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Rice’s Theorem

A cornerstone of computability.

Theorem (Rice, ’53)

Any non-trivial and extensional set of programs is undecidable.

extensional: do not separate programs computing the same
function: p ∈ P, q /∈ P ⇒ JpK 6= JqK.

Proof.

p 6= infinite loop, p ∈ P, loop /∈ P.
q′(x) = q(0); p(x).
q′ ∈ P ⇔ q(0) terminates.
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The power of Rice

Rice’s Theorem allows to prove undecidability of a wide range
of sets of programs:

programs which (don’t) terminate on input 0;

programs which return 42 on input 54;

programs which return an even result on any prime input;

programs computing a total function;

programs computing a bijection;

. . .

But it cannot be used for intensional sets that depend on
program behaviour (complexity, . . . )
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Extensional equivalence

“Extensionality” of sets defines an equivalence on programs, the
extensional equivalence (or Rice’s equivalence):
pRq⇔ JpK = JqK.

Rice’s Theorem now state that:

R is undecidable;

any equivalence less precise than R is undecidable.

Theorem (Rice, again)

Any non-trivial set of programs which is the union of classes of
R is undecidable.

What about equivalences more precise than R?
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The semantics tunnel (1)
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Asperti-Rice’s Theorem

A first intensional version of Rice’s Theorem.
pAq⇔ JpK = JqK and cplx(p) = Θ(cplx(q)) (“clique”)

Theorem (Asperti, ’08)

Any non-trivial set of programs which is the union of classes of
A is undecidable.

The set of programs computing the sorting function in
polynomial time.

Proof: Same as Rice!

p not equivalent to infinite loop. q′(x) = q(0); p(x).
If q(0) terminates, it does so with a fixed complexity so p and
q′ have the same complexity up to an additive factor.
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The semantics tunnel (2)

R

same f , same time

A

same f , same space

Rice: undecidable

Asperti: undecidableWhen does it become decidable?
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The equivalences lattice
Not the subject of today’s talk!

The set of all equivalences
is a complete lattice.

⊥: equality, >: one class
with everything.

Rice: nothing in the
principal filter at R is
decidable.

Asperti: nothing in the
principal filter at A is
decidable.

>

⊥

Rice: not decidable Asperti: not decidable

Complicated and interesting structure.
Ongoing works with J. G. Simonsen and J. Avery.
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Today’s talk

Two generalisations of Rice’s Theorem relaxing the
extensionality condition.

1 Rather than searching equivalences more precises than R,
keep it but consider sets that are not just union of classes.

2 Try the same approach with a wide range of others
equivalences.
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Under- and over- approximations

Programs

Programs computing a
Ptime function

is not PPtime, the set of polytime programs. It is
undecidable by Rice’s Theorem.

Can be decidable and “small enough”?
Upper bound: p ∈ ⇒ JpK ∈ Ptime.
Lower bound: p /∈ ⇒ JpK /∈ Ptime.
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Under-approximations, e.g.
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function.
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Vocabulary

A set of programs is:

non-trivial if it is neither empty, nor the set of all programs.

extensional if it is the union of classes of R;

partially extensional (for F ) if it contains all the programs
with JpK ∈ F (over approximation).

extensionally complete (for F ) if it contains one program
for each f ∈ F .

extensionally sound (for F ) if it contains only programs
with JpK ∈ F (under approximation).

an ICC characterisation (of F ) if it is both extensionally
sound and complete for F .

extensionally universal if it is extensionally complete for
the set of computable partial functions.
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Rice’s and Asperti-Rice’s Theorems
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First Result

Theorem

Any non-empty, partially extensional and decidable set is
extensionally universal.

Example

A = { p : JpK (0) = 0 }
B = { p : JpK (0) /∈ {0,⊥}}

}
recursively inseparable

Proof.

P decidable, partially extensional for JpK, P contains no
program for JqK.
r’(x) = if r(0)=0 then p(x) else q(x)

JrK (0) = 0⇒ r’ ∈ P
JrK (0) /∈ {0,⊥} ⇒ r’ /∈ P

}
recusively separated by P.
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Examples

Theorem

Any non-empty, partially extensional and decidable set is
extensionally universal.

Example

A decidable set containing all programs for the identity also
contains programs for constant functions, the infinite loop,
sorting, SAT, deciding correctness of MELL proof nets, . . .

Example (Rice)

Any non-empty extensional set is partially extensional. Hence,
if decidable, must be extensionally universal, and thus trivial.
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Examples

Theorem

Any non-empty, partially extensional and decidable set is
extensionally universal.

Example

Any computable function is computed by infinitely many
programs: a finite set is decidable, hence if partially extensional
would be extensionally universal.

Example

Any computable function is computed by programs of
arbitrarily large size.
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Example

Theorem

Any non-empty, partially extensional and decidable set is
extensionally universal.

Example

Any decidable set containing all programs for Ptime functions
contains programs for any computable function.

Programs

Programs computing a
Ptime function

Over-approximation
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Rice’s and Asperti-Rice’s Theorems
First generalisation

Second generalisation

Switching families

Definition

(S,≈): a set and an equivalence.
switching family compatible with ≈: a family I = (πs)s∈S of
computable total functions πs : S × S → S

AI = { s ∈ S : ∀x, y.πs(x, y) ≈ x }
BI = { s ∈ S : ∀x, y.πs(x, y) ≈ y }

}
recursively inseparable.

Example

Projections can form a switching family.

Example (Standard switching family)

r′(x) = πr(p, q)(x) = if r(0)=0 then p(x) else q(x).
Compatible with R (and many others).
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Vocabulary

P: equivalence on programs. A set of programs is:

extensional compatible if it is the union of blocks of P;

partially extensional partially compatible if it contains one
block of P;

extensionally complete complete (for a set of blocks) if it
intersects each of these;

extensionally sound

an ICC characterisation

extensionally universal universal if it interesects each single
block of P.
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Second Result

Theorem

Let P be a partition of a set S and I = (πs)s∈S be a switching
family compatible with it.
Any non-empty decidable partially compatible subset of S is
universal.

Proof.

[x] ⊂ S′, [y]
⋂
S′ = ∅ s′ = πs(x, y)

πs(x, y)Px⇒ s′ ∈ S′

πs(x, y)Py ⇒ s′ /∈ S′

}
recursively inseparable.
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Example (1)

Theorem

Any non-empty decidable partially compatible set of programs is
universal.

Example (Complexity)

Φ: complexity measure (Blum). p ≡Φ q iff Φp ∈ Θ(Φq).

The standard switching family is compatible with ≡Φ.
r′(x) = πr(p, q)(x) = if r(0)=0 then p(x) else q(x).
when r(0) terminates it does so with a constant complexity.

Any non-empty decidable set of programs partially compatible
with ≡Φ is universal and must contain programs of arbitrarily
high complexity.
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Example (2)

Theorem

Any non-empty decidable partially compatible set of programs is
universal.

Example (Polynomial time)

Φ: time complexity. PPtime: set of polytime programs (not
all programs computing Ptime functions); it is undecidable and
partially compatible with ≡Φ.

Any decidable set of programs including all polytime programs
also includes programs of arbitrarily high time complexity.

Any attempt at finding a decidable over-approximation of
PPtime is doomed to also contain many extremely “bad”
programs.
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Polytime programs
Over-approximation
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Programs
Polytime programs
Over-approximation

“good” sort
“bad” sort

exponential
not PR
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Example (2)

Programs
Polytime programs
Over-approximation

“good” sort
“bad” sort ?

exponential
not PR
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Example (3)

Theorem

Any non-empty decidable partially compatible set of programs is
universal.

Example (Linear space (not closed under composition))

Φ: space complexity. PLinSpace: set of programs computing
in linear space; it is partially compatible with ≡Φ.

Any decidable set of programs including all linear space
programs also contains programs of arbitrarily high space
complexity.
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Example (Asperti-Rice)

Theorem

Any non-empty decidable partially compatible set of programs is
universal.

Example (Asperti-Rice)

The standard switching family is compatible with A = R
⋂
≡Φ.

Any decidable non-empty set partially compatible with A is
universal.

Especially, the only decidable unions of blocks of A are the
trivial ones.
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Going further

Example (Spambot)

p ≡ q if they send the same number of mails (not a Blum
complexity measure). The standard switching family is
compatible with it.

Any decidable set containing all the programs that never send
mail also contains spambots.

Other equivalences?

Other switching families?
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