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Multiplex Networks

Figure: [Kivel, 2012]
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Multiplex Networks

Definition: Multiplex Network

An L-layered multiplex network is a multi-layer undirected graph
M= (V; Ak)i:lv where V is a set of nodes and Ay is the N x N
adjacency matrix representing the set of edges in layer Ly for
k=1,2,..L
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Definition: Multiplex Network

An L-layered multiplex network is a multi-layer undirected graph
M= (V; Ak)i:lv where V is a set of nodes and Ay is the N x N
adjacency matrix representing the set of edges in layer Ly for
k=1,2,..L

o Node v,-k -nodev; € V,i=1,2 .. N, in layer L.

@ The connection between nodes v; and v; in L is given by
Aij;k = Aji;k- Nodes Vi and i in Lk are neighbors if Aij;k = Aji;k =1,
otherwise Aj;.x = 0. Furthermore, Vk, Aj.x = 0 for i = j.
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Multiplex Networks

Definition: Multiplex Network

An L-layered multiplex network is a multi-layer undirected graph
M= (V; Ak)izl, where V is a set of nodes and Ax is the N x N
adjacency matrix representing the set of edges in layer Ly for
k=12 .. L

o Node v,-k -nodev; € V,i=1,2 .. N, in layer L.

@ The connection between nodes v; and v; in L is given by
Aji.k = Aji.k- Nodes v; and v; in Ly are neighbors if Aj.,x = Ajic = 1,
otherwise Aj;.x = 0. Furthermore, Vk, Aj.x = 0 for i = j.

@ Each pair of corresponding nodes in different layers, v,-k and v,-’, has an
inter-layer connection denoted by wj.,y € R.
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Multiplex Community Detection: Problem Formulation

Shared Communities

A shared community is a set of nodes for which several (but not necessarily all)
layers provide topological evidence that these nodes form the same community
that is shared across these layers.
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A non-shared community is a set of nodes which have a densely connected
structural pattern specific to one layer.

| \

z.kuncheval2@imperial.ac.uk Community Detection in Multiplex Networks July 25, 2015 4 /22



Multiplex Community Detection: Problem Formulation

Shared Communities

A shared community is a set of nodes for which several (but not necessarily all)

layers provide topological evidence that these nodes form the same community
that is shared across these layers.

Non-Shared Communities

A non-shared community is a set of nodes which have a densely connected
structural pattern specific to one layer.
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Multiplex Community Detection: Literature Review

o Layer aggregation procedures;
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o Layer aggregation procedures;
o Cluster ensemble procedures;

@ Tensor decompositions: a multiplex can be represented as a third
order tensor;

@ Extensions of community detection algorithms from one to multiple
layers:

Principal Modularity Maximization [Tang et al., 2009];
Multislice Modularity Maximization [Mucha et al., 2010];
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©0 00

Seed-centric algorithm extension [Hmimida and Kanawati, 2015].
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Multiplex Community Detection: Single Layer Case

@ Random walks are used to unfold the community structure on a
network.
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Multiplex Community Detection: Single Layer Case

@ Random walks are used to unfold the community structure on a
network.

@ A random walker is expected to get “trapped” for longer times in
denser regions defining the communities.

Walktrap algorithm [Pons and Latapy, 2006]
e Jump probability: Pj = ATf, di = ZJ-N:;[ Ajj;

@ Short random walks of length t, P!, capture local topology of a
network;

@ Define node dissimilarity measure to capture similarity between nodes;
@ Merge nodes using hierarchical clustering;

@ Select best partition by maximizing the modularity function
Q [Girvan and Newman, 2002].
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Multiplex Community Detection: Locally Adaptive

Random Transitions (LART) Algorithm

@ Facilitate the exploration of shared and non-shared communities.
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Multiplex Community Detection: Locally Adaptive

Random Transitions (LART) Algorithm

@ Facilitate the exploration of shared and non-shared communities.

@ LART is based on a multiplex random
walk [Domenico and Sole-Ribalta, 2014].

o Contribution: we adapt the transition probabilities of the random
walk to depend on the local topological similarity between any pair of
layers, at any given node.

@ Result: the random walker spends longer times moving between nodes
in communities which are shared across layers.

@ Using properties of the random walk: introduce a dissimilarity
measure between nodes and use it in a hierarchical clustering
procedure to detect shared and non-shared communities.
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LART: Inter-layer weights

Definition: Inter-layer weights

Wikt = | Njx N Nj ]

where N; j 1= {vjk : Ajk = 1} is the set of edges for vX.
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LART: Inter-layer weights

Definition: Inter-layer weights

Wikt = | Njx N Nj ]

where N; j 1= {vjk : Ajk = 1} is the set of edges for vX.

Definition: Supra-adjacency matrix

Aq Wis | ... | WL
W- A

A* — 21 2
W1 AL

@ We require A* to be “well-behaved”, i.e. connected and

non-bipartite.
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LART: Inter-layer weights

Definition: Inter-layer weights

Wikt = | Njx N Nj ]

where N; j 1= {vjk : Ajk = 1} is the set of edges for vX.

Definition: Supra-adjacency matrix

W1 AL

@ We require A* to be “well-behaved”, i.e. connected and
non-bipartite.

@ Use A obtained from A* by replacing the entry A; with A; 4 ¢/ and
Wi; with Wj; + el; here | is the N x N identity matrix and 0 < & < 1.
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LART: Transition Probabilities

@ The structure of M allows four possible moves that a random walker
can make when in node v,-k.
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LART: Transition Probabilities

@ The structure of M allows four possible moves that a random walker
can make when in node v,-k.

[Kivel, 2012]
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LART: Transition Probabilities

@ The structure of M allows four possible moves that a random walker
can make when in node v,-k.

@ The corresponding transition probabilities associated to these four
possible moves are defined as
€

Kik Plikyik) =
Wik T E
Plwin == Pl =0

AiK) (.K)
Ki k

Py =

where «; j is the multiplex degree of node v in A defined as
Kik ‘= Z_/ I2A0LK) G -
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LART: Node Dissimilarity Measure

Node Dissimilarity Measure - Same Layer

When v,-k and vjk are in the same layer, their dissimilarity is defined as:

2
~Pliagim)

K(h,m)

Node Dissimilarity Measure - Different Layers

When v,-k and vJ’ are in two different layers, L, and L;, we define the
dissimilarity as:

N L
S(8) (i) k) JZZ (<1k)hm)

Sk = Vet +s3

where

N (P Pt
a3 ( (k) (hk) (m)(h,/)) ) )
A e (Plisrm = Phinianm)
N [Pt Pt 2 h=1 m=1; (h,m)
ne % Plwwn _ Phnme fuory
AN )
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LART: Hierarchical Clustering

@ Advantage to using an agglomerative clustering to merge nodes in
communities: we ensure that the obtained communities are
connected.

z.kuncheval2@imperial.ac.uk Community Detection in Multiplex Networks July 25, 2015 12 / 22



LART: Hierarchical Clustering

@ Advantage to using an agglomerative clustering to merge nodes in
communities: we ensure that the obtained communities are
connected.

@ We use the multiplex modularity Qu proposed in [Mucha et al., 2010]
as a criterion to select the best partition:

Wi + Aiige — LS TS
)3 ki Y. Ak — ik )

2 fon (i,k),(i.eC (i,k),(i.)eC

Qu ()

where 2p =3 i i Aijik, dik = L Ajjik, 7T is the partition into
communities C, and 7y is the resolution parameter for layer L.
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Simulations: Comparative performance

@ Compare the performance of LART to other algorithms:
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Simulations: Comparative performance

@ Compare the performance of LART to other algorithms:

Multiplex Modularity Maximization (MM).

Principal Modularity Maximization (PMM).

Multiplex Infomap (IM).

Apply WalkTrap algorithm on each layer. Merge communities based on
similarity measures - St (for topological overlap) and Sy (normalized
mutual information).

o Five different simulation scenarios:
o Test robustness to noise (S4) and uncovering hidden structures (S1) -
shared across all three (L = 3) layers;
o Test ability to detect and distinguish between shared and non-shared
communities (S2 and S3) across three (L = 3) layers;
o Mixture of different community structures (S5) across four (L = 4)
layers;

@ For each scenario: 150 synthetic multiplexes, community sizes vary

between [10, 100] nodes, within-community edge probability
0.25 < p < 0.40.
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Simulations: Comparative performance

Table: Performance of various algorithms in five simulated scenarios (NMI similarity)

S1 S2 S3 S4 S5
LART 0.99 £0.02 0.89 £0.07 0.97 = 0.03 0.98 4+ 0.04 0.96 & 0.06
MM 0.98 + 0.04 0.81 £0.07 0.83 £0.04 0.97 & 0.04 0.92 & 0.09
IM 043 £0.07 0.64 £0.14 0.81 +0.11 0.60 +0.10 0.53 £ 0.09
PMM 095 4+ 0.15 0.52 £0.16 0.68 £0.02 0.97 £ 0.07 0.84 £ 0.21
ST 0.69 +£0.07 0.76 +£0.13 0.83 4+ 0.05 0.72 £ 0.04 0.71 £ 0.11
SM 0.68 £0.07 0.78 £0.12 0.84 = 0.06 0.71 +0.05 0.72 £ 0.09

@ For LART and MM: report best result over resolution parameter
v =0.25,0.75,1,1.25,1.50,1.75,2,2.25,2.5,2.75, 3.

o Consider t = 3L.

e ¢=1.
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Simulations: Comparative performance

Table: Performance of competing algorithms in five simulated scenarios for different inter-layer

weights (NMI similarity)

S1

S2

S3

S4

S5

LART
LART(w=1)
LART(w=0.5)
LART(w=0.1)
MM
MM(w=1)
MM(w=0.5)
MM(w=0.1)
IM

IM(w=1)
IM(w=0.5)
IM(w=0.1)
IM(tele)

0.99 + 0.02
0.96 & 0.10
0.84 £ 0.13
0.69 + 0.07
0.98 £+ 0.04
1.00 £ 0.00
0.84 £ 0.12
0.73 £ 0.06
0.43 £+ 0.07
0.43 £ 0.07
0.89 £+ 0.13
0.89 £+ 0.13
0.89 £ 0.13

0.89 £ 0.07
0.79 £ 0.12
0.85 £ 0.12
0.88 £ 0.08
0.81 £+ 0.07
0.62 £ 0.13
0.61 & 0.14
0.62 +0.13
0.64 + 0.14
0.64 &+ 0.14
0.89 £ 0.05
0.89 £+ 0.05
0.89 £ 0.05

0.97 £ 0.03
0.97 £ 0.04
0.93 £ 0.07
0.81 & 0.04
0.83 + 0.04
0.67 &+ 0.02
0.82 = 0.01
0.82 + 0.01
0.81 +0.11
0.81 & 0.11
0.80 £ 0.11
0.80 + 0.11
0.80 + 0.10

0.98 + 0.04
0.77 + 0.05
0.73 £ 0.02
0.72 £ 0.04
0.97 + 0.04
0.98 + 0.03
0.80 & 0.04
0.78 + 0.05
0.60 + 0.10
0.60 = 0.10
0.94 £ 0.07
0.94 £+ 0.07
0.94 &+ 0.07

0.96 + 0.06
0.90 + 0.13
0.87 & 0.10
0.73 £ 0.10
0.92 £ 0.09
0.88 + 0.18
0.79 £ 0.16
0.72 £0.14
0.53 £ 0.09
0.53 & 0.09
0.81 £ 0.10
0.81 £0.10
0.81 = 0.10
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Simulations: Tuning parameters

@ LART performance is robust to parameter value 7y - v € [0.75, 1.75]
provide similar results.
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affected by up to 10% of white noise edges.
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Simulations: Tuning parameters

@ LART performance is robust to parameter value 7y - v € [0.75, 1.75]
provide similar results.

@ MM performance depends heavily on parameter value 7.

@ LART performance is robust to parameter value t - t € [6, 15]
provide similar results.

@ Adding white noise slightly decreases results but performance is barely
affected by up to 10% of white noise edges.

@ These results are valid for different number of layers L = 2, 3,4, 5.
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Conclusions

@ LART performs well for detecting shared and non-shared community
structures.
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Conclusions

@ LART performs well for detecting shared and non-shared community
structures.

@ LART performs comparatively well to competing algorithms for
detecting communities shared across all layers.

o LART is stable for different -y and t values.

@ The introduced inter-layer weights and corresponding locally adaptive
probabilities prove to be beneficial for shared and non-shared
community detection.
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Simulations: Comparative performance

Frequencies of Maximum Gamma Values
for LART and MM NMIS
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Simulations: Tuning Parameters
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Simulations: White Noise

Best results for white noise over time and resolution parameter values for NMIS measure
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Simulations: White Noise

Gamma Distribution for maximal results Time Distribution for maximal Gamma results
over all t for NMIS measure for NMIS measure
N t
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: Median ranges for Gamma values that : Median ranges for time values (over best
produce best result at each white noise Gamma result) that produce best result at
level. each white noise level.
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