Community Detection in Multiplex Networks using Locally Adaptive Random Walks

Zhana Kuncheva ¹ Giovanni Montana ²

¹Department of Mathematics Imperial College London

²Department of Biomedical Engineering King's College London

July 25, 2015

Multiplex Networks

Figure: [Kivel, 2012]

z.kuncheva12@imperial.ac.uk

Community Detection in Multiplex Networks

July 25, 2015 2 / 22

An *L*-layered multiplex network is a multi-layer undirected graph $\mathcal{M} = (V; A_k)_{k=1}^L$, where *V* is a set of nodes and A_k is the $N \times N$ adjacency matrix representing the set of edges in layer L_k for k = 1, 2, ..., L.

An *L*-layered multiplex network is a multi-layer undirected graph $\mathcal{M} = (V; A_k)_{k=1}^L$, where *V* is a set of nodes and A_k is the $N \times N$ adjacency matrix representing the set of edges in layer L_k for k = 1, 2, ..., L.

• Node
$$v_i^k$$
 - node $v_i \in V$, $i = 1, 2, ..., N$, in layer L_k .

An *L*-layered multiplex network is a multi-layer undirected graph $\mathcal{M} = (V; A_k)_{k=1}^L$, where *V* is a set of nodes and A_k is the $N \times N$ adjacency matrix representing the set of edges in layer L_k for k = 1, 2, ..., L.

- Node v_i^k node $v_i \in V$, i = 1, 2, ..., N, in layer L_k .
- The connection between nodes v_i and v_j in L_k is given by A_{ij;k} = A_{ji;k}. Nodes v_i and v_j in L_k are neighbors if A_{ij;k} = A_{ji;k} = 1, otherwise A_{ij;k} = 0. Furthermore, ∀k, A_{ij;k} = 0 for i = j.

An *L*-layered multiplex network is a multi-layer undirected graph $\mathcal{M} = (V; A_k)_{k=1}^L$, where *V* is a set of nodes and A_k is the $N \times N$ adjacency matrix representing the set of edges in layer L_k for k = 1, 2, ..., L.

- Node v_i^k node $v_i \in V$, i = 1, 2, ..., N, in layer L_k .
- The connection between nodes v_i and v_j in L_k is given by A_{ij;k} = A_{ji;k}. Nodes v_i and v_j in L_k are neighbors if A_{ij;k} = A_{ji;k} = 1, otherwise A_{ij;k} = 0. Furthermore, ∀k, A_{ij;k} = 0 for i = j.
- Each pair of corresponding nodes in different layers, v_i^k and v_i^l , has an inter-layer connection denoted by $\omega_{i;kl} \in \mathbb{R}$.

(人間) トイヨト イヨト

Multiplex Community Detection: Problem Formulation

Shared Communities

A shared community is a set of nodes for which several (but not necessarily all) layers provide topological evidence that these nodes form the same community that is shared across these layers.

Multiplex Community Detection: Problem Formulation

Shared Communities

A shared community is a set of nodes for which several (but not necessarily all) layers provide topological evidence that these nodes form the same community that is shared across these layers.

Non-Shared Communities

A non-shared community is a set of nodes which have a densely connected structural pattern specific to one layer.

Multiplex Community Detection: Problem Formulation

Shared Communities

A shared community is a set of nodes for which several (but not necessarily all) layers provide topological evidence that these nodes form the same community that is shared across these layers.

Non-Shared Communities

A non-shared community is a set of nodes which have a densely connected structural pattern specific to one layer.

z.kuncheva12@imperial.ac.uk

Community Detection in Multiplex Networks

• Layer aggregation procedures;

- Layer aggregation procedures;
- Cluster ensemble procedures;

- Layer aggregation procedures;
- Cluster ensemble procedures;
- Tensor decompositions: a multiplex can be represented as a third order tensor;

- Layer aggregation procedures;
- Cluster ensemble procedures;
- Tensor decompositions: a multiplex can be represented as a third order tensor;
- Extensions of community detection algorithms from one to multiple layers:

- Layer aggregation procedures;
- Cluster ensemble procedures;
- Tensor decompositions: a multiplex can be represented as a third order tensor;
- Extensions of community detection algorithms from one to multiple layers:
- Principal Modularity Maximization [Tang et al., 2009];

- Layer aggregation procedures;
- Cluster ensemble procedures;
- Tensor decompositions: a multiplex can be represented as a third order tensor;
- Extensions of community detection algorithms from one to multiple layers:
- Principal Modularity Maximization [Tang et al., 2009];
- Ø Multislice Modularity Maximization [Mucha et al., 2010];

- Layer aggregation procedures;
- Cluster ensemble procedures;
- Tensor decompositions: a multiplex can be represented as a third order tensor;
- Extensions of community detection algorithms from one to multiple layers:
- Principal Modularity Maximization [Tang et al., 2009];
- Ø Multislice Modularity Maximization [Mucha et al., 2010];
- Multiplex Infomap [De Domenico et al., 2015];

- Layer aggregation procedures;
- Cluster ensemble procedures;
- Tensor decompositions: a multiplex can be represented as a third order tensor;
- Extensions of community detection algorithms from one to multiple layers:
- Principal Modularity Maximization [Tang et al., 2009];
- Ø Multislice Modularity Maximization [Mucha et al., 2010];
- Multiplex Infomap [De Domenico et al., 2015];
- Seed-centric algorithm extension [Hmimida and Kanawati, 2015].

• Random walks are used to unfold the community structure on a network.

- Random walks are used to unfold the community structure on a network.
- A random walker is expected to get "trapped" for longer times in denser regions defining the communities.

- Random walks are used to unfold the community structure on a network.
- A random walker is expected to get "trapped" for longer times in denser regions defining the communities.

• Jump probability:
$$P_{ij} = \frac{A_{ij}}{d_i}$$
, $d_i = \sum_{j=1}^N A_{ij}$;

- Random walks are used to unfold the community structure on a network.
- A random walker is expected to get "trapped" for longer times in denser regions defining the communities.

- Jump probability: $P_{ij} = \frac{A_{ij}}{d_i}$, $d_i = \sum_{j=1}^N A_{ij}$;
- Short random walks of length *t*, *P*^{*t*}, capture local topology of a network;

- Random walks are used to unfold the community structure on a network.
- A random walker is expected to get "trapped" for longer times in denser regions defining the communities.

• Jump probability:
$$P_{ij} = \frac{A_{ij}}{d_i}$$
, $d_i = \sum_{j=1}^N A_{ij}$;

- Short random walks of length t, P^t, capture local topology of a network;
- Define node dissimilarity measure to capture similarity between nodes;

- Random walks are used to unfold the community structure on a network.
- A random walker is expected to get "trapped" for longer times in denser regions defining the communities.

• Jump probability:
$$P_{ij} = \frac{A_{ij}}{d_i}$$
, $d_i = \sum_{j=1}^N A_{ij}$;

- Short random walks of length t, P^t, capture local topology of a network;
- Define node dissimilarity measure to capture similarity between nodes;
- Merge nodes using hierarchical clustering;

- Random walks are used to unfold the community structure on a network.
- A random walker is expected to get "trapped" for longer times in denser regions defining the communities.

• Jump probability:
$$P_{ij} = \frac{A_{ij}}{d_i}$$
, $d_i = \sum_{j=1}^N A_{ij}$;

- Short random walks of length t, P^t, capture local topology of a network;
- Define node dissimilarity measure to capture similarity between nodes;
- Merge nodes using hierarchical clustering;
- Select best partition by maximizing the modularity function *Q* [Girvan and Newman, 2002].

• Facilitate the exploration of shared and non-shared communities.

- Facilitate the exploration of shared and non-shared communities.
- LART is based on a multiplex random walk [Domenico and Sole-Ribalta, 2014].

- Facilitate the exploration of shared and non-shared communities.
- LART is based on a multiplex random walk [Domenico and Sole-Ribalta, 2014].
- Contribution: we adapt the transition probabilities of the random walk to depend on the local topological similarity between any pair of layers, at any given node.

- Facilitate the exploration of shared and non-shared communities.
- LART is based on a multiplex random walk [Domenico and Sole-Ribalta, 2014].
- Contribution: we adapt the transition probabilities of the random walk to depend on the local topological similarity between any pair of layers, at any given node.
- Result: the random walker spends longer times moving between nodes in communities which are shared across layers.

- Facilitate the exploration of shared and non-shared communities.
- LART is based on a multiplex random walk [Domenico and Sole-Ribalta, 2014].
- Contribution: we adapt the transition probabilities of the random walk to depend on the local topological similarity between any pair of layers, at any given node.
- Result: the random walker spends longer times moving between nodes in communities which are shared across layers.
- Using properties of the random walk: introduce a dissimilarity measure between nodes and use it in a hierarchical clustering procedure to detect shared and non-shared communities.

Definition: Inter-layer weights

$$\omega_{i;kl} := |\mathsf{N}_{i,k} \cap \mathsf{N}_{i,l}|$$

where $N_{i,k} := \{v_j^k : A_{ij;k} = 1\}$ is the set of edges for v_i^k .

Definition: Inter-layer weights

$$\omega_{i;kl} := |\mathsf{N}_{i,k} \cap \mathsf{N}_{i,l}|$$

where $N_{i,k} := \{v_j^k : A_{ij;k} = 1\}$ is the set of edges for v_i^k .

Definition: Supra-adjacency matrix

$$\mathcal{A}^* := \begin{pmatrix} A_1 & W_{12} & \dots & W_{1L} \\ \hline & W_{21} & A_2 & & \\ \hline & \dots & & \dots & \\ \hline & & & \dots & \\ \hline & W_{L1} & & & A_L \end{pmatrix}.$$

Definition: Inter-layer weights

$$\omega_{i;kl} := |\mathsf{N}_{i,k} \cap \mathsf{N}_{i,l}|$$

where $N_{i,k} := \{v_j^k : A_{ij;k} = 1\}$ is the set of edges for v_i^k .

Definition: Supra-adjacency matrix

$$\mathcal{A}^* := \begin{pmatrix} A_1 & W_{12} & \dots & W_{1L} \\ \hline & W_{21} & A_2 & & \\ \hline & \dots & & \dots & \\ \hline & & & \dots & \\ \hline & & & & \dots & \\ \hline & & & & & M_{L1} & & & A_L \end{pmatrix}$$

• We require \mathcal{A}^* to be "well-behaved", i.e. connected and non-bipartite.

Definition: Inter-layer weights

$$\omega_{i;kl} := |\mathsf{N}_{i,k} \cap \mathsf{N}_{i,l}|$$

where $N_{i,k} := \{v_j^k : A_{ij;k} = 1\}$ is the set of edges for v_i^k .

Definition: Supra-adjacency matrix

- \bullet We require \mathcal{A}^* to be "well-behaved", i.e. connected and non-bipartite.
- Use \mathcal{A} obtained from \mathcal{A}^* by replacing the entry A_j with $A_j + \varepsilon I$ and W_{ij} with $W_{ij} + \varepsilon I$; here I is the $N \times N$ identity matrix and $0 < \varepsilon \leq 1$.

LART: Transition Probabilities

 The structure of *M* allows four possible moves that a random walker can make when in node v^k_i.

LART: Transition Probabilities

• The structure of \mathcal{M} allows four possible moves that a random walker can make when in node v_i^k .

[Kivel, 2012]

z.kuncheva12@imperial.ac.uk

Community Detection in Multiplex Networks

July 25, 2015 9 / 22

LART: Transition Probabilities

- The structure of *M* allows four possible moves that a random walker can make when in node v^k_i.
- The corresponding transition probabilities associated to these four possible moves are defined as

$$\begin{aligned} \mathcal{P}_{(i,k)(i,k)} &:= \frac{\varepsilon}{\kappa_{i,k}} & \mathcal{P}_{(i,k)(j,k)} &:= \frac{A_{(i,k)(j,k)}}{\kappa_{i,k}} \\ \mathcal{P}_{(i,k)(i,l)} &:= \frac{\omega_{i;kl} + \varepsilon}{\kappa_{i,k}} & \mathcal{P}_{(i,k)(j,l)} &:= 0 \end{aligned}$$

where $\kappa_{i,k}$ is the multiplex degree of node v_i^k in \mathcal{A} defined as $\kappa_{i,k} := \sum_{j,l} \mathcal{A}_{(i,k)(j,l)}$.

z.kuncheva12@imperial.ac.uk Community Detection in Multiplex Networks

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

LART: Node Dissimilarity Measure

Node Dissimilarity Measure - Same Layer

S

When v_i^k and v_j^k are in the same layer, their dissimilarity is defined as:

$$(t)_{(i,k)(j,k)} := \sqrt{\sum_{h=1}^{N} \sum_{m=1}^{L} \frac{\left(\mathcal{P}_{(i,k)(h,m)}^{t} - \mathcal{P}_{(j,k)(h,m)}^{t}\right)^{2}}{\kappa_{(h,m)}}}.$$

Node Dissimilarity Measure - Different Layers

When v_i^k and v_j^l are in two different layers, L_k and L_l , we define the dissimilarity as:

$$S(t)_{(i,k)(j,l)} := \sqrt{s_1 + s_2 + s_3}$$

where

$$\begin{split} s_{1} &:= \sum_{h=1}^{N} \left(\frac{\mathcal{P}_{(i,k)(h,k)}^{t}}{\sqrt{\kappa}(h,k)} - \frac{\mathcal{P}_{(j,l)(h,l)}^{t}}{\sqrt{\kappa}(h,l)} \right)^{2} \\ s_{2} &:= \sum_{h=1}^{N} \left(\frac{\mathcal{P}_{(i,k)(h,l)}^{t}}{\sqrt{\kappa}(h,l)} - \frac{\mathcal{P}_{(j,l)(h,k)}^{t}}{\sqrt{\kappa}(h,k)} \right)^{2} \end{split} \\ s_{3} &:= \sum_{h=1}^{N} \sum_{\substack{m=1, \\ m \neq k,l}}^{L} \frac{\left(\mathcal{P}_{(i,k)(h,m)}^{t} - \mathcal{P}_{(j,l)(h,m)}^{t} \right)^{2}}{\kappa}. \end{split}$$

z.kuncheva12@imperial.ac.uk

Community Detection in Multiplex Networks

• Advantage to using an agglomerative clustering to merge nodes in communities: we ensure that the obtained communities are connected.

- Advantage to using an agglomerative clustering to merge nodes in communities: we ensure that the obtained communities are connected.
- We use the multiplex modularity Q_M proposed in [Mucha et al., 2010] as a criterion to select the best partition:

$$Q_{\mathcal{M}}(\gamma) = \frac{1}{2\mu} \sum_{C \in \pi} \left[\sum_{(i,k),(i,l) \in C} \omega_{i;kl} + \sum_{(i,k),(i,l) \in C} [A_{ij;k} - \gamma_k \frac{d_{i,k}d_{j,k}}{2\mu_k}] \right]$$

where $2\mu = \sum_{i,j,k} A_{i,j;k}$, $d_{i,k} = \sum_j A_{ij;k}$, π is the partition into communities *C*, and γ_k is the resolution parameter for layer L_k .

• Compare the performance of LART to other algorithms:

- Compare the performance of LART to other algorithms:
 - Multiplex Modularity Maximization (MM).

- Compare the performance of LART to other algorithms:
 - Multiplex Modularity Maximization (MM).
 - Principal Modularity Maximization (PMM).

July 25, 2015

- Compare the performance of LART to other algorithms:
 - Multiplex Modularity Maximization (MM).
 - Principal Modularity Maximization (PMM).
 - Multiplex Infomap (IM).

- Compare the performance of LART to other algorithms:
 - Multiplex Modularity Maximization (MM).
 - Principal Modularity Maximization (PMM).
 - Multiplex Infomap (IM).
 - Apply WalkTrap algorithm on each layer. Merge communities based on similarity measures S_T (for topological overlap) and S_M (normalized mutual information).

- Compare the performance of LART to other algorithms:
 - Multiplex Modularity Maximization (MM).
 - Principal Modularity Maximization (PMM).
 - Multiplex Infomap (IM).
 - Apply WalkTrap algorithm on each layer. Merge communities based on similarity measures S_T (for topological overlap) and S_M (normalized mutual information).

13 / 22

• Five different simulation scenarios:

- Compare the performance of LART to other algorithms:
 - Multiplex Modularity Maximization (MM).
 - Principal Modularity Maximization (PMM).
 - Multiplex Infomap (IM).
 - Apply WalkTrap algorithm on each layer. Merge communities based on similarity measures S_T (for topological overlap) and S_M (normalized mutual information).
- Five different simulation scenarios:
 - Test robustness to noise (S4) and uncovering hidden structures (S1) shared across all three (L = 3) layers;

- Compare the performance of LART to other algorithms:
 - Multiplex Modularity Maximization (MM).
 - Principal Modularity Maximization (PMM).
 - Multiplex Infomap (IM).
 - Apply WalkTrap algorithm on each layer. Merge communities based on similarity measures S_T (for topological overlap) and S_M (normalized mutual information).
- Five different simulation scenarios:
 - Test robustness to noise (S4) and uncovering hidden structures (S1) shared across all three (L = 3) layers;
 - Test ability to detect and distinguish between shared and non-shared communities (S2 and S3) across three (L = 3) layers;

- Compare the performance of LART to other algorithms:
 - Multiplex Modularity Maximization (MM).
 - Principal Modularity Maximization (PMM).
 - Multiplex Infomap (IM).
 - Apply WalkTrap algorithm on each layer. Merge communities based on similarity measures S_T (for topological overlap) and S_M (normalized mutual information).
- Five different simulation scenarios:
 - Test robustness to noise (S4) and uncovering hidden structures (S1) shared across all three (L = 3) layers;
 - Test ability to detect and distinguish between shared and non-shared communities (S2 and S3) across three (L = 3) layers;
 - Mixture of different community structures (S5) across four (L = 4) layers;

- Compare the performance of LART to other algorithms:
 - Multiplex Modularity Maximization (MM).
 - Principal Modularity Maximization (PMM).
 - Multiplex Infomap (IM).
 - Apply WalkTrap algorithm on each layer. Merge communities based on similarity measures S_T (for topological overlap) and S_M (normalized mutual information).
- Five different simulation scenarios:
 - Test robustness to noise (S4) and uncovering hidden structures (S1) shared across all three (L = 3) layers;
 - Test ability to detect and distinguish between shared and non-shared communities (S2 and S3) across three (L = 3) layers;
 - Mixture of different community structures (S5) across four (*L* = 4) layers;
- For each scenario: 150 synthetic multiplexes, community sizes vary between [10, 100] nodes, within-community edge probability 0.25 ≤ p ≤ 0.40.

Table: Performance of various algorithms in five simulated scenarios (NMI similarity)

		S1	S2	S3	S4	S5
	LART	0.99 ± 0.02	0.89 ± 0.07	0.97 ± 0.03	0.98 ± 0.04	0.96 ± 0.06
	MM	0.98 ± 0.04	0.81 ± 0.07	0.83 ± 0.04	0.97 ± 0.04	0.92 ± 0.09
	IM	0.43 ± 0.07	0.64 ± 0.14	0.81 ± 0.11	0.60 ± 0.10	0.53 ± 0.09
	PMM	0.95 ± 0.15	0.52 ± 0.16	0.68 ± 0.02	0.97 ± 0.07	0.84 ± 0.21
	ST	0.69 ± 0.07	0.76 ± 0.13	0.83 ± 0.05	0.72 ± 0.04	0.71 ± 0.11
	SM	0.68 ± 0.07	0.78 ± 0.12	0.84 ± 0.06	0.71 ± 0.05	0.72 ± 0.09

- For LART and MM: report best result over resolution parameter $\gamma = 0.25, 0.75, 1, 1.25, 1.50, 1.75, 2, 2.25, 2.5, 2.75, 3.$
- Consider t = 3L.
- *ε* = 1.

- 4 同 6 4 日 6 4 日 6

Table: Performance of competing algorithms in five simulated scenarios for different inter-layer weights (NMI similarity)

	S1	S2	S3	S4	S5
LART	0.99 ± 0.02	0.89 ± 0.07	0.97 ± 0.03	0.98 ± 0.04	0.96 ± 0.06
$LART(\omega=1)$	0.96 ± 0.10	0.79 ± 0.12	0.97 ± 0.04	0.77 ± 0.05	0.90 ± 0.13
$LART(\omega=0.5)$	0.84 ± 0.13	0.85 ± 0.12	0.93 ± 0.07	0.73 ± 0.02	0.87 ± 0.10
$LART(\omega=0.1)$	0.69 ± 0.07	0.88 ± 0.08	0.81 ± 0.04	0.72 ± 0.04	0.73 ± 0.10
MM	0.98 ± 0.04	0.81 ± 0.07	0.83 ± 0.04	0.97 ± 0.04	0.92 ± 0.09
$MM(\omega=1)$	1.00 ± 0.00	0.62 ± 0.13	0.67 ± 0.02	0.98 ± 0.03	0.88 ± 0.18
$MM(\omega=0.5)$	0.84 ± 0.12	0.61 ± 0.14	0.82 ± 0.01	0.80 ± 0.04	0.79 ± 0.16
$MM(\omega=0.1)$	0.73 ± 0.06	0.62 ± 0.13	0.82 ± 0.01	0.78 ± 0.05	0.72 ± 0.14
IM	0.43 ± 0.07	0.64 ± 0.14	0.81 ± 0.11	0.60 ± 0.10	0.53 ± 0.09
$IM(\omega=1)$	0.43 ± 0.07	0.64 ± 0.14	0.81 ± 0.11	0.60 ± 0.10	0.53 ± 0.09
$IM(\omega=0.5)$	0.89 ± 0.13	0.89 ± 0.05	0.80 ± 0.11	0.94 ± 0.07	0.81 ± 0.10
$IM(\omega=0.1)$	0.89 ± 0.13	0.89 ± 0.05	0.80 ± 0.11	0.94 ± 0.07	0.81 ± 0.10
IM(tele)	0.89 ± 0.13	0.89 ± 0.05	0.80 ± 0.10	0.94 ± 0.07	0.81 ± 0.10

・ロト ・聞 ト ・ ヨト ・ ヨトー

• LART performance is robust to parameter value γ - $\gamma \in [0.75, 1.75]$ provide similar results.

- LART performance is robust to parameter value γ $\gamma \in [0.75, 1.75]$ provide similar results.
- MM performance depends heavily on parameter value γ .

- LART performance is robust to parameter value γ $\gamma \in [0.75, 1.75]$ provide similar results.
- MM performance depends heavily on parameter value γ .
- LART performance is robust to parameter value t t ∈ [6, 15] provide similar results.

- LART performance is robust to parameter value γ $\gamma \in [0.75, 1.75]$ provide similar results.
- MM performance depends heavily on parameter value γ .
- LART performance is robust to parameter value t t ∈ [6, 15] provide similar results.
- Adding white noise slightly decreases results but performance is barely affected by up to 10% of white noise edges.

- LART performance is robust to parameter value γ $\gamma \in [0.75, 1.75]$ provide similar results.
- MM performance depends heavily on parameter value γ .
- LART performance is robust to parameter value t t ∈ [6, 15] provide similar results.
- Adding white noise slightly decreases results but performance is barely affected by up to 10% of white noise edges.

• These results are valid for different number of layers L = 2, 3, 4, 5.

• LART performs well for detecting shared and non-shared community structures.

э

17 / 22

-

- ₹ 🗦 🕨

- LART performs well for detecting shared and non-shared community structures.
- LART performs comparatively well to competing algorithms for detecting communities shared across all layers.

- LART performs well for detecting shared and non-shared community structures.
- LART performs comparatively well to competing algorithms for detecting communities shared across all layers.
- LART is stable for different γ and t values.

- LART performs well for detecting shared and non-shared community structures.
- LART performs comparatively well to competing algorithms for detecting communities shared across all layers.
- LART is stable for different γ and t values.
- The introduced inter-layer weights and corresponding locally adaptive probabilities prove to be beneficial for shared and non-shared community detection.

De Domenico, M., Lancichinetti, A., Arenas, A., and Rosvall, M. (2015).

Identifying Modular Flows on Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems. *Phys. Rev. X*, 5(1):011027.

Domenico, M. D. and Sole-Ribalta, A. (2014).

Navigability of interconnected networks under random failures. PNAS, 111(23):8351–8356.

Girvan, M. and Newman, M. E. J. (2002).

Community structure in social and biological networks. Proc. Natl. Acad. Sci. U. S. A., 99(12):7821–6.

Hmimida, M. and Kanawati, R. (2015).

Community Detection in Multiplex Networks: A Seed-Centric Approach. *Networks Heterog. Media*, 10(1):71–85.

Kivel, M. (2012). Multilaver network library.

Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., and Onnela, J.-P. (2010).

Community Structure in Time-Dependent, Multiscale, and Multiplex Networks. Science (80-.)., 328.

Pons, P. and Latapy, M. (2006).

Computing communities in large networks using random walks. J. Graph Algorithms Appl., 10.2:1910218.

Uncoverning Groups via Heterogeneous Interaction Analysis. In 2009 Ninth IEEE Int. Conf. Data Min., pages 503–512. IEEE.

4 3 > 4 3

Frequencies of Maximum Gamma Values for LART and MM NMIS

z.kuncheva12@imperial.ac.uk

Community Detection in Multiplex Networks

July 25, 2015 19 / 22

Simulations: Tuning Parameters

: Results for varying time steps t

: Results for different γ parameters

Simulations: White Noise

Best results for white noise over time and resolution parameter values for NMIS meas

Community Detection in Multiplex Networks

July 25, 2015 21 / 22

Simulations: White Noise

: Median ranges for Gamma values that produce best result at each white noise level.

Time Distribution for maximal Gamma results for NMIS measure

: Median ranges for time values (over best Gamma result) that produce best result at each white noise level.