O

(
1

ε
2− 2

d+1

)
.

9. Let (X,R) be a set system with ϕR(m, k) = O
(
md1kd−d1

)
, where 1 < d1 ≤ d

are constants (with ϕR(m, k) as defined in the first section). Do there exist

relative (ε, δ)-approximations of size O
(

1

ε
d+d1
d+1 δ

2d
d+1

)
for (X,R)?

47.7 SOURCES AND RELATED MATERIALS

READING MATERIAL

See Matoušek [Mat98] for a survey on VC-dimension, and its relation to discrep-
ancy, sampling and approximations of geometric set systems. An early survey on
ε-nets was by Matoušek [Mat93a], and a more general one on randomized algorithms
by Clarkson [C92]. Introductory expositions to ε-approximations and ε-nets can be
found in the books by Pach and Agarwal [PA95], Matoušek [Mat02a], and Har-Peled
[HP11]. The monograph of Har-Peled [HP11] also discusses sensitive approxima-
tions and relative approximations. The books by Matoušek [Mat99] on geometric
discrepancy and by Chazelle [Cha00] on the discrepancy method give a detailed
account of some of the material in this chapter. From the point of view of learning
theory, a useful survey on approximations is Boucheron et al. [BBL05], while the
books by Devroye, Györfi, and Lugosi [DGL96] and Anthony and Bartlett [AB09]
contain detailed proofs on random sampling for set systems with bounded VC-
dimension. For spatial partitioning and its many applications, we refer the reader
to the book by Guth [Gut16].

RELATED CHAPTERS

Chapter 13: Geometric discrepancy theory and uniform distribution
Chapter 40: Range searching
Chapter 44: Randomization and derandomization
Chapter 48: Coresets and sketches
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[AKMM02] N. Alon, G. Kalai, J. Matoušek, and R. Meshulam. Transversal numbers for hyper-

graphs arising in geometry. Adv. Appl. Math., 29:79–101, 2002.

[AKN+08] N. Alon, H. Kaplan, G. Nivasch, M. Sharir, and S. Smorodinsky. Weak ε-nets and

interval chains. J. ACM, 55(6), 2008.

[Alo98] N. Alon. Piercing d-intervals. Discrete Comput. Geom., 19:333–334, 1998.

[Alo12] N. Alon. A non-linear lower bound for planar epsilon-nets. Discrete Comput. Geom.,

47:235–244, 2012.

[AP14] P.K. Agarwal and J. Pan. Near-linear algorithms for geometric hitting sets and set

covers. In Proc. 30th Sympos. Comput. Geom., pages 271–279, ACM Press, 2014.

[AS08] N. Alon and J.H. Spencer. The Probabilistic Method, 3rd edition. John Wiley & Sons,

New York, 2008.

[Ass83] P. Assouad. Density and dimension. Ann. Inst. Fourier, 33:233–282, 1983.

[Ban12] N. Bansal. Semidefinite optimization in discrepancy theory. Math. Program., 134:5–

22, 2012.
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[CM96] B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization

problems in fixed dimension. J. Algorithms, 21:579–597, 1996.

[C87] K.L. Clarkson. New applications of random sampling in computational geometry.

Discrete Comput. Geom., 2:195–222, 1987.

[C88] K.L. Clarkson. A randomized algorithm for closest-point queries. SIAM J. Comput.,

17(4):830–847, 1988.

arXiv:1703.06476
arXiv:1704.05089


Chapter 47: ε-approximations and ε-nets 1265

[C92] K.L. Clarkson. Randomized geometric algorithms. In F. K. Hwang and D. Z. Hu,

editors, Computers and Euclidean Geometry, World Scientific Publishing, 1992.

[CS89] K.L. Clarkson and P.W. Shor. Application of random sampling in computational

geometry, II. Discrete Comput. Geom., 4:387–421, 1989.

[CV07] K.L. Clarkson and K. Varadarajan. Improved approximation algorithms for geometric

set cover. Discrete Comput. Geom., 37:43–58, 2007.

[CW89] B. Chazelle and E. Welzl. Quasi-optimal range searching in space of finite VC-

dimension. Discrete Comput. Geom., 4:467–489, 1989.

[DEG16] K. Dutta, E. Ezra, and A. Ghosh. Two proofs for shallow packings. Discrete Comput.

Geom., 56:910–939, 2016.

[DGJM17] K. Dutta, A. Ghosh, B. Jartoux, and N.H. Mustafa. Shallow packings, semialgebraic

set systems, Macbeath regions, and polynomial partitioning. In Proc. 33rd Sympos.

Comput. Geom., article 38, vol. 77 of LIPIcs, Schloss Dagstuhl, 2017.

[DGL96] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.

Springer, Berlin, 1996.

[ERS05] G. Even, D. Rawitz, and S. Shahar. Hitting sets when the VC-dimension is small.

Inform. Process. Lett., 95:358–362, 2005.

[Ezr10] E. Ezra. A note about weak epsilon-nets for axis-parallel boxes in d-space. Inform.

Process. Lett., 110:835–840, 2010.

[Ezr16] E. Ezra. A size-sensitive discrepancy bound for set systems of bounded primal shatter

dimension. SIAM J. Comput., 45:84–101, 2016.

[FL11] D. Feldman and M. Langberg. A unified framework for approximating and clustering

data. In Proc. 43rd ACM Sympos. Theory Comput., pages 569–578, 2011.

[Gut15] L. Guth. Polynomial partitioning for a set of varieties. Math. Proc. Cambridge Philos.

Soc., 159:459–469, 2015.

[Gut16] L. Guth. Polynomial Methods in Combinatorics. University Lecture Series, AMS,

Providence, 2016.

[Hau95] D. Haussler. Sphere packing numbers for subsets of the Boolean n-cube with bounded

Vapnik-Chervonenkis dimension. J. Combin. Theory Ser. A, 69:217–232, 1995.

[HP11] S. Har-Peled. Geometric Approximation Algorithms. AMS, Providence, 2011.

[HPS11] S. Har-Peled and M. Sharir. Relative (p, ε)-approximations in geometry. Discrete

Comput. Geom., 45:462–496, 2011.

[HW87] D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete Comput.

Geom., 2:127–151, 1987.

[KK11] J. King and D. Kirkpatrick. Improved approximation for guarding simple galleries

from the perimeter. Discrete Comput. Geom., 46:252–269, 2011.

[KPR93] P. Klein, S.A. Plotkin, and S. Rao. Excluded minors, network decomposition, and

multicommodity flow. In Proc. 25th ACM Sympos. Theory Comput., pages 682–690,

1993.

[KMP16] A. Kupavskii, N.H. Mustafa, and J. Pach. New lower bounds for epsilon-nets. In

Proc. 32nd Sympos. Comput. Geom., vol. 51 of LIPIcs, article 54, Schloss Dagstuhl,

2016.

[KPW92] J. Komlós, J. Pach, and G.J. Woeginger. Almost tight bounds for epsilon-nets. Dis-

crete Comput. Geom., 7:163–173, 1992.



1266 N.H. Mustafa and K. Varadarajan

[KST17] C. Keller, S. Smorodinsky, and G. Tardos. On Max-Clique for intersection graphs of

sets and the Hadwiger-Debrunner numbers. In Proc. ACM-SIAM Sympos. Discrete

Algorithms, pages 2254–2263, 2017.

[LLS01] Y. Li, P.M. Long, and A. Srinivasan. Improved bounds on the sample complexity of

learning. J. Comput. Syst. Sci., 62:516–527, 2001.

[Lon01] P.M. Long. Using the pseudo-dimension to analyze approximation algorithms for

integer programming. In Proc. 7th Workshop on Algorithms and Data Structures,

vol. 2125 of LNCS, pages 26–37, Springer, Berlin, 2001.

[LM15] S. Lovett and R. Meka. Constructive discrepancy minimization by walking on the

edges. SIAM J. Comput., 44:1573–1582, 2015.

[LS10] M. Langberg and L.J. Schulman. Universal ε-approximators for integrals. In Proc.

21st ACM-SIAM Sympos. Discrete Algorithms, pages 598–607, 2010.

[Mat16] C. Mathieu. Personal communication, 2016.
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[Mat91b] J. Matoušek. Cutting hyperplane arrangements. Discrete Comput. Geom., 6:385–406,

1991.
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[Mat98] J. Matoušek. Geometric set systems. In A. Balog et al., editors, European Congress

of Mathematics. vol. 169 of Progress in Math., pages 1–27, Birkhäuser, Basel, 1998.
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