Algebra and Coalgebra in the Light Affine Lambda Calculus

Marco Gaboardi Suny Buffalo Romain Péchoux Université de Lorraine

Computability Complexity

Lambda Calculus

Computability Complexity

Lambda Calculus

Computability Complexity

> PTIME NPTIME LALC RSLR LOGSPACE INTML STA PSPACE BPP DLAL

Lambda Calculus

Computability Complexity **NPTIME** LALC RSLR **PTIME** INTML STA LOGSPACE **PSPACE** DLAL **BPP Implicit Complexity**

Computability Complexity

PTIME NPTIME LALC RSLR LOGSPACE INTML STA PSPACE BPP DLAL

Turing Machines

Lambda Calculus

(Light Affine Lambda Calculus)

Resource Analysis

Resource Analysis

Efficient arithmetic implementation

Resource Analysis

Efficient arithmetic implementation

Computational Indistinguishability

PTIME

Soundness: every LALC program can be run in polynomial time.

Completeness every PTIME Turing Machine can be expressed in LALC.

PTIME

Soundness: every LALC program can be run in polynomial time.

Completeness every PTIME Turing Machine can be expressed in LALC.

Expressivity?

Our research question: Can we express Algebra and Coalgebra in LALC ?

1 - Weak notions of Algebras and Coalgebras can be encoded in LALC.

- 1 Weak notions of Algebras and Coalgebras can be encoded in LALC.
- 2 Data types:
 - Inductive typesCoinductive types

- 1 Weak notions of Algebras and Coalgebras can be encoded in LALC.
- 2 Data types:
 - Inductive typesCoinductive types
- 3 LALC restrictions can be relaxed to achieve more expressivity for coinductive types.

LALC ⊂ Linear (Affine) System F

LALC ⊂ Linear (Affine) System F

Main Idea

A - B

$A \rightarrow B =$

!A**──**§B

LALC ⊂ Linear (Affine) System F

Main Idea

 $A \rightarrow B$

A non iterative function

A function using its argument only once

!A**──**§B

LALC ⊂ Linear (Affine) System F

Main Idea

A - B

 $A \rightarrow B =$

an iterative function -! needed for duplication § placeholder witnessing duplication

Iterators in LALC

 $\mathsf{IT}: \forall \mathsf{a}.!(\mathsf{a}--\mathsf{o}\mathsf{a})--\mathsf{o}\S(\mathsf{a}--\mathsf{o}\mathsf{a})$

Iterators in LALC

 $IT: \forall a.!(a - a) - \frac{a}{9}(a - a)$

IT A (step: A — A)

Iterators in LALC

 $IT: \forall a.!(a - a) - \frac{a}{9}(a - a)$

IT A (step: A - A) IT A (step: !A - SA)

Algebras and Coalgeb

Algebra

Coalgebra

Algebras and Coalgeb

Algebra

Coalgebra

Algebras and Coalgeb

Algebra

Coalgebra

Examples

	Initial Algebra	Final Coalgebra
F(-) = 1 + (-)	Ν	N ∪ {∞}
$F(-) = 1 + A \times (-)$	A^*	A∞
$F(-) = 1 + A \times (-) \times (-)$	-) T*(A)	T∞(A)

Theorem [Reynolds, Plotkin, Geuvers, ...]: Given F expressible in the polymorphic LC:

- : there exists a weakly initial F-Algebra
 - there exists a weakly final F-Coalgebra

Theorem [Reynolds, Plotkin, Geuvers, ...]: Given F expressible in the polymorphic LC:

- there exists a weakly initial F-Algebra
- there exists a weakly final F-Coalgebra

Wraith-Wadler encoding:

 $\mu a.Fa = ∀a.(Fa → a) → a$ va.Fa = ∃a.(a → Fa) * a

Theorem [Reynolds, Plotkin, Geuvers, ...]: Given F expressible in the polymorphic LC:

- there exists a weakly initial F-Algebra
- there exists a weakly final F-Coalgebra

Theorem [Reynolds, Plotkin, Geuvers, ...]: Given F expressible in the polymorphic LC:

- there exists a weakly initial F-Algebra
- there exists a weakly final F-Coalgebra

in : F(µa.Fa) → µa.Fa in = λ s. λ k. k (F (fold k) s) fold : \forall b. (Fb → b) → µa.Fa → b fold = λ f. λ t. t f

$$\mu a.Fa = \forall a.!(Fa - a) - §a$$

Let's change the type!

in : $F(\mu a.Fa) - \mu a.Fa$ in = $\lambda s.\lambda k.\S k$ (F (fold !k) s) fold : $\forall b.!(Fb - b) - \mu a.Fa - \S b$ fold = $\lambda f.\lambda t. t !f$

in : F(µa.Fa) **-**→ µa.Fa fold : ∀b.!(Fb **-**→b) **-**→µa.Fa **-**→§b

Weakly-Initial algebra under §

in : F(μa.Fa) — μa.Fa L_F:∀b.F<mark>§</mark>b — <mark>§</mark>Fb fold :∀b.!(Fb — b) — μa.Fa — §b

Weakly-Initial algebra under § IN F(µa.Fa)-→µa.Fa fold !f F (fold !f) Left distributivity in : F(μa.Fa) — μa.Fa L_F: ∀b. F§b — §Fb fold : ∀b.!(Fb → b) → µa.Fa → §b

Weakly-Final coalgebra under §

out : va.Fa — F(va.Fa) R_F:∀b.§Fb — F§b unfold:∀b.!(b—Fb)—§b— va.Fa

va.Fa = ∃a.!(a — Fa)⊗§a

Weakly-Final coalgebra under § out →F(va.Fa) va.Fa F(unfold !f) unfold !f <mark>§f</mark> ──→ <mark>§</mark>FB− R_{F} ≻ F<mark>§</mark>B §B **Right distributivity** out : va.Fa — F(va.Fa) va.Fa = ∃a.!(a — Fa)⊗§a R_F:∀b.§Fb ─ F§b unfold: $\forall b.!(b \rightarrow Fb) \rightarrow b \rightarrow va.Fa$

● Which Functor satisfies L_F:∀b. F§b — §Fb ?

 $F(-) = 1 \oplus F(-) = 1 \oplus A \otimes F(-) = 1 \oplus A \otimes - \otimes -$

● Which Functor satisfies L_F:∀b. F§b — §Fb ?

● Which Functor satisfies R_F: ∀b. §Fb → F§b

 $F(-) = 1 \oplus F(-) = 1 \oplus A \otimes F(-) = 1 \oplus A \otimes - \otimes -$

● Which Functor satisfies R_F: ∀b. §Fb — F§b

$$\begin{array}{l} \times & F(-) = 1 \oplus - \\ \\ \times & F(-) = 1 \oplus A \otimes - \\ \\ \times & F(-) = 1 \oplus A \otimes - \otimes - \end{array}$$

Where is the problem?

The modality § does not commute with the other type constructions!

Where is the problem?

The modality § does not commute with the other type constructions!

Solution: make § to commute

Adding terms for distributivity

We can add to LALC the following terms:

dist_{\oplus} : §(A \oplus B) **—o** §A \oplus §B dist_{\otimes} : §(A \otimes B) **—o** §A \otimes §B dist_⊕ §(inj t) → inj §t

 $dist_{\otimes} \S(\langle t_1, t_2 \rangle) \rightarrow \langle \St_1, \St_2 \rangle$

Adding terms for distributivity

We can add to LALC the following terms:

 $dist_{\oplus} : \S(A \oplus B) \longrightarrow \SA \oplus \SB$

dist_⊕ §(inj t) → inj §t

 $dist_{\otimes}$: $(A \otimes B) - S \otimes S \otimes S$

 $dist_{\otimes} \S(\langle t_1, t_2 \rangle) \rightarrow \langle \St_1, \St_2 \rangle$

They require the evaluation of terms inside a § Problem: this breaks polynomial time soundness.

Adding terms for distributivity

We can add to LALC the following terms:

 $dist_{\oplus} : \S(A \oplus B) \longrightarrow \SA \oplus \SB$

dist_⊕ §(inj t) → inj §t

 $dist_{\otimes}$: $(A \otimes B) - S \otimes S \otimes S$

 $dist_{\otimes} \S(\langle t_1, t_2 \rangle) \rightarrow \langle \St_1, \St_2 \rangle$

They require the evaluation of terms inside a § Problem: this breaks polynomial time soundness.

New (quite technical) proof in the paper!

● Which Functor satisfies R_F: ∀b. §Fb → F§b

 $F(-) = 1 \oplus F(-) = 1 \oplus A \otimes F(-) = 1 \oplus A \otimes - \otimes -$

● Which Functor satisfies R_F: ∀b. §Fb — F§b

✓
$$F(-) = 1 \oplus -$$
✓ $F(-) = 1 \oplus A \otimes -$
✓ $F(-) = 1 \oplus A \otimes - \otimes -$

● Which Functor satisfies R_F: ∀b. §Fb → F§b

✓
$$F(-) = 1 \oplus -$$
✓ $F(-) = 1 \oplus A \otimes -$
✓ $F(-) = 1 \oplus A \otimes - \otimes -$

We can encode streams and trees at every finite type

Take out?

- Algebras and Coalgebras encodings make sense also for polynomial time languages,
- Due to the restrictive nature of languages for implicit complexity their definitions can be a bit more tricky,
- The expressivity may still depend on the restrictions of the language.