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Motivation

+ worst-case time-complexity analysis of functional programs

« analysis should be intensionally strong, precise, amendable to
automation and modular



Example

f :: List Int — List Int — List (Int x Int)
f ms ns = filter (/=) (product ms ns)

product :: Vaf. List @ — List § — List (a x 3)
product ms ns = foldr (A m ps. foldr (A n. Cons (n,m)) ps ns) Nil ms

filter :: Va. (. — Bool) — List o« — List «
filter p Nil = Nil
filter p (Cons x xs)= if p x
then Cons x (filter p xs)
else filter p xs

foldr :: Vaf. (¢ = f — ) —» f — Lista — 8
foldr f b Nil =b
foldr f b (Cons x xs)= f x (foldr f b xs)
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foldr (o) b [ej,ez,...,en] =e€10(e20(...(enob)...))
complexity depends very much on how (o) uses its arguments

1. foldr append Nil [ej, e, ..., €p]

= complexity O(n - m), where m binds length of e;’s
2. foldr (flip append) Nil [e,eq,. .., €p]

= complexity O(3>1-)i- m) = O(n* - m)
3. foldr (Ae.Cons (append xs e)) Nil [e, e, .., €p]

= complexity O(k - n) where k is the length of xs.

size analysis crucial step in runtime analysis

complexity depends not only on arguments, but also
on the environment



Sized-types

1. annotate datatypes with sizes

List; «, Listy a, Lists o, . ..

2. extended type system that
enables reasoning about sizes

append :: Vij. List; a — Listj @ — Listjj «

3. inference generates set of
constraints, solved by external

tool (e.g. SMT solver)
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From sized-types to time complexity

idea: instrument program to compute complexity
(r—=p = (1) =>N=({p)xN)

foldrs :: Vap. (o« — 8 — B) — (B) — (List a) = N — ({(5) x N)
foldrs fbNil t = (b,Succt)
foldrs fb (Cons x xs) t = let (e;,t;) = foldrs fbxst
in let (62, tg) :fx 5]
in let (63, tg) =e9 ey by
in (83, Succ tg)

foldr; :: Vaf. (aa —»  — ) - N — ({( — List a — ) x N)
foldr; ft = (foldrs f, t)

foldry :: Vafs. (o« — f — ) — (B) = N — ((List « — ) x N)
foldry fbt = (foldrsfb,t)



Practical sized-type analysis (i)

- consider reversal of lists:

rev :: Va. List o — List a — List v
rev Nil ys=ys
rev (Cons X XS) ys = rev xs (Cons X ys)

« usual let-polymorphism requires that recursive call is typed under
monotype, ...

- in sized-type setting, types of e.g. second argument changes from
List; a to Listj 1 o
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rev :: Vo List  — List o — List «
rev Nil ys=ys
rev (Cons X XS) ys = rev xs (Cons X ys)

« usual let-polymorphism requires that recursive call is typed under
monotype, ...

- in sized-type setting, types of e.g. second argument changes from
List; a to Listj 1 o

extension @: type recursive calls with type polymorphic in size indices
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Practical sized-type analysis (ii)

consider higher-order combinator twice:

twice :: Va. (a ) > a0 — «
twice fx = f (fx)
+ term twice Succ, where Succ :: Vi.N; — Nj;1, cannot be typed

- even when specializing « to N, type in prenex form not enough

twice i1 Vij. (Nj — Nj-‘rl) — Nj = Njj2

concerns all function that use functional argument more than
once, in particular recursive higher-order functions

extension @: arbitrary-rank index polymorphic
twice :: Vi. (Vj.Nj — Nj+1) — Nj — Njjo
foldr : Vklm(Vle, — Lj — Lj—i—k) — L = Lm = Lemas



Sized-types revisited

Computational model

(simple types) 7,p::=B base type

| 7 X p pair type

|7 —p function type
(expressions) s t =1 variable

|£7 function

| CT constructor

| (sT7PET)P application

| (s7H,t™2)T X pair

| (let s™ %™ be (2™, y™) in t’)? pair destructor
(patterns) pu=a | (CTTTTTE pTt . pln)E

T

(equations) ex=(fp1---pn) =S5

- program P is set of non-overlapping, left-linear equations



Sized-types revisited

computational model

« call-by-value reduction semantics



Sized-types revisited

computational model

« call-by-value reduction semantics

« plain simple types, e.g. NatList instead of List N, for simplicity

- extension to polymorphic setting straight forward
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computational model

« call-by-value reduction semantics

« plain simple types, e.g. NatList instead of List N, for simplicity

- extension to polymorphic setting straight forward

 no conditionals, case-expressions, A\-abstractions ...

- does not improve expressiveness of our language
- again straight forward to incorporate
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Sized-types revisited

ingredients
(type) T,p =By indexed base type
| 7% p pair type
|o— T function type
(schema) ocu=Bg|Vioc—T
(size index) a,b:=i index variable
| flai, ..., ag) function application

+ we suppose functions are uncurried, to simplify notions

- quantification to the right of arrow does not add in strength

« meaning to index functions f given by a weakly monotonic
interpretation [f] : Nk — N



Type-checking

auxiliary notions

« each function £ declared by one or more closed schemas o, in
notation £ :: o, obeying to the following restrictions:

1. datatypes to the left of arrow annotated by variables
half :: Vi.No; — N; = half :: Vi.N; — N/
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Type-checking

auxiliary notions

« each function £ declared by one or more closed schemas o, in
notation £ :: o, obeying to the following restrictions:

1. datatypes to the left of arrow annotated by variables
half :: Vi.No; — N; = half :: Vi.N; — Ni/2
2. all these variables must be pairwise distinct
fuViNg=> N =7 = fuVijN >N =7
3. schema closes over all variables occurring in negative position
guVij.(Nj=Niy) =7 = guV.(Vi.N;—= Ny =7
« constructor declarations count, e.g.
Succ :: Vi. Nj = Njyq
« typing judgement are of the form

L1101, ,Ipn:0p ST



Type-checking

excerpt

la] < [b] o2 o mEm T C 72{a/f} T€ FV(‘v’f.Tg)

Bg C By or =1L oy =1 VT\.TlgVT.TQ

Figure: subtyping.

I(z) = Vir £ Vi
Ut z:r{d/i} U+ f:7{d/i}

Pks:(Vip)—=7 Dhkt:p i€FVQD) F'ks:p pC7T
FEst:7 'tEs:7

Figure: type-checking.
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Subject reduction

Definition

A program P is well-typed if for all equations £ p; --- p, = r of P,
Pbppfpr--pn:7 = I'kr:7,

holds for all contexts I" and types .

« the footprint judgement assigns to terms “most general” type, e.g.,
X:N,xs:L;,ys:L; gp append (Cons X XS) ys @ L(jy1)4;
where append :: Vij. Lj — Lj — Liy;

« it can be understood as a function footprint(s) := (I', )

Theorem (Subject reduction)

Suppose P is well-typed. If- s : 7 and s — t then -t : 7.
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Inference

overview
+ index language extended with second-order index variables A

a:=il|flay,...,a) |A

second-order index variable A represents index term

input simply-typed program

concatMap:: (N —- L) —-L—L lam: (N—L) - N-—=>L—1L
concatMap f = foldr (lamf) Nil 1lam fx = append (f X)

outputs

1. size-annotated type declarations
2. semantic interpretation functions [-]



Inference

step @: annotation
decorate simple types with uninterpreted indices
append :: Vlj L — Ll — Lapd(i,j)
lam : V]k’ (Vi.N,‘ — Lf(i,j)) — N —= L — L/m(j,k,/)
foldr :: VkIm. (Vij.N; — L — Lg(i,j,k)) —L—=Lh— Lfld(k,l,m)
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Inference

step @: constraint generation

for all equations in P, generate two sets of constraints, e.g. for
lam f x = append (f x)
as follows
1. footprint gives environment and template type of left-hand side
footprint(lam f x) = ({f: Vi.N; = Lgj), X : Ne}, L = Limgikn)

=TI =T

2. inference infer(T', r) on right-hand side r generates template for r
and first set of constraints

infer(I, append (X)) = (Lay — Lapd(a, a5), 1f(A1,)) < A2 k <A1}
3. well-typedness condition enforced by second set of constraints

subtypeOf(LA3 — Lapd(A1 As)s ) = {I < Ag7 apd(Al,Ag) < Im(j k I)}



Inference

step @: constraint generation

CilstoaCor Gt Em
{a<b}tstBCBy, CiUCkstor =1 Coy—1

CFST T1 E 7—2{5/]} Tg FV(VITQ)
C l_ST VT.Tl E Vf.’]’g

Figure: subtyping.

I(z) = Vi £ ViT
0:Th oz r{d@/iy  0:Tk£:r{d/i

Clbhys: (Vip) =7 CoiThit:p Csbstp Tp i¢FV(D)

Cl,CQ,Cg;F F]Sfl’l’

Figure: type inference.
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Inference

step @: constraint generation

CikstooEor Cbsti Em
{agb}FSTBaEBb C1UC2FSTO'1*>T120'2*>TQ

Chstm E 7'2{;/]} T§Z FV(Vf.Tg) Zfresh
C l_ST VT.Tl E Vf.’]’g

Figure: subtyping.

I(z) =Vir A fresh f:Vir Afresh
0:T + z: 7{A/i} 0:T F £:7{A/i}

Clhys: (Vip) =7 CoiTht:p Csbstp Tp i¢FV(D)

Cl,CQ,Cg;F F]Sfl’l’

Figure: type inference.



Inference

step @: constraint generation

CikstooEop CobstiEm
{agb}I—STBaEBb C1UC2|—5T0'1—>T120'2—>T2

C "51’ 7 C TQ{Z/I} T¢ FV(V]TQ) A’freSh
C,i & SOVars(r;) U SOVars(r) st Vi T Vjom

Figure: subtyping.

['(z) = Vi.r A fresh £ Vir A fresh
@;FF1$IT{;/T} @;FFlfiT{IZ/T}

Cl;Fl—ls:(VT.p)—M' Co;THt:p Csbkstp Cop TgéFV(F)

C1,Ca,Cs,1 & SOVars(I') USOVars(p);T by st: T

Figure: type inference.
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step ®: constraint solving

- find a model (9, [-]) for collected constraints C consisting of
- 1 assigns index terms to second-order variables
- [-] assigns meaning to index functions
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Inference

step ®: constraint solving

+ find a model (¥, [-]) for collected constraints C consisting of
- 1 assigns index terms to second-order variables
- [-] assigns meaning to index functions

{W]] <[r9] foralll<rec

CARDAE . .
i¢Z FV(U(A)) forall (i¢A)eC

1. eliminate second-order variables by skolemization

flA1,)) < A f(ski(k),j) < ska(k,j)
k<A k < ski (k)
I < A; = I < sk;(l)

apd(A1,As) < Im(j. k) apd(ski(k), ska(k,j)) < Im(j, k,])

2. first-order constraints solvable with our tool GUBS
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Theorem (Soundness and Completeness)

Program P is well-typed if and only if (9, [-]) E C for some (9, [-]) and
constraints C generated as explained before.

Essential proof steps.

1. Ckst7C p < 79 C pv, eg.,
[ad] < [bV]
{a < b} st Bg E By Bgy C Bpy

since (¢, [-]) F{a < b} = [av] < [bV]
2.CGI'Hs:7 <= I'ks: 79, eg.
I'(z) =ViT Afresh I(z) = Vi
== — > -
0;0 b z: 7{A/i} 'k z:7{0(A)/i}
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Conclusion

« fully polymorphic sized-type system

« ticking transformation reduces runtime-complexity to size
analysis

« fully working implementation on top of Hindley-Milner type
system, including constraint solver

http://cl-informatik.uibk.ac.at/zini

« currently, whole program analysis, but ...

- each (mutual) recursive definition gives rise to an SCC
- bottom-up per SCC-analysis implemented


http://cl-informatik.uibk.ac.at/zini

