

Wrocław University of Technology

MuNeG - The Framework for Multilayer Network Generator

Adrian Popiel, Tomasz Kajdanowicz, Przemysław Kazienko Wrocław University of Technology, Poland MANEM 2015, August 25, 2015

Outline

- Uniplex and multiplex networks
- Network models
- Network properties
- Multiplex network generation
- Behind MuNeG
- Experimental setup
- Results
- Conclusions

Uniplex and multiplex networks

- A uniplex network G = (V, E)
 - Nodes: $V = \{v_1, ..., v_n\}$
 - Directed edges $\forall e \in E$, $e = (v_i, v_j)$, $v_i, v_i \in V, v_i \neq v_i$

Uniplex and multiplex networks(2)

- Multiplex is a multi-layer
 network (multigraph) MG = (V, V^L, E, EL, L)
 - V set of nodes
 - L set of uniplexes / layers
 - each node v_i has own representation $v_{il} \in VL \in V^L$ in each layer $l \in L$

- edges on layers: $e = (v_{il}, v_{jl}, l, w_{ijl}), l \in L$

 Nodes representations are connected via special links between their

 $\mathbf{r} = \mathbf{r} \mathbf{r} \mathbf{r}$

Uniplex and multiplex networks(3)

Network models

- Random graphs(Erdős-Rényi model)
 - Edge existence comes from binomial distribution
- Configurational model
 - Takes degree distribution as an input
- Small worlds(Watts and Strogatz)
 - Uses node degree as input
- Scale-free networks(Barabási-Albert)
 - Networks with power-law distribution

Properties of a network

- Node degree
- Maximum node degree
- Number of edges
- Clustering coefficient
- Number of triangles
- Average shortest path
- Diameter

MuNeG

- Version 1.0 is released
 - https://github.com/Adek89/MuNeG/releases/ tag/1.0
- Generator is still in development
 - Version 1.1-SNAPSHOT: https://github.com/ Adek89/multiplex/tree/master/MuNeG

Main goal of MuNeG

- Generate multiplex networks for a collective classification
- Enhance network models to domain of multiplex networks
- Generate networks with expected properties
- Generate networks similar to real data
- Check if generated networks are similar to existing network models

Real data properties

(Newman, Mark EJ. "The structure and function of complex networks." *SIAM review* 45.2 (2003): 167-256.)

Network domain and name	Number of nodes	Mean node degree	Clustering coefficient	Mean distance between nodes
Social - student relationships	573	1.66	0.005	16.01
Information - Roget's Thesaurus	1022	4.99	0.13	4.87
Technological - Internet	10697	5.98	0.035	3.31
Biological - protein interactions	2115	2.12	0.072	6.80

MuNeG algorithm - input parameters

- MuNeG takes as an input 6 parameters:
 - Number of nodes N^V
 - Number of groups N^{Gr}
 - Group homophilly p_{Gr}
 - Probability that two nodes from same group are connected p_{in}
 - Probability that two nodes from different groups are connected p_{out}
 - Number of layers L

- MuNeG generates networks with binary labelings
 - $-C = \{0, 1\}$
- Groups represent communities
- Group can be red or blue with same probability:

$$-P(Gr = red) = P(Gr = blue) = 0.5$$

MuNeG algorithm - homophilly and edge existence

- Group homophilly answers for labels in groups
- Group color influences on labeling: $-p_{Gr} = P(C = 0|Gr = red) = P(C = 1|Gr = blue)$
- Edges inside and outside of groups are dependent on input parameters:

$$-p_{in} = P(E = 1 | Gr_i = Gr_j)$$

 $-p_{out} = P(E = 1 | Gr_i \neq Gr_j)$

Experiments

Experiments - parameters

- $N^V = \{100, 500, 1000\}$
- $N^{Gr} = \{2, 3, 4, 5, 6, 7, 8, 9\}$
- $p_{Gr} < 0.5; 1 >$, with step 0.1
- $p_{in} < 0.5; 0.9 >$, with step 0.1
- $p_{out} = \{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5\}$
- $L = \{2, 3, 5, 6, 8, 10, 13, 21\}$
- All combinations of parameters give about 300000 analysed networks

Experiments - calculations

number of experiments

- Where value is:
 - Clustering coefficient
 - Node degree
- Other parameters are averaged over all experiments

Results - node degree

Results - clustering

Results - average shortest path

Conlusions

- MuNeG generated networks are good to simulate close connected complex networks or small worlds - ☺
- Distributions of parameters should be compared with real data distributions
- p_{in} and p_{out} parameters have the most significant influence on generated networks

Future work

- Algorithm improvements:
 - API to generate networks similar to real
 - API to generate mulitplex networks similar to known network models
- Each layer should represent uniplex network similar to known models or real data
- https://github.com/Adek89/multiplex/ tree/master/MuNeG

Thank you!

THANK YOU FOR YOUR ATTENTION!

