Infinitary Intersection Types as Sequences (A New Answer to Klop's Problem)

Pierre VIAL IRIF, Paris 7

Elica meeting, Bologna

October 7, 2016

Plan

INTRODUCTION

GARDNER/DE CARVALHO'S ITS \mathcal{M}_0

The Infinitary Calculus Λ^{001}

TRUNCATION AND APPROXIMABILITY

SEQUENCES AS INTERSECTION TYPES

CONCLUSION

.

► ► Head Normal Forms (HNF): terms *t* of the form:

 $\lambda x_1 \dots x_p . x \, u_1 \dots u_q \qquad (p,q \ge 0)$

.

► ► Head Normal Forms (HNF): terms *t* of the form:

< □ > < @ > < E > < E > E のQ@

► ► Head Normal Forms (HNF): terms *t* of the form:

< □ > < @ > < E > < E > E のQ@

► A term is **head-normalizing (HN)** if it can be reduced to a HNF (in a finite number of steps)

► ► Head Normal Forms (HNF): terms *t* of the form:

- ► A term is **head-normalizing (HN)** if it can be reduced to a HNF (in a finite number of steps)
- ► ► Normal Forms (NF): induction

$$t ::= \lambda x_1 \dots x_p . x t_1 \dots t_q \qquad (p,q \ge 0)$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

► ► Head Normal Forms (HNF): terms *t* of the form:

- A term is **head-normalizing (HN)** if it can be reduced to a HNF (in a finite number of steps)
- ▶ ► Normal Forms (NF): induction

$$t ::= \lambda x_1 \dots x_p . x t_1 \dots t_q \qquad (p, q \ge 0)$$

► A term is **weakly normalizing (WN)** if it can be reduced to a NF (in a finite number of steps)

► ► Head Normal Forms (HNF): terms *t* of the form:

- A term is **head-normalizing (HN)** if it can be reduced to a HNF (in a finite number of steps)
- ► ► Normal Forms (NF): induction

$$t ::= \lambda x_1 \dots x_p . x t_1 \dots t_q \qquad (p, q \ge 0)$$

- ► A term is **weakly normalizing (WN)** if it can be reduced to a NF (in a finite number of steps)
- ► Inductively, a term is WN if it is HN and all the head arguments are themselves WN.

► ► Head Normal Forms (HNF): terms *t* of the form:

► A term is **head-normalizing (HN)** if it can be reduced to a HNF (in a finite number of steps)

► Coinductively, a term is hereditary head-normalizing (HHN) if it can be reduced to a HNF and all the head arguments are themselves HHN.

 The set of HN terms (resp. WN) terms have been *statically* characterized by various **intersection type assignement systems** (ITS).

< □ > < @ > < E > < E > E のQ@

- The set of HN terms (resp. WN) terms have been *statically* characterized by various **intersection type assignement systems** (ITS).
- ► Klop's Problem [early 90s]: can the set of HHN terms can be characterized by an ITS ?

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- The set of HN terms (resp. WN) terms have been *statically* characterized by various **intersection type assignement systems** (ITS).
- ► Klop's Problem [early 90s]: can the set of HHN terms can be characterized by an ITS ?

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

► Tatsuta [07]: an inductive ITS cannot do it.

- The set of HN terms (resp. WN) terms have been *statically* characterized by various **intersection type assignement systems** (ITS).
- ► Klop's Problem [early 90s]: can the set of HHN terms can be characterized by an ITS ?
- ► Tatsuta [07]: an inductive ITS cannot do it.
- Can a coinductive ITS characterize the set of HHN terms?

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

PURPOSES OF THIS TALK

 Present the key notions of truncations and approximability (meant to avoid *irrelevant* derivations).

PURPOSES OF THIS TALK

- Present the key notions of truncations and approximability (meant to avoid *irrelevant* derivations).
- Understand why commutative intersection (here, Gardner/de Carvalho's multiset intersection) is unfit to express those key notions.

PURPOSES OF THIS TALK

- Present the key notions of truncations and approximability (meant to avoid *irrelevant* derivations).
- Understand why commutative intersection (here, Gardner/de Carvalho's multiset intersection) is unfit to express those key notions.
- Present the coinductive type assignment system S: intersection types are sequences of types, instead of sets of types (idempotent intersection fw.) or *multisets* of types (regular non-idempotent fw.).

Plan

INTRODUCTION

Gardner/de Carvalho's ITS \mathcal{M}_0

The Infinitary Calculus Λ^{001}

TRUNCATION AND APPROXIMABILITY

SEQUENCES AS INTERSECTION TYPES

CONCLUSION

Typing Rules of \mathcal{M}_0 (Gardner/de Carvalho)

Types (τ , σ_i **):** τ , σ_i := $\alpha \in \mathscr{X} \mid [\sigma_i]_{i \in I} \to \tau$.

Context (Γ , Δ): assigns *intersection* types to variables.

$$\frac{\overline{x: [\tau] \vdash x: \tau}}{x: [\tau] \vdash x: \tau} \text{ as } \frac{\Gamma, x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x.t: [\sigma_i]_{i \in I} \rightarrow \tau} \text{ abs}$$
$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \rightarrow \tau}{\Gamma + \sum_{i \in I} \Delta_i \vdash t(u): \tau} \operatorname{app}^{i \in I} \text{ app}$$

Remark

- ► Multiset equality: $[\sigma, \tau, \sigma] = [\sigma, \sigma, \tau] \neq [\sigma, \tau]$
- ► Multiplicative rules: accumulation of typing information .
- Possibility to **forget** the argument (empty multiset).

Standard presentation

Alternative presentation

Indicate the arity of application rules.

Alternative presentation

- Indicate the arity of application rules.
- Indicate the types given in axiom leaves.

Alternative presentation

- Indicate the arity of application rules.
- Indicate the types given in axiom leaves.
- Compute the type of the term.

 $\begin{array}{c} \lambda x.xx \\ \searrow [\alpha,\beta,\alpha,[\alpha,\beta,\alpha] \rightarrow \alpha] \rightarrow \alpha \end{array}$

Alternative presentation

- Indicate the arity of application rules.
- Indicate the types given in axiom leaves.
- Compute the type of the term.

Alternative presentation

- Indicate the arity of application rules.
- Indicate the types given in axiom leaves.
- Compute the type of the term.

うして 山田 マイボット ボット シックション

Alternative presentation

- Or this one? ► Indicate the arity of application rules.
 - Indicate the types given in axiom leaves.
 - Compute the type of the

If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

 $(\lambda x.r)s \to r[s/x]$

If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

	$(\lambda x.r)s$	\rightarrow	r[s/	x]
--	------------------	---------------	------	----

If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

 $(\lambda x.r)s \to r[s/x]$

If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

 $(\lambda x.r)s \to r[s/x]$

If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

 $(\lambda x.r)s \to r[s/x]$

If $\Pi \triangleright \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \triangleright \Gamma \vdash t' : \tau$

$$(\lambda x.r)s \to r[s/x]$$

$$\Pi_{r} \begin{pmatrix} \Pi_{i} \\ \vdots \\ \Delta_{i} \vdash s : \sigma_{i} \end{pmatrix}^{i \in I}$$
$$\Gamma + \sum_{i \in I} \Delta_{i} \vdash r [s/x] : \tau$$

< □ > < @ > < E > < E > E のQ@

If $\Pi \triangleright \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \triangleright \Gamma \vdash t' : \tau$

$$(\lambda x.r)s \to r[s/x]$$

$$\Pi_{r} \begin{pmatrix} \Pi_{i} \\ \vdots \\ \Delta_{i} \vdash s : \sigma_{i} \end{pmatrix}^{i \in I}$$
$$\Gamma + \sum_{i \in I} \Delta_{i} \vdash r [s/x] : \tau$$

Vocabulary:

We say each **association** (between *x*-axiom leaves and arg-derivations) yields a **derivation reduct** Π' typing r[s/x].

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

If $\Pi \triangleright \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \triangleright \Gamma \vdash t' : \tau$

$$(\lambda x.r)s \to r[s/x]$$

$$\Pi_{r} \begin{pmatrix} \Pi_{i} \\ \vdots \\ \Delta_{i} \vdash s : \sigma_{i} \end{pmatrix}^{i \in I}$$
$$\Gamma + \sum_{i \in I} \Delta_{i} \vdash r [s/x] : \tau$$

Observation:

If a type σ occurs several times in $[\sigma_i]_{i \in I}$, there can be several associations, each one yielding a possibly different derivation reducts Π' .

NORMALIZABILITY RESULTS

Proposition A term is HN iff it is typable in \mathcal{M}_0 .

NORMALIZABILITY RESULTS

Proposition A term is HN iff it is typable in \mathcal{M}_0 .

Proposition A term is WN iff it is typable in \mathcal{M}_0 by using an **unforgetful** judgment.
NORMALIZABILITY RESULTS

Proposition A term is HN iff it is typable in \mathcal{M}_0 .

Proposition A term is WN iff it is typable in \mathcal{M}_0 by using an **unforgetful** judgment.

Definition A judgement $\Gamma \vdash t : \tau$ is **unforgetful** if there is no negative occurrence of [] in Γ and no positive occurrence of [] in τ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

NORMALIZABILITY RESULTS

Proposition A term is HN iff it is typable in \mathcal{M}_0 .

Proposition A term is WN iff it is typable in \mathcal{M}_0 by using an **unforgetful** judgment.

Definition A judgement $\Gamma \vdash t : \tau$ is **unforgetful** if there is no negative occurrence of [] in Γ and no positive occurrence of [] in τ .

- ▶ [] occurs negatively in [] $\rightarrow \tau$
- If [] occurs negatively in σ₂ then [] occurs positively in [σ₁, σ₂, σ₃] → τ and so on.

Plan

INTRODUCTION

GARDNER/DE CARVALHO'S ITS \mathcal{M}_0

The Infinitary Calculus Λ^{001}

TRUNCATION AND APPROXIMABILITY

SEQUENCES AS INTERSECTION TYPES

CONCLUSION

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ト ◆ 回 ト ◆ 回 ト

 ∞ -TERMS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

∞ -TERMS

• **Position**: finite sequence in $\{0, 1, 2\}^*$, *e.g.* $0 \cdot 0 \cdot 2 \cdot 1 \cdot 2$.

∞ -TERMS

- **Position**: finite sequence in $\{0, 1, 2\}^*$, *e.g.* $0 \cdot 0 \cdot 2 \cdot 1 \cdot 2$.
- ► Applicative Depth (a.d.): number of *7*-edges *e.g.*

 $\mathrm{ad}(1\cdot 2\cdot 2\cdot 0\cdot 2\cdot 1\cdot 2)=4$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

 Λ^{001} : the set of ∞ -terms *t* s.t.:

b is an infinite branch of $t \Rightarrow ad(b) = \infty$.

<ロト < 団 > < 三 > < 三 > < 三 > < 三 > < ○<</p>

 Λ^{001} : the set of ∞ -terms *t* s.t.:

 Λ^{001} : the set of ∞ -terms *t* s.t.:

 Λ^{001} : the set of ∞ -terms *t* s.t.:

 Λ^{001} : the set of ∞ -terms *t* s.t.:

 Λ^{001} : the set of ∞ -terms *t* s.t.:

 Λ^{001} : the set of ∞ -terms *t* s.t.:

b is an infinite branch of $t \Rightarrow ad(b) = \infty$.

- ► Start from b ∈ supp(t)
- Move \uparrow or \land
- A leaf b₀ must be reached

Definition A reduction sequence $t_0 \xrightarrow{b_0} t_1 \xrightarrow{b_1} t_2 \xrightarrow{b_2} \dots \xrightarrow{b_{n-1}} t_n \xrightarrow{b_n} \dots$ is **strongly converging** if it is of finite length or if $\lim \operatorname{ad}(b_n) = \infty$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

 $\Delta_f := \lambda x.f(xx) \qquad \Delta_f \Delta_f: \text{"Curry"}$ $\Delta_f \Delta_f \to f(\Delta_f \Delta_f) \to f^2(\Delta_f \Delta_f) \to f^3(\Delta_f \Delta_f) \to f^4(\Delta_f \Delta_f) \to \dots \to \infty f^{\omega}$

◆□ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● ○ ○ ○

 $\Delta_f := \lambda x.f(xx) \qquad \Delta_f \Delta_f: \text{"Curry"}$ $\Delta_f \Delta_f \to f(\Delta_f \Delta_f) \to f^2(\Delta_f \Delta_f) \to f^3(\Delta_f \Delta_f) \to f^4(\Delta_f \Delta_f) \to \dots \to \infty f^{\omega}$

 $\Delta_f := \lambda x.f(xx) \qquad \Delta_f \Delta_f: \text{``Curry''}$ $\Delta_f \Delta_f \to f(\Delta_f \Delta_f) \to f^2(\Delta_f \Delta_f) \to f^3(\Delta_f \Delta_f) \to f^4(\Delta_f \Delta_f) \to \dots \to \infty f^{\omega}$

 $\Delta_f := \lambda x.f(xx) \qquad \Delta_f \Delta_f: \text{``Curry''}$ $\Delta_f \Delta_f \to f(\Delta_f \Delta_f) \to f^2(\Delta_f \Delta_f) \to f^3(\Delta_f \Delta_f) \to f^4(\Delta_f \Delta_f) \to \dots \to \infty f^{\omega}$

Λ

< □ > < @ > < E > < E > E のQ@

Conclusion

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Conclusion

A **strongly converging reduction sequence (s.c.r.s)** allows us to define its **limit**.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ����

INFINITARY NORMALIZATION

► The notions of redex and head-normalizability do not change.
INFINITARY NORMALIZATION

- ► The notions of redex and head-normalizability do not change.
- The NF of Λ^{001} are generated by the *coinductive* grammar:

$$t = \lambda x_1 \dots \lambda x_p . x t_1 \dots t_q \qquad (p, q \ge 0)$$

< □ > < @ > < E > < E > E のQ@

INFINITARY NORMALIZATION

- ► The notions of redex and head-normalizability do not change.
- The NF of Λ^{001} are generated by the *coinductive* grammar:

$$t = \lambda x_1 \dots \lambda x_p . x t_1 \dots t_q \qquad (p, q \ge 0)$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Definition (Infinitary WN)

A 001-term is WN if it can be reduced to a NF through at least one s.c.r.s.

INFINITARY NORMALIZATION

- ► The notions of redex and head-normalizability do not change.
- The NF of Λ^{001} are generated by the *coinductive* grammar:

$$t = \lambda x_1 \dots \lambda x_p . x t_1 \dots t_q \qquad (p, q \ge 0)$$

Definition (Infinitary WN)

A 001-term is WN if it can be reduced to a NF through at least one s.c.r.s.

• Thus, a (finite) term is HHN iff it is 001-WN.

Plan

INTRODUCTION

GARDNER/DE CARVALHO'S ITS \mathcal{M}_0

The Infinitary Calculus Λ^{001}

TRUNCATION AND APPROXIMABILITY

SEQUENCES AS INTERSECTION TYPES

CONCLUSION

・ロト・西ト・ヨト・ヨー もくの

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 - のへぐ

We can use the same derivation frame Π_1^* to type f(...)

$$\Pi_1^1 \vartriangleright \Gamma_1 \vdash f(\Delta_f \Delta_f) : \boldsymbol{\alpha}$$

$$\Pi_1^2 \vartriangleright \Gamma_1 \vdash f(f(\Delta_f \Delta_f)) : \alpha$$

$$\Pi_1^3 \vartriangleright \Gamma_1 \vdash f^3(\Delta_f \Delta_f) : \boldsymbol{\alpha}$$

< □ > < @ > < E > < E > E のQ@

 $\Pi_1' \rhd \Gamma_1 \vdash f^{\omega} : \alpha$

We can use the same derivation frame Π_2^* to type $f(f(\ldots))$

$$\Pi_{\mathbf{2}}^2 \vartriangleright \Gamma_{\mathbf{2}} \vdash f(f(\Delta_f \Delta_f)) : \boldsymbol{\alpha}$$

$$\Pi_{\mathbf{2}}^3 \vartriangleright \Gamma_{\mathbf{2}} \vdash f^3(\Delta_f \Delta_f) : \boldsymbol{\alpha}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\Pi_{\mathbf{2}}' \rhd \Gamma_{\mathbf{2}} \vdash f^{\omega} : \alpha$

We can use the same derivation frame Π_3^* to type $f^3(\ldots)$

$$\Pi_{\mathbf{3}}^3 \vartriangleright \Gamma_{\mathbf{3}} \vdash f^3(\Delta_f \Delta_f) : \boldsymbol{\alpha}$$

 $\Pi'_{\mathbf{3}} \rhd \Gamma_{\mathbf{3}} \vdash f^{\omega} : \alpha$

We can use the same derivation frame Π_4^* to type $f^4(\ldots)$

 $\Pi'_{\mathbf{4}} \rhd \Gamma_{\mathbf{4}} \vdash f^{\omega} : \alpha$

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 - のへぐ

 Π' can be **truncated** into Π'_4 :

 Π' can be **truncated** into Π'_3 :

 Π' can be **truncated** into Π'_3 :

• How do we perform ∞ -subject expansion on Π' (typing f^{ω})?

- How do we perform ∞ -subject expansion on Π' (typing f^{ω})?
 - Π' , that types f^{ω} , cannot be expanded (yet).

• How do we perform ∞ -subject expansion on Π' (typing f^{ω})?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Π' , that types f^{ω} , cannot be expanded (yet).
- Π'_n , that also types f^{ω} , cannot be expanded (yet).

• How do we perform ∞ -subject expansion on Π' (typing f^{ω})?

- Π' , that types f^{ω} , cannot be expanded (yet).
- Π'_n , that also types f^{ω} , cannot be expanded (yet).
- But Π_n^k , that types $f^k(\Delta_f \Delta_f)$, can be expanded.

- How do we perform ∞ -subject expansion on Π' (typing f^{ω})?
 - Π' , that types f^{ω} , cannot be expanded (yet).
 - Π'_n , that also types f^{ω} , cannot be expanded (yet).
 - But Π_n^k , that types $f^k(\Delta_f \Delta_f)$, can be expanded.
 - Π_n^k yields a derivation Π_n typing $\Delta_f \Delta_f$ (after *k* exp-steps).

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- How do we perform ∞ -subject expansion on Π' (typing f^{ω})?
 - Π' , that types f^{ω} , cannot be expanded (yet).
 - Π'_n , that also types f^{ω} , cannot be expanded (yet).
 - But Π_n^k , that types $f^k(\Delta_f \Delta_f)$, can be expanded.
 - Π_n^k yields a derivation Π_n typing $\Delta_f \Delta_f$ (after *k* exp-steps).
 - We can build a "join" of the Π_n, thus producing an infinite unforgetful derivation Π typing Δ_f Δ_f.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

• How do we perform ∞ -subject expansion on Π' (typing f^{ω})?

- Π' , that types f^{ω} , cannot be expanded (yet).
- Π'_n , that also types f^{ω} , cannot be expanded (yet).
- But Π_n^k , that types $f^k(\Delta_f \Delta_f)$, can be expanded.
- Π_n^k yields a derivation Π_n typing $\Delta_f \Delta_f$ (after *k* exp-steps).
- We can build a "join" of the Π_n, thus producing an infinite unforgetful derivation Π typing Δ_f Δ_f.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Derivation Π features a type γ coinductively defined by the fixpoint equation γ = [γ]_ω → α.
INFINITARY SUBJECT EXPANSION

• How do we perform ∞ -subject expansion on Π' (typing f^{ω})?

- Π' , that types f^{ω} , cannot be expanded (yet).
- Π'_n , that also types f^{ω} , cannot be expanded (yet).
- But Π_n^k , that types $f^k(\Delta_f \Delta_f)$, can be expanded.
- Π_n^k yields a derivation Π_n typing $\Delta_f \Delta_f$ (after *k* exp-steps).
- We can build a "join" of the Π_n, thus producing an infinite unforgetful derivation Π typing Δ_f Δ_f.
- Derivation Π features a type γ coinductively defined by the fixpoint equation $\gamma = [\gamma]_{\omega} \rightarrow \alpha$.
- Type γ allows to type $\Delta\Delta$. Need for a **validity criterion**.

APPROXIMABILITY (HEURISTIC)

• Informally, see a derivation Π as a set of symbols (type variables α or \rightarrow that we found inside each jugdment of *P*).

APPROXIMABILITY (HEURISTIC)

- Informally, see a derivation Π as a set of symbols (type variables α or \rightarrow that we found inside each jugdment of *P*).
- A (finite) approximation ^fΠ of a derivation Π is a finite subset of symbols of Π which is itself a derivation. We write ^fΠ ≤ Π.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

APPROXIMABILITY (HEURISTIC)

- Informally, see a derivation Π as a set of symbols (type variables α or \rightarrow that we found inside each jugdment of *P*).
- A (finite) approximation ^fΠ of a derivation Π is a finite subset of symbols of Π which is itself a derivation. We write ^fΠ ≤ Π.
- A derivation Π is said to be **approximable** if for all finite subset *B* of symbols of Π, there is an approximation ^fΠ ≤ Π that contains *B*.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

・ロト・西ト・モート ヨー うくの

・ロト・西ト・モート ヨー うくの

 $(\lambda x.r)s$

・ロト・日本・日本・日本・日本・日本

・ロト・日本・日本・日本・日本・日本

$$(\lambda x.r)s$$
 Assume $\sigma_1 = \sigma_2$.

・ロト・西ト・モート ヨー うくの

・ロト・日本・日本・日本・日本・日本

・ロト・日本・日本・日本・日本・日本

$$(\lambda x.r)s$$
 Assume $\sigma_1 \neq \sigma_2$

< □ > < @ > < E > < E > E のQ@

< □ > < @ > < E > < E > E のQ@

Plan

INTRODUCTION

GARDNER/DE CARVALHO'S ITS \mathcal{M}_0

The Infinitary Calculus Λ^{001}

TRUNCATION AND APPROXIMABILITY

SEQUENCES AS INTERSECTION TYPES

CONCLUSION

Types of s

► **Type (metavariable** *S*, *T*): coinductive grammar

 $S_k, T ::= \alpha \in \mathscr{X} \mid (S_k)_{k \in K} \to T$

< □ > < @ > < E > < E > E のQ@

► **Type (metavariable** *S*, *T*): coinductive grammar

$$S_k, T ::= \alpha \in \mathscr{X} \mid (S_k)_{k \in K} \to T$$

- Sequence Type:
 - Intersection type replacing multiset types.

► **Type (metavariable** *S*, *T*): coinductive grammar

$$S_k, T ::= \alpha \in \mathscr{X} \mid (S_k)_{k \in K} \to T$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Sequence Type:
 - Intersection type replacing multiset types.
 - $F = (T_k)_{k \in K}$ where T_k types and $K \subset \mathbb{N} \{0, 1\}$.

► **Type (metavariable** *S*, *T*): coinductive grammar

$$S_k, T ::= \alpha \in \mathscr{X} \mid (S_k)_{k \in K} \to T$$

- Sequence Type:
 - Intersection type replacing multiset types.
 - $F = (T_k)_{k \in K}$ where T_k types and $K \subset \mathbb{N} \{0, 1\}$.
- *Example (Sequence Type):* $(T_k)_{k=2,3,8}$ with $T_2 = T_8 = S$ and $T_3 = S'$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

► **Type (metavariable** *S*, *T*): coinductive grammar

$$S_k, T ::= \alpha \in \mathscr{X} \mid (S_k)_{k \in K} \to T$$

- Sequence Type:
 - Intersection type replacing multiset types.
 - $F = (T_k)_{k \in K}$ where T_k types and $K \subset \mathbb{N} \{0, 1\}$.

• *Example (Sequence Type):* $(T_k)_{k=2,3,8}$ with $T_2 = T_8 = S$ and $T_3 = S'$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

 $F = \begin{array}{ccc} S & S' & S \\ \frac{1}{8} & \frac{1}{3} & \frac{1}{2} \leftarrow \text{argument tracks (2,3,8)} \end{array}$

► **Type (metavariable** *S*, *T*): coinductive grammar

$$S_k, T ::= \alpha \in \mathscr{X} \mid (S_k)_{k \in K} \to T$$

- Sequence Type:
 - Intersection type replacing multiset types.
 - $F = (T_k)_{k \in K}$ where T_k types and $K \subset \mathbb{N} \{0, 1\}$.
- *Example (Sequence Type):* $(T_k)_{k=2,3,8}$ with $T_2 = T_8 = S$ and $T_3 = S'$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- $F = \begin{array}{ccc} S & S' & S \\ \frac{1}{8} & \frac{1}{3} & \frac{1}{2} \leftarrow \text{argument tracks } (2,3,8) \end{array}$
- Example (Arrow Type): $\ldots \rightarrow T$.

► **Type (metavariable** *S*, *T*): coinductive grammar

$$S_k, T ::= \alpha \in \mathscr{X} \mid (S_k)_{k \in K} \to T$$

- Sequence Type:
 - Intersection type replacing multiset types.
 - $F = (T_k)_{k \in K}$ where T_k types and $K \subset \mathbb{N} \{0, 1\}$.
- *Example (Sequence Type):* $(T_k)_{k=2,3,8}$ with $T_2 = T_8 = S$ and $T_3 = S'$.
 - $F = \begin{array}{ccc} S & S' & S \\ \frac{1}{8} & \frac{1}{3} & \frac{1}{2} \leftarrow \text{argument tracks } (2,3,8) \end{array}$
- Example (Arrow Type): $\ldots \rightarrow T$.

► **Type (metavariable** *S*, *T*): coinductive grammar

$$S_k, T ::= \alpha \in \mathscr{X} \mid (S_k)_{k \in K} \to T$$

- Sequence Type:
 - Intersection type replacing multiset types.
 - $F = (T_k)_{k \in K}$ where T_k types and $K \subset \mathbb{N} \{0, 1\}$.
- Example (Sequence Type): $(T_k)_{k=2,3,8}$ with $T_2 = T_8 = S$ and $T_3 = S'$.
 - $F = \begin{array}{ccc} S & S' & S \\ \frac{1}{8} & \frac{1}{3} & \frac{1}{2} \leftarrow \text{argument tracks (2, 3, 8)} \end{array}$
- *Example (Arrow Type):* $F \rightarrow T$.

► **Type (metavariable** *S*, *T*): coinductive grammar

$$S_k, T ::= \alpha \in \mathscr{X} \mid (S_k)_{k \in K} \to T$$

- Sequence Type:
 - Intersection type replacing multiset types.
 - $F = (T_k)_{k \in K}$ where T_k types and $K \subset \mathbb{N} \{0, 1\}$.
- *Example (Sequence Type):* $(T_k)_{k=2,3,8}$ with $T_2 = T_8 = S$ and $T_3 = S'$.
 - $F = \begin{array}{ccc} S & S' & S \\ \frac{1}{8} & \frac{1}{3} & \frac{1}{2} \leftarrow \text{argument tracks } (2,3,8) \end{array}$
- *Example (Arrow Type):* $F \rightarrow T$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

The set Deriv of rigid derivations is *coinductively* generated by:

$$\frac{\overline{x: (T)_k \vdash x: T}}{x: (T)_k \vdash x: T} ax \qquad \qquad \frac{C \vdash t: T}{C - x \vdash \lambda x.t: C(x) \to T} abs$$

$$\frac{C \vdash t: (S_k)_{k \in K} \to T \quad (D_k \vdash u: S_k)_{k \in K}}{C \cup \bigcup_{k \in K} D_k \vdash tu: T} app$$

< □ > < @ > < E > < E > E のQ@

The set Deriv of rigid derivations is *coinductively* generated by:

$$\frac{\overline{x: (T)_{k} \vdash x: T}}{x: (T)_{k} \vdash x: T} \text{ as } \frac{C \vdash t: T}{C - x \vdash \lambda x.t: C(x) \to T} \text{ abs}$$

$$\frac{C \vdash t: (S_{k})_{k \in K} \to T \quad (D_{k} \vdash u: S_{k}')_{k \in K'} \quad (S_{k})_{k \in K} = (S_{k}')_{k \in K'}}{C \cup \bigcup_{k \in K} D_{k} \vdash tu: T} \text{ app}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

► For the app-rule: syntactic equality.

The set Deriv of rigid derivations is *coinductively* generated by:

$$\frac{\overline{x: (T)_k \vdash x: T}}{x: (T)_k \vdash x: T} \text{ as} \qquad \qquad \frac{C \vdash t: T}{C - x \vdash \lambda x.t: C(x) \to T} \text{ abs} \\
\frac{C \vdash t: (S_k)_{k \in K} \to T \quad (D_k \vdash u: S_k)_{k \in K}}{C \cup \bigcup_{k \in K} D_k \vdash tu: T} \text{ app}$$

• For the app-rule: syntactic equality.

► Warning !

If $\operatorname{Rt}(C)$ and the $\operatorname{Rt}(D_k)$ are not pairwise disjoint, contexts are incompatible.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

The set Deriv of rigid derivations is *coinductively* generated by:

$$\frac{\overline{x: (T)_k \vdash x: T}}{x: (T)_k \vdash x: T} ax \qquad \qquad \frac{C \vdash t: T}{C - x \vdash \lambda x.t: C(x) \to T} abs$$

$$\frac{C \vdash t: (S_k)_{k \in K} \to T \quad (D_k \vdash u: S_k)_{k \in K}}{C \cup \bigcup_{k \in K} D_k \vdash tu: T} app$$

- For the app-rule: syntactic equality.
- ► Warning !

If $\operatorname{Rt}(C)$ and the $\operatorname{Rt}(D_k)$ are not pairwise disjoint, contexts are incompatible.

▶ Parsing: premise of abs on tr. 0, left premise of app on tr. 1.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

< □ > < @ > < E > < E > E のQ@

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
RIGID DERIVATION (EXAMPLE)

RIGID DERIVATION (EXAMPLE)

RIGID DERIVATION (EXAMPLE)

Subject reduction is deterministic:

- Subject reduction is deterministic:
 - Assume P types (λx.r)s. If there is an axiom rule typing x on track 5 (#5-ax), by typing constraint, there will also be an argument derivation P₅ typing s on track 5, concluded by exactly the same type S₅

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Subject reduction is deterministic:
 - Assume P types (λx.r)s. If there is an axiom rule typing x on track 5 (#5-ax), by typing constraint, there will also be an argument derivation P₅ typing s on track 5, concluded by exactly the same type S₅
 - During reduction, #5-ax will be replaced by P₅, even if there are other P_k concluded by S = S₅

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Subject reduction is deterministic:
 - Assume P types (λx.r)s. If there is an axiom rule typing x on track 5 (#5-ax), by typing constraint, there will also be an argument derivation P₅ typing s on track 5, concluded by exactly the same type S₅
 - During reduction, #5-ax will be replaced by P₅, even if there are other P_k concluded by S = S₅

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

 Trackability: every symbol used inside *P* can be pointed at univocuously. Notion of *biposition*.

Bisupport of *P*: the set of (right or left) bipositions

Every symbol inside a rigid derivation *P* has a biposition (a position pointing inside a type nested in a judgment of *P*).

Every symbol inside a rigid derivation *P* has a **biposition** (a position pointing inside a type nested in a judgment of *P*).

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

► A finite part *B* of *P* is *finite* subset of bisupp(*P*).

- Every symbol inside a rigid derivation *P* has a **biposition** (a position pointing inside a type nested in a judgment of *P*).
- ► A finite part *B* of *P* is *finite* subset of bisupp(*P*).
- ► A finite approximation of *P* is a (finite) derivation induced by *P* on a finite part of *P*.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Every symbol inside a rigid derivation *P* has a **biposition** (a position pointing inside a type nested in a judgment of *P*).
- ► A finite part *B* of *P* is *finite* subset of bisupp(*P*).
- ► A finite approximation of *P* is a (finite) derivation induced by *P* on a finite part of *P*.
- A rigid derivation *P* is said to be **approximable** if for all finite part *B* of *P*, there is a finite approximation ^fP ≤ P s.t. ^fP contains *B*.

Theorem A 001-term t is WN iff t is unforgetfully typable by means of an approximable derivation.

Theorem A 001-term t is WN iff t is unforgetfully typable by means of an approximable derivation.

Argument 1: If a term is typable by an approximable derivation, then it is head normalizing. Unforgetfulness makes HN hereditary.

Theorem A 001-term t is WN iff t is unforgetfully typable by means of an approximable derivation.

Argument 1: If a term is typable by an approximable derivation, then it is head normalizing. Unforgetfulness makes HN hereditary. **Argument 2:** Subject reduction holds for s.c.r.s. (with or without approximability condition).

Theorem A 001-term t is WN iff t is unforgetfully typable by means of an approximable derivation.

Argument 1: If a term is typable by an approximable derivation, then it is head normalizing. Unforgetfulness makes HN hereditary. **Argument 2:** Subject reduction holds for s.c.r.s. (with or without approximability condition).

Argument 3: Every NF can be typed by quantitative unforgetful derivations and every quantitative derivation typing a NF is approximable.

Theorem A 001-term t is WN iff t is unforgetfully typable by means of an approximable derivation.

Argument 1: If a term is typable by an approximable derivation, then it is head normalizing. Unforgetfulness makes HN hereditary. **Argument 2:** Subject reduction holds for s.c.r.s. (with or without approximability condition).

Argument 3: Every NF can be typed by quantitative unforgetful derivations and every quantitative derivation typing a NF is approximable.

Argument 4: Subject expansion property holds for s.c.r.s. (assuming approximability only).

Plan

INTRODUCTION

GARDNER/DE CARVALHO'S ITS \mathcal{M}_0

The Infinitary Calculus Λ^{001}

TRUNCATION AND APPROXIMABILITY

SEQUENCES AS INTERSECTION TYPES

CONCLUSION

・ロト (四) (日) (日) (日) (日) (日)

FUTURE WORK?

- ► Representation Theorem: every *M*-derivation is the collapse of a S-derivation (already done, HOR 2016).
- Can we reformulate approximability ?
- Can infinitary Strong Normalization be characterized ?
- ► Is every term typable in S (without approximability) ? Yes ! S is completely unsound (difficult because of relevance).
- *Categorical Adaptation* of this framework (ongoing work with D. Mazza and L. Pellisier).

Thank you for your attention !

EXPANDED DERIVATIONS

- Ψ_n is the left subderivation.
- $\gamma_1 = [] \rightarrow \alpha \text{ and } \gamma_n = [\gamma_i]_{1 \leq i \leq n-1} \rightarrow \alpha.$
- ► Π_n is the *n*-expanded of Π_n^n , the (n + 1)-expanded of Π_n^{n+1} ,..., the ∞-expanded of Π_n' .

EXPANDED DERIVATIONS

- Ψ is the left subderivation.
- $\blacktriangleright \ \gamma = [\gamma]_{\omega} \to \alpha.$
- ► Π_n is the *n*-expanded of Π_n^n , the (n + 1)-expanded of Π_n^{n+1} ,..., the ∞-expanded of Π_n' .

< □ > < @ > < E > < E > E のQ@

System \mathcal{M}

► The relation = (between types or seq. types) is defined coinductively:

< □ > < @ > < E > < E > E のQ@

System \mathcal{M}

- ► The relation = (between types or seq. types) is defined coinductively:
 - $\blacktriangleright \ \alpha \equiv \alpha.$

- ► The relation = (between types or seq. types) is defined coinductively:
 - $\blacktriangleright \ \alpha \equiv \alpha.$
 - $(S_k)_{k\in K} \to T \equiv (S'_k)_{k\in K'} \to T'$ if $(S_k)_{k\in K} \equiv (S'_k)_{k'\in K'}$ and $T \equiv T'$.

- ► The relation = (between types or seq. types) is defined coinductively:
 - $\blacktriangleright \ \alpha \equiv \alpha.$
 - $(S_k)_{k\in K} \to T \equiv (S'_k)_{k\in K'} \to T'$ if $(S_k)_{k\in K} \equiv (S'_k)_{k'\in K'}$ and $T \equiv T'$.
 - $(S_k)_{k \in K} \equiv (S'_k)_{k \in K'}$ if there is a bijection $\rho : K \to K'$ s.t. $\forall k \in K, \ S_k \equiv S'_{\sigma(k)}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- ► The relation = (between types or seq. types) is defined coinductively:
 - $\blacktriangleright \ \alpha \equiv \alpha.$
 - $(S_k)_{k\in K} \to T \equiv (S'_k)_{k\in K'} \to T'$ if $(S_k)_{k\in K} \equiv (S'_k)_{k'\in K'}$ and $T \equiv T'$.
 - $(S_k)_{k \in K} \equiv (S'_k)_{k \in K'}$ if there is a bijection $\rho : K \to K'$ s.t. $\forall k \in K, \ S_k \equiv S'_{\sigma(k)}$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

We set Types *M* = Types / ≡.
 The set of multiset types is STypes / ≡.

- ► The relation = (between types or seq. types) is defined coinductively:
 - $\blacktriangleright \ \alpha \equiv \alpha.$
 - $(S_k)_{k\in K} \to T \equiv (S'_k)_{k\in K'} \to T'$ if $(S_k)_{k\in K} \equiv (S'_k)_{k'\in K'}$ and $T \equiv T'$.
 - $(S_k)_{k \in K} \equiv (S'_k)_{k \in K'}$ if there is a bijection $\rho : K \to K'$ s.t. $\forall k \in K, \ S_k \equiv S'_{\sigma(k)}$.
- We set Types *M* = Types / ≡.
 The set of multiset types is STypes / ≡.
- ➤ To obtain System *M*, take the rules of *M*₀ coinductively (with those types and multiset types).