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The puzzle

Can you choose:

a programming language, Pgms;

a Gödel’s numbering, ε, for it;

a binary operator, F, on it;

such that the induced operator, F, on numbers is “as simple as
possible”?

Sequential composition: S (on programs), S (on numbers).
Parallel composition: P,P.
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Compositions

What is a “sequential composition” operator on programs?

Something that behaves as expected with respect to semantics!

S(p, q) = r with JrK = JpK ◦ JqK

Same goes with (non-deterministic, no communication) parallel
composition:

JP(p, q)K = JpK || JqK
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Commutativity

If S (on number) is commutative, then so must be S (on
programs). (because ε is a morphism)

ε(S(p, q)) = S(ε(p), ε(q)) = S(ε(q), ε(p)) = ε(S(q, p))

By injectivity: S(p, q)) = S(q, p).

Addition is commutative. Sequential composition is not
commutative (because ◦ is not). Therefore, there is no Gödel
encoding and sequential composition such that S is addition.
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Associativity

Sequential composition may be not associative: we’re on the
syntactical level, so {{x++;y++};z++} and {x++;{y++;z++}}
are two different commands (strings).

But since ◦ is associative, associative sequential composition
operator do exists.

Theorem (Bell, 1936): the only associative polynomials with 2
variables are the projections and
P (X,Y ) = a + b · (X + Y ) + c ·XY .

Sequential composition cannot be a projection. The other
solution is commutative.

There is no Gödel encoding and associative sequential
composition such that S is a polynomial.
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Other functions

Theorem (Aczèl, 1948): a function on the real numbers is
continuous, strictly increasing and associative iff it has the
shape

M(x, y) = f−1(f(x) + f(y))

Especially, it is then commutative.

There is no Gödel encoding and sequential composition such
that S can be extended as a continuous, strictly increasing and
associative function.

One extension with the property is enough!

Thus, we need infinitely many discontinuities (or decreases) in
all the possible extensions to the reals.
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Concatenation

It is possible to design a language and an encoding such that
concatenation (of the programs, or the binary encodings) is a
sequential composition.

Idea: assembly like language, one designed input-output register
(must reset all other to 0 before ending), only relative jumps,
encoding with leading ’1’ everywhere.

Concatenation is x, y 7→ x× 2blog yc+1 + y, roughly equal to
(2x + 1) · y. Simple, and polynomially bounded!
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Distributivity

Parallel composition can be commutative, so we cannot rule out
addition so easily.

On functions, sequential composition is distributive over
parallel composition:

f ◦ (g || h) = (f ◦ g) || (f ◦ h)

Thus, there exist sequential composition operators which are
distributive over a parallel composition operator.

There is no operation on the natural number that is distributive
over multiplication.

Therefore, parallel composition cannot be multiplication (if
there is a sequential composition distributing over it).
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It’s all about functions

(Pgms,F) (N,F)

(C, F̂) (C, F̂)

ε

J•K

ε̂

[•]

Sequential composition: Ŝ = ◦, parallel composition: P̂ =||.
P̂ is compatible with J•K:

JpK =
q
p′

y
⇒

r
P̂(p, q)

z
=

r
P̂(p′, q)

z
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Computable functions

(Pgms,P) (N,P)

(C, P̂) (C, P̂)

ε

J•K

ε̂

[•]

J•K is the extensional equivalence, it must have the same
structure as [•], especially P must be compatible with [•].
Equivalences on the natural numbers compatible with addition
have finitely many non-singleton classes. J•K has infinitely many
infinite classes.

Therefore, there is no Gödel encoding and parallel composition
such that P is addition.
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