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TYPING RULES OF M0 (GARDNER/DE CARVALHO)
Types (τ, σi): τ, σi := α ∈X | [σi]i∈I → τ .

Context (Γ,∆): assigns intersection types to variables.

ax
x : [τ ] ` x : τ

Γ, x : [σi]i∈I ` t : τ
abs

Γ ` λx.t : [σi]i∈I → τ

Γ ` t : [σi]i∈I → τ (∆i ` u : σi )
i∈I

app
Γ +

∑
i∈I

∆i ` t(u) : τ

Remark

I Multiset equality: [σ, τ, σ] = [σ, σ, τ ] 6= [σ, τ ]

I Multiplicative rules: accumulation of typing information .

I Possibility to forget the argument (empty multiset).
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ALTERNATIVE PRESENTATION

Standard presentation

ax
x : [[α, β, α]→ α] ` x : [α, β, α]→ α

ax
x : [α] ` x : α

ax
x : [β] ` x : β

ax
x : [α] ` x : α

app
x : [α, β, α, [α, β, α]→ α] ` xx : α

abs
` λx.xx : [α, β, α, [α, β, α]→ α]→ α

[α, β, α]→ α α

x

β

x

α

@

λx

λx.xx
[α, β, α, [α, β, α]→ α]→ α
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ALTERNATIVE PRESENTATION

Alternative presentation

I Indicate the arity of
application rules.

I Indicate the types given in
axiom leaves.

I Compute the type of the
term.

x

[α, β, α]→ α

x

α

x

β

x

α

@

λx

λx.xx
[α, β, α, [α, β, α]→ α]→ α

Where does this α come from?

From this axiom rule? Or this one?
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SUBJECT REDUCTION PROPERTY FOR M0

If Π B Γ ` t : τ and t→ t′, then ∃Π′ B Γ ` t′ : τ

Vocabulary:
We say each association (between x-axiom leaves and arg-derivations)
yields a derivation reduct Π′ typing r[s/x].
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Πr
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SUBJECT REDUCTION PROPERTY FOR M0

If Π B Γ ` t : τ and t→ t′, then ∃Π′ B Γ ` t′ : τ

Observation:
If a type σ occurs several times in [σi]i∈I , there can be several associations,
each one yielding a possibly different derivation reducts Π′.

(λx.r)s→ r[s/x]

Πr

Γ ` r : τ+
∑
i∈I

∆i [s/x]

σi

( )i ∈ IΠi

∆i ` s :
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NORMALIZABILITY RESULTS

Proposition
A term is HN iff it is typable in M0.

Proposition
A term is WN iff it is typable in M0 by using an unforgetful
judgment.

Definition
A judgement Γ ` t : τ is unforgetful if there is no negative
occurrence of [ ] in Γ and no positive occurrence of [ ] in τ .

I [ ] occurs negatively in [ ]→ τ

I If [ ] occurs negatively in σ2 then [ ] occurs positively in [σ1, σ2, σ3]→ τ
and so on.
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∞-TERMS

Variable x

x

Abstraction λx.u

u

0

λx

Application u v

2

v

1

u

@

I Position: finite sequence in {0, 1, 2}∗, e.g. 0 · 0 · 2 · 1 · 2.

I Applicative Depth (a.d.): number of↗-edges e.g.

ad(1 · 2 · 2 · 0 · 2 · 1 · 2) = 4
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001-TERMS

Λ001: the set of∞-terms t s.t.:

b is an infinite branch of t⇒ ad(b) =∞.

f ω := f (f (f (. . .)))

i.e. fω = f (fω) (fixpoint)

f

@f

@f

@f

@f

@

Infinite rightward
branch
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•b0 (leaf)

I Start from
b ∈ supp(t)

I Move ↑ or↖
I A leaf b0 must

be reached
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Definition
A reduction sequence t0

b0→ t1
b1→ t2

b2→ . . .
bn−1→ tn

bn→ . . . is strongly
converging if it is of finite length or if limad(bn) =∞.
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INFINITARY SUBJECT EXPANSION

I How do we perform∞-subject expansion on Π′ (typing fω)?

I Π′, that types fω , cannot be expanded (yet).
I Π′n, that also types fω , cannot be expanded (yet).
I But Πk

n, that types f k(∆f ∆f ), can be expanded.
I Πk

n yields a derivation Πn typing ∆f ∆f (after k exp-steps).
I We can build a “join” of the Πn, thus producing an infinite unforgetful

derivation Π typing ∆f ∆f .

I Derivation Π features a type γ coinductively defined by the
fixpoint equation γ = [γ]ω → α.

I Type γ allows to type ∆∆. Need for a validity criterion.
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APPROXIMABILITY (HEURISTIC)

I Informally, see a derivation Π as a set of symbols (type variables
α or→ that we found inside each jugdment of P).

I A (finite) approximation fΠ of a derivation Π is a finite subset of
symbols of Π which is itself a derivation. We write fΠ 6 Π.

I A derivation Π is said to be approximable if for all finite subset
B of symbols of Π, there is an approximation fΠ 6 Π that
contains B.
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NON-DETERMINISM AND TRUNCATION

(λx.r)s

f

σ1
· x#1

f

σ2
· x#2

f

Πr

λx

@

f

Π1

f

σ1

f

Π2

f

σ2

Truncation possibily af-
fects every type nested
inside Π.

Assume σ1 = σ2.

I Possible in Π:
#1 7→ Π2,#2 7→ Π1

I If fσ1 6= fσ2, not in fP.

Assume σ1 6= σ2

I Not possible in Π:
#1 7→ Π2,#2 7→ Π1

I If fσ1 = fσ2, possible in fP.
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TYPES OF S

I Type (metavariable S,T): coinductive grammar

Sk,T ::= α ∈X | (Sk)k∈K → T

I Sequence Type:

I Intersection type replacing multiset types.
I F = (Tk)k∈K where Tk types and K ⊂ N− {0, 1}.

I Example (Sequence Type): (Tk)k=2,3,8 with T2 = T8 = S and T3 = S′.

F = S S′ S
8 3 2 argument tracks (2, 3, 8)

I Example (Arrow Type): .

1

S S′ S

T

→
root ε
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DERIVATIONS OF S

The set Deriv of rigid derivations is coinductively generated by:

ax
x : (T)k ` x : T

C ` t : T abs
C− x ` λx.t : C(x)→ T

C ` t : (Sk)k∈K → T (Dk ` u : Sk )k∈K
app

C ∪
⋃

k∈K
Dk ` t u : T

I For the app-rule: syntactic equality.

I Warning !
If Rt(C) and the Rt(Dk) are not pairwise disjoint, contexts are
incompatible.

I Parsing: premise of abs on tr. 0, left premise of app on tr. 1.
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RIGID DERIVATION (EXAMPLE)

x

[α, β, α]→ α

x

α

(

α

)5

x

β

(

β

)8

x

α

(

α

)2

@

λx

λx.xx
[α, β, α, [α, β, α]→ α]→ α

(8 · β, 5 · α, 4 · (8 · α, 5 · α, 3 · α), 2 · α)→ α
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MAIN FEATURES

I Subject reduction is deterministic:

I Assume P types (λx.r)s. If there is an axiom rule typing x on track 5
(#5-ax), by typing constraint, there will also be an argument derivation P5

typing s on track 5, concluded by exactly the same type S5
I During reduction, #5-ax will be replaced by P5, even if there are other Pk

concluded by S = S5

I Trackability: every symbol used inside P can be pointed at
univocuously. Notion of biposition.
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Right biposition (a, c)

Right of `
I c ∈ supp(T)

I (Tk)k∈K := C(x)
I k ∈ K and c ∈ supp(Tk).
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BISUPPORT OF A DERIVATION

P A := supp(P) ⊂ N∗

C ` t : T
•

pos. a

Bisupport of P: the set of (right or left) bipositions
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APPROXIMABILITY

I Every symbol inside a rigid derivation P has a biposition (a
position pointing inside a type nested in a judgment of P).

I A finite part B of P is finite subset of bisupp(P).

I A finite approximation of P is a (finite) derivation induced by P
on a finite part of P.

I A rigid derivation P is said to be approximable if for all finite
part B of P, there is a finite approximation fP 6 P s.t. fP contains
B.
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CHARACTERIZATION OF INFINITARY WN

Theorem
A 001-term t is WN iff t is unforgetfully typable by means of an
approximable derivation.

Argument 1: If a term is typable by an approximable derivation, then
it is head normalizing. Unforgetfulness makes HN hereditary.
Argument 2: Subject reduction holds for s.c.r.s. (with or without
approximability condition).
Argument 3: Every NF can be typed by quantitative unforgetful
derivations and every quantitative derivation typing a NF is
approximable.
Argument 4: Subject expansion property holds for s.c.r.s. (assuming
approximability only).
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FUTURE WORK?

I Representation Theorem: every M -derivation is the collapse of
a S-derivation (already done, HOR 2016).

I Can we reformulate approximability ?

I Can infinitary Strong Normalization be characterized ?

I Is every term typable in S (without approximability) ?
Yes ! S is completely unsound (difficult because of relevance).

I Categorical Adaptation of this framework (ongoing work with D.
Mazza and L. Pellisier).
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QUESTIONS

Thank you for your attention !
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EXPANDED DERIVATIONS

Πn =

[α]→ α
([ ]→ α if n = 1)

γn−1 γn−2 γ1

γn

γn−1 γ1

@

λx

n−1

@

f @
n−2

x x x

Ψn−1 Ψ1

I Ψn is the left subderivation.
I γ1 = [ ]→ α and γn = [γi]16i6n−1 → α.
I Πn is the n-expanded of Πn

n, the (n + 1)-expanded of Πn+1
n ,..., the

∞-expanded of Π′n.
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EXPANDED DERIVATIONS

Π =

[α]→ α

γ γ γ

γ

γ γ

@

λx

ω

@

f @
ω

x x x

Ψ Ψ

I Ψ is the left subderivation.
I γ = [γ]ω → α.

I Πn is the n-expanded of Πn
n, the (n + 1)-expanded of Πn+1

n ,..., the
∞-expanded of Π′n.
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SYSTEM M

I The relation ≡ (between types or seq. types) is defined
coinductively:

I α ≡ α.
I (Sk)k∈K → T ≡ (S′k)k∈K′ → T′ if (Sk)k∈K ≡ (S′k)k′∈K′ and T ≡ T′.
I (Sk)k∈K ≡ (S′k)k∈K′ if there is a bijection ρ : K→ K′ s.t. ∀k ∈ K, Sk ≡ S′

σ(k).

I We set TypesM = Types / ≡.
The set of multiset types is STypes / ≡.

I To obtain System M , take the rules of M0 coinductively (with
those types and multiset types).
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