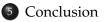


1 / 41

Context	Ensemble selection	Proposed Approach	Experiments	Conclusion
ΡιλΝ				

- 2 Ensemble selection
- 3 Proposed Approach

4 Experiments



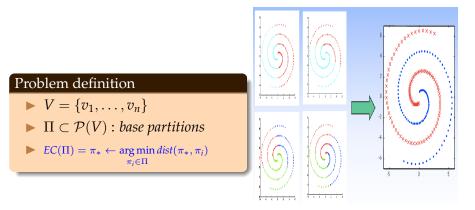
Ensemble selection

Proposed Approach

Experiments

Conclusion

ENSEMBLE CLUSTERING (EC)



from A. Topchy et. al. Clustering Ensembles: Models of Consensus and Weak Partitions, PAMI, 2005

Context	Ensemble selection	Proposed Approach	Experin	nents Concl	usion
Applyi	ING EC TO CO	MMUNITY DET	'ECTIO	N	
► Corr	puting communiti	es cores			
				[SG1	2]
🕨 Dyn	amic communities				
				[LF1	2]
► Mul	ti-objective (local)	community identifi	cation	[Kan1	51
	munity detection i	n multipley netwo	rks	[Kall1	J]
	intuinty detection	in multiplex netwo	183	[FHK1	4]
► Yasc	a : from local com	nunities to global o	commun	ities	
		0		[Kan14]	b]
► Larg	ge-scale graph coar	sening			
		[C	GS10,	Ovel3, SM1	3]

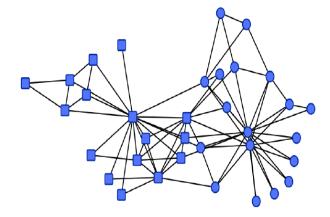
GRAPH COARSENING

- 1 Apply *N* times a fast community detection to the target graph *G Ex. Applying Label propagation* : O(m)
- 2 Compute the **absolute consensus clustering**.
- **3** Reduce the graph according to obtained consensus clustering.
- 4 Apply a high quality community detection algorithm on reduced graph.
- 5 Expand obtained results to the initial graph.

Experiments

Conclusion

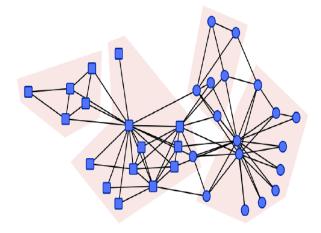
GRAPH COARSENING : ILLUSTRATION I



Experiments

Conclusion

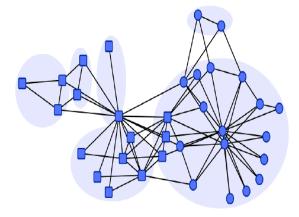
GRAPH COARSENING : ILLUSTRATION II



Experiments

Conclusion

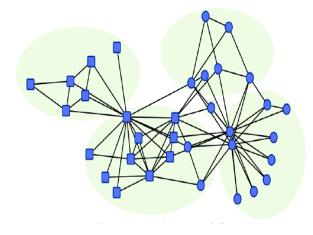
GRAPH COARSENING : ILLUSTRATION III



Experiments

Conclusion

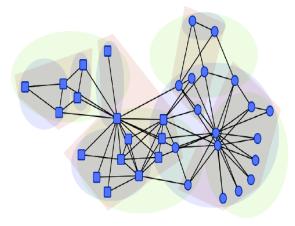
GRAPH COARSENING : ILLUSTRATION IV



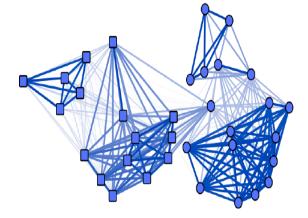
Experiments

Conclusion

GRAPH COARSENING : ILLUSTRATION V



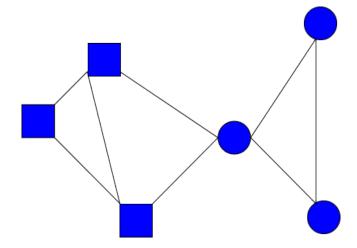
GRAPH COARSENING : ILLUSTRATION VI

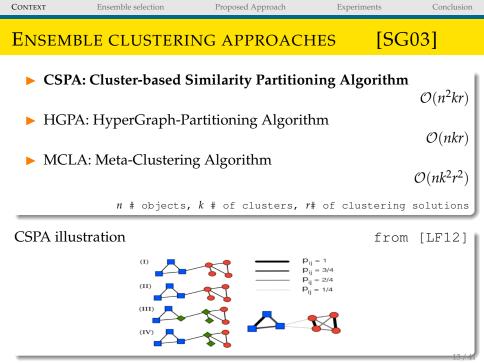


Experiments

Conclusion

GRAPH COARSENING : ILLUSTRATION VII





Motivation

The quality of a consensus clustering depends on both the **quality** and **diversity** of input base clusterings [FL08, AF09, NCC13, ADIA15].

Problem definition

- Let $\Pi = {\pi_1, \ldots, \pi_n}$ be a set of base partitions
- $\blacktriangleright \ \mathcal{ES}(\Pi) = \Pi^* \subset \Pi : \mathcal{Q}(EC(\Pi^*)) > \mathcal{Q}(EC(\Pi))$
- Q : Quality of the consensus clustering

Context	Ensemble selection	Proposed Approach	Experiments	Conclusion
DIVER	SITY			

Clustering Similarity measures

- Purity
- ▶ Rand/ARI
- NMI (Normlized mutual information)
- IV (Information variation) [Mei03]

Context	Ensemble selection	Proposed Approach	Experiments	Conclusion
QUALIT	ΓY			
20000				
Cluster ir	nternal quality ind	exes [AR14]		
► Silhc	ouette index,			
► Calir	nski-Harabasz inde	ex		
Davi	s-Bouldin index			
Duni	n index			
▶				
Noturati	-oriented indexes			
Network	orientea indexes			
► Mod	ularity			
Arrow	a a a a a a du atam a a			

- Average conductance
- Average local Modularities : L, M, R [Kan15]
- See also [YL12]

Context	Ensemble selection	Proposed Approach	Experiments	Conclusion
Ensem	BLE SELECTION	J APPROACHE	S: LIMITAT	IONS
	ing approaches are ic distances	defined for attrib	ute/value datas	ets with
► Use o	of one quality/dive	rsity measure.		
► Requ	ires the number of	clusters to select a	s input.	

Proposed approach: contributions

- Designed for both networks and attribute/value datasets
- ▶ Use of an *ensemble* of quality/diversity measures.
- The number of selected base clustering is automatically computed.

ENSEMBLE SELECTION APPROACH

The idea

Cluster the set of base clusterings using an ensemble of similarity measures

Apply a **multiplex community detection** algorithm to a multiplex network whose nodes are the set of base clusterings and whose layers are defined by a set of **proximity graphs**, each defined according a to a given similarity measure

From each cluster select the node (i.e clustering) that is ranked first according to an ensemble of quality measures.

Apply ensemble ranking algorithms

ENSEMBLE SELECTION APPROACH

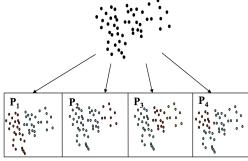
Algorithm 1 Graph-based cluster ensemble selection algorithm

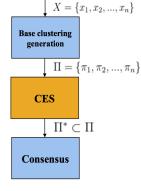
Require: $\Pi = {\pi_1, ..., \pi_r}$ a set of base clusterings **Require:** $S = {S_1, ..., S_n}$ A set of partition similarity functions **Require:** $Q = {Q_1, ..., Q_m}$ A set of partition quality functions 1: $\Pi^* \leftarrow \emptyset$

- 2: $MUX \leftarrow Multiplex(\Pi)$
- 3: for all $S_i \in S$ do
- 4: $MUX.add_layer(proximity_graph(\Pi, S_i))$

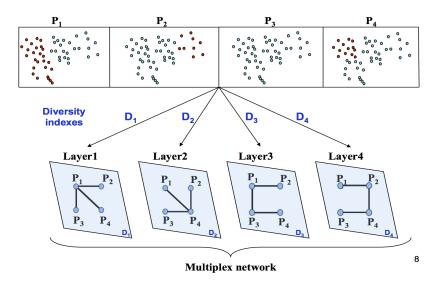
5: end for

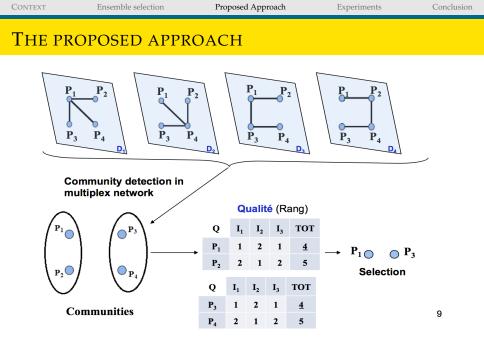
- 6: $C = \{c_1, \ldots, c_k\} \leftarrow \text{community_detection}(MUX)$
- 7: for all $c \in C$ do
- 8: $\hat{\pi} \leftarrow \text{ensemble}_{-}\text{Ranking}(c, Q)$
- 9: $\Pi^* \leftarrow \Pi^* \cup \{\hat{\pi}\}$
- 10: end for
- 11: return Π^*





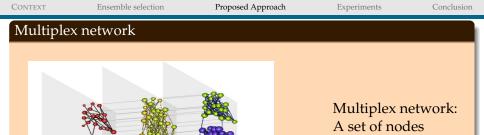
THE PROPOSED APPROACH





- *ϵ*-neighborhood graph : u, v are linked if $d(u, v) ≤ \epsilon$
- *k*-nearest neighbor graph : each node is connected to *k* nearest nodes.
- Relative neighborhood graph :

u, v are linked if $d(u, v) \le \max_x \{d(v, x), d(u, x)\}, \forall x \ne u, v$



related by different types of relations.

COMMUNITY DETECTION IN MULTIPLEX NETWORKS

Approaches

[FHK14]

Transformation into a monoplex community detection problem

- Layer aggregation approaches [BCG11]
- Hypergraph transformation based approaches
- Partition aggregation approaches (Ensemble clustering)
- Multi-objective approaches [AP14]

2 Generalization of monoplex oriented algorithms to multiplex networks [MRM⁺10].

Applied algorithm : MuxLicod a seed-centric algorithm [HK15]

Algorithm 2 General seed-centric community detection algorithm

Require: $G = \langle V, E \rangle$ a connected graph,

- 1: $\mathcal{C} \leftarrow \emptyset$
- 2: $S \leftarrow compute_seeds(G)$
- 3: for $s \in S$ do
- 4: $C_s \leftarrow \text{compute_local_com(s,G)}$
- 5: $\mathcal{C} \leftarrow \mathcal{C} + C_s$
- 6: end for
- 7: return compute_community(C)

Context	Ensemble selection	Proposed Approach	Experiments	Conclusion
Ensemb	LE RANKING			
Problem Let L l	be a set of elemen	ts to rank by <i>n</i> ran	kers	

- Let σ_i be the rank provided by ranker *i*
- **Goal: Compute a consensus rank of** *L*.

Déjà Vu: Social choice algorithms, but ...

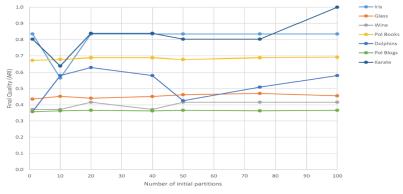
- Small number of voters and big number of candidates
- Algorithmic efficiency is required

Algorithms

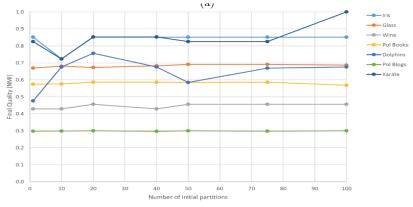
Borda

Kemeny approaches (computing Condorcet winner if it exists)

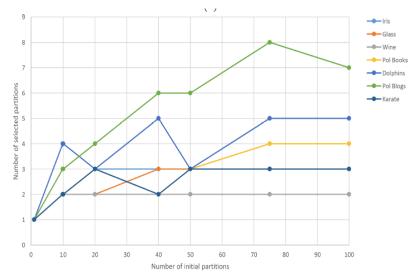
- Small benchmark networks : Karate club, Poltical books, Political blogs, Dolphins
- UCI datasets : Iris, Wine, Glass (transformed into into networks applying RNG)
- ▶ Variation of number of base clusterings [1, 100]
- Evaluation of output in function of NMI, ARI.

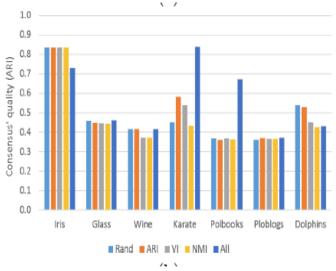


Quality of the selection (ARI) / # base partitions



Quality of the selection (ARI) / # base partitions





Context	Ensemble selection	Proposed Approach	Experiments	Conclusion
Experi	MENT II : DBL	P CO-AUTHO	RSHIP NETV	VORK
GeneProxi	uthorship network ration of 10, 100 ba mity graphs : RNC { NMI, ARI, VI } Q	se clusterings		

Table: Evaluation of the proposed graph-based ensemble selection

# base clusterings	10
Nodes Compression without selection	18,3%
Nodes Compression with selection	20,9%
Edge compression without selection	17,2%
Edge compression with selection	17,6%
Modularity without selection	0.3734
Modularity with selection	0.43756

EXPERIMENT II : DBLP CO-AUTHORSHIP NETWORK

Table: Evaluation of the proposed graph-based ensemble selection

# base clusterings	100
Nodes Compression without selection	35,1%
Nodes Compression with selection	40,3%
Edge compression without selection	36,2%
Edge compression with selection	38,3%
Modularity without selection	0.4031
Modularity with selection	0.4665

CONCLUSION & FUTURE WORK

Conclusion

- A new approach for ensemble selection
- The approach can be applied to both networks and attribute/value datasets clustering
- Ensemble selection enhances both the compression ratio and the quality of reduced graphs.

Underwork

- Evaluation on large-scale graphs
- ► Task oriented evaluation : Recommender systems

Tag recommendations & Movie rating tasks

Study of effects of the choice of : proximity graph, multiplex community detection algorithm and choice of the consensus function.

Context	Ensemble selection	Proposed Approach	Experiments	Conclusion

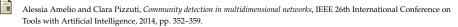
That's all folks !

Questions?

BIBLIOGRAPHY I

Ebrahim Akbari, Halina Mohamed Dahlan, Roliana Ibrahim, and Hosein Alizadeh, *Hierarchical cluster ensemble selection*, Engineering Applications of Artificial Intelligence **39** (2015), 146–156.

Javad Azimi and Xiaoli Fern, Adaptive cluster ensemble selection, IJCAI (Craig Boutilier, ed.), 2009, pp. 992-997.



Charu C. Aggarwal and Chandan K. Reddy (eds.), Data clustering: Algorithms and applications, CRC Press, 2014.

Michele Berlingerio, Michele Coscia, and Fosca Giannotti, Finding and characterizing communities in multidimensional networks, ASONAM, IEEE Computer Society, 2011, pp. 490–494.

BIBLIOGRAPHY II

Issam Falih, Manel Hmimida, and Rushed Kanawati, Community detection in multiplex network: a comparative study, Proceedings of Multiplex networks, Satelitte workshop at European conference on complex systems (Lucca, Italy), September 2014.

Xiaoli Z. Fern and Wei Lin, Cluster ensemble selection, Statistical Analysis and Data Mining 1 (2008), no. 3, 128-141.

Manel Hmimida and Rushed Kanawati, *Community detection in multiplex networks: A seed-centric approach*, Networks and Heterogeneous Media **10** (2015), no. 1, 71–85, Special Issue on New trends, models and applications in Complex and Multiplex Networks.

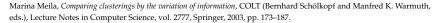
Rushed Kanawati, Seed-centric approaches for community detection in complex networks, 6th international conference on Social Computing and Social Media (Crete, Greece) (Gabriele Meiselwitz, ed.), vol. LNCS 8531, Springer, June 2014, pp. 197–208.

_____, Yasca: An ensemble-based approach for community detection in complex networks, COCOON (Zhipeng Cai, Alex Zelikovsky, and Anu G. Bourgeois, eds.), Lecture Notes in Computer Science, vol. 8591, Springer, 2014, pp. 657–666.

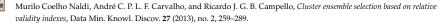
BIBLIOGRAPHY III

______, Empirical evaluation of applying ensemble methods to ego-centered community identification in complex networks, Neurocomputing **150**, **B** (2015), 417–427.

Andrea Lancichinetti and Santo Fortunato, Consensus clustering in complex networks, Sci. Rep. 2 (2012).



Peter J Mucha, Thomas Richardson, Kevin Macon, Mason A Porter, and Jukka-Pekka Onnela, Community structure in time-dependent, multiscale, and multiplex networks, Science 328 (2010), no. 5980, 876–878.



BIBLIOGRAPHY IV

Michael Ovelgönne and Andreas Geyer-Schulz, Cluster cores and modularity maximization, ICDM Workshops, 2010, pp. 1204–1213.

Michael Ovelgönne, Distributed community detection in web-scale networks, ASONAM (Jon G. Rokne and Christos Faloutsos, eds.), ACM, 2013, pp. 66–73.

A. Strehl and J. Ghosh, *Cluster ensembles: a knowledge reuse framework for combining multiple partitions*, The Journal of Machine Learning Research **3** (2003), 583–617.

Massoud Seifi and Jean-Loup Guillaume, Community cores in evolving networks, WWW (Companion Volume) (Alain Mille, Fabien L. Gandon, Jacques Misselis, Michael Rabinovich, and Steffen Staab, eds.), ACM, 2012, pp. 1173–1180.

Christian Staudt and Henning Meyerhenke, Engineering high-performance community detection heuristics for massive graphs, ICPP, IEEE, 2013, pp. 180–189.

BIBLIOGRAPHY V

Jaewon Yang and Jure Leskovec, *Defining and evaluating network communities based on ground-truth*, ICDM (Mohammed Javeed Zaki, Arno Siebes, Jeffrey Xu Yu, Bart Goethals, Geoffrey I. Webb, and Xindong Wu, eds.), IEEE Computer Society, 2012, pp. 745–754.