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ENSEMBLE CLUSTERING (EC)

Problem definition
I V = {v1, . . . , vn}
I Π ⊂ P(V) : base partitions
I EC(Π) = π∗ ← arg min

πi∈Π
dist(π∗, πi)

from A. Topchy et. al. Clustering Ensembles: Models of

Consensus and Weak Partitions. PAMI, 2005
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APPLYING EC TO COMMUNITY DETECTION

I Computing communities cores
[SG12]

I Dynamic communities
[LF12]

I Multi-objective (local) community identification
[Kan15]

I Community detection in multiplex networks
[FHK14]

I Yasca : from local communities to global communities
[Kan14b]

I Large-scale graph coarsening
[OGS10, Ove13, SM13]
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GRAPH COARSENING

1 Apply N times a fast community detection to the target graph G
Ex. Applying Label propagation : O(m)

2 Compute the absolute consensus clustering.

3 Reduce the graph according to obtained consensus clustering.

4 Apply a high quality community detection algorithm on reduced
graph.

5 Expand obtained results to the initial graph.
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GRAPH COARSENING : ILLUSTRATION I
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GRAPH COARSENING : ILLUSTRATION II
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GRAPH COARSENING : ILLUSTRATION III
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GRAPH COARSENING : ILLUSTRATION IV
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GRAPH COARSENING : ILLUSTRATION V
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GRAPH COARSENING : ILLUSTRATION VI
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GRAPH COARSENING : ILLUSTRATION VII
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ENSEMBLE CLUSTERING APPROACHES [SG03]

I CSPA: Cluster-based Similarity Partitioning Algorithm
O(n2kr)

I HGPA: HyperGraph-Partitioning Algorithm
O(nkr)

I MCLA: Meta-Clustering Algorithm
O(nk2r2)

n # objects, k # of clusters, r# of clustering solutions

CSPA illustration from [LF12]

13 / 41



CONTEXT Ensemble selection Proposed Approach Experiments Conclusion

ENSEMBLE SELECTION (ES)

Motivation
The quality of a consensus clustering depends on both the quality and
diversity of input base clusterings [FL08, AF09, NCC13, ADIA15].

Problem definition
I Let Π = {π1, . . . , πn} be a set of base partitions
I ES(Π) = Π∗ ⊂ Π : Q(EC(Π∗)) > Q(EC(Π))

I Q : Quality of the consensus clustering
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DIVERSITY

Clustering Similarity measures

I Purity
I Rand/ARI
I NMI (Normlized mutual information)
I IV (Information variation) [Mei03]
I . . .
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QUALITY

Cluster internal quality indexes [AR14]

I Silhouette index,
I Calinski-Harabasz index
I Davis-Bouldin index
I Dunn index
I . . .

Network-oriented indexes
I Modularity
I Average conductance
I Average local Modularities : L, M, R [Kan15]
I See also [YL12]
I . . .
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ENSEMBLE SELECTION APPROACHES : LIMITATIONS

I Existing approaches are defined for attribute/value datasets with
metric distances

I Use of one quality/diversity measure.
I Requires the number of clusters to select as input.
I . . .

Proposed approach: contributions

I Designed for both networks and attribute/value datasets
I Use of an ensemble of quality/diversity measures.
I The number of selected base clustering is automatically

computed.
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ENSEMBLE SELECTION APPROACH

The idea
� Cluster the set of base clusterings using an ensemble of similarity

measures

Apply a multiplex community detection algorithm to a multiplex
network whose nodes are the set of base clusterings and whose layers are
defined by a set of proximity graphs, each defined according a to a
given similarity measure

� From each cluster select the node (i.e clustering) that is ranked
first according to an ensemble of quality measures.

Apply ensemble ranking algorithms
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ENSEMBLE SELECTION APPROACH

Algorithm 1 Graph-based cluster ensemble selection algorithm

Require: Π = {π1, . . . , πr} a set of base clusterings
Require: S = {S1, . . . ,Sn} A set of partition similarity functions
Require: Q = {Q1, . . . ,Qm} A set of partition quality functions

1: Π∗ ← ∅
2: MUX←Multiplex(Π)
3: for all Si ∈ S do
4: MUX.add layer(proximity graph(Π,Si))
5: end for
6: C = {c1, . . . , ck} ← community detection(MUX)
7: for all c ∈ C do
8: π̂ ← ensemble Ranking(c,Q)
9: Π∗ ← Π∗ ∪ {π̂}

10: end for
11: return Π∗
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THE PROPOSED APPROACH
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PROXIMITY GRAPHS

� ε-neighborhood graph : u, v are linked if d(u, v) ≤ ε
� k-nearest neighbor graph : each node is connected to k nearest

nodes.
� Relative neighborhood graph :

u, v are linked if d(u, v) ≤ maxx{d(v, x), d(u, x)}, ∀x 6= u, v
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Multiplex network

Multiplex network:
A set of nodes
related by different
types of relations.
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COMMUNITY DETECTION IN MULTIPLEX NETWORKS

Approaches [FHK14]

1 Transformation into a monoplex community detection problem

I Layer aggregation approaches [BCG11]
I Hypergraph transformation based approaches
I Partition aggregation approaches (Ensemble clustering)
I Multi-objective approaches [AP14]

2 Generalization of monoplex oriented algorithms to multiplex
networks [MRM+10].

Applied algorithm : MuxLicod a seed-centric algorithm [HK15]
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SEED-CENTRIC ALGORITHMS [KAN14A]

Algorithm 2 General seed-centric community detection algorithm

Require: G =< V,E > a connected graph,
1: C ← ∅
2: S← compute seeds(G)
3: for s ∈ S do
4: Cs ← compute local com(s,G)
5: C ← C + Cs
6: end for
7: return compute community(C)
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ENSEMBLE RANKING

Problem
I Let L be a set of elements to rank by n rankers
I Let σi be the rank provided by ranker i
I Goal: Compute a consensus rank of L.

Déjà Vu: Social choice algorithms, but . . .

I Small number of voters and big number of candidates
I Algorithmic efficiency is required

Algorithms

I Borda
I Kemeny approaches (computing Condorcet winner if it exists)
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EXPERIMENT ON SMALL NETWORKS WITH KNOWN

GROUND-TRUTH PARTITIONS

I Small benchmark networks : Karate club, Poltical books, Political
blogs, Dolphins

I UCI datasets : Iris, Wine, Glass (transformed into into networks
applying RNG)

I Variation of number of base clusterings [1, 100]
I Evaluation of output in function of NMI, ARI.
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EXPERIMENT ON SMALL NETWORKS WITH KNOWN

GROUND-TRUTH PARTITIONS

Quality of the selection (ARI) / # base partitions
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EXPERIMENT ON SMALL NETWORKS WITH KNOWN

GROUND-TRUTH PARTITIONS

# selected partitions / # base partitions
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EXPERIMENT ON SMALL NETWORKS WITH KNOWN

GROUND-TRUTH PARTITIONS

Effect of applying different diversity measures
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EXPERIMENT II : DBLP CO-AUTHORSHIP NETWORK

I Co-authorship network 1970-1977 (GCC) : |V| = 643, |m| = 886
I Generation of 10, 100 base clusterings
I Proximity graphs : RNG
I S = { NMI, ARI, VI } Q = {modularity, Local modularities L, M,

R }

Table: Evaluation of the proposed graph-based ensemble selection

# base clusterings 10
Nodes Compression without selection 18,3%
Nodes Compression with selection 20,9%
Edge compression without selection 17,2%
Edge compression with selection 17,6%
Modularity without selection 0.3734
Modularity with selection 0.43756
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EXPERIMENT II : DBLP CO-AUTHORSHIP NETWORK

Table: Evaluation of the proposed graph-based ensemble selection

# base clusterings 100
Nodes Compression without selection 35,1%
Nodes Compression with selection 40,3%
Edge compression without selection 36,2%
Edge compression with selection 38,3%
Modularity without selection 0.4031
Modularity with selection 0.4665

34 / 41



CONTEXT Ensemble selection Proposed Approach Experiments Conclusion

CONCLUSION & FUTURE WORK

Conclusion
I A new approach for ensemble selection
I The approach can be applied to both networks and

attribute/value datasets clustering
I Ensemble selection enhances both the compression ratio and the

quality of reduced graphs.

Underwork
I Evaluation on large-scale graphs
I Task oriented evaluation : Recommender systems

Tag recommendations & Movie rating tasks
I Study of effects of the choice of : proximity graph, multiplex

community detection algorithm and choice of the consensus
function.

35 / 41



CONTEXT Ensemble selection Proposed Approach Experiments Conclusion

That’s all folks !

Questions ?
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