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Multiplex Networks

Figure: [Kivel, 2012]
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Multiplex Networks

Definition: Multiplex Network

An L-layered multiplex network is a multi-layer undirected graph
M = (V ;Ak)

L
k=1, where V is a set of nodes and Ak is the N ×N

adjacency matrix representing the set of edges in layer Lk for
k = 1, 2, ..., L.

Node vki - node vi ∈ V , i = 1, 2, ...,N, in layer Lk .

The connection between nodes vi and vj in Lk is given by
Aij ;k = Aji ;k . Nodes vi and vj in Lk are neighbors if Aij ;k = Aji ;k = 1,
otherwise Aij ;k = 0. Furthermore, ∀k, Aij ;k = 0 for i = j .

Each pair of corresponding nodes in different layers, vki and v li , has an
inter-layer connection denoted by ωi ;kl ∈ R.
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Multiplex Community Detection: Problem Formulation

Shared Communities

A shared community is a set of nodes for which several (but not necessarily all)
layers provide topological evidence that these nodes form the same community
that is shared across these layers.

Non-Shared Communities
A non-shared community is a set of nodes which have a densely connected
structural pattern specific to one layer.
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Multiplex Community Detection: Literature Review

Layer aggregation procedures;

Cluster ensemble procedures;

Tensor decompositions: a multiplex can be represented as a third
order tensor;

Extensions of community detection algorithms from one to multiple
layers:

1 Principal Modularity Maximization [Tang et al., 2009];

2 Multislice Modularity Maximization [Mucha et al., 2010];

3 Multiplex Infomap [De Domenico et al., 2015];

4 Seed-centric algorithm extension [Hmimida and Kanawati, 2015].
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Multiplex Community Detection: Single Layer Case

Random walks are used to unfold the community structure on a
network.

A random walker is expected to get “trapped” for longer times in
denser regions defining the communities.

Walktrap algorithm [Pons and Latapy, 2006]

Jump probability: Pij =
Aij

di
, di = ∑N

j=1 Aij ;

Short random walks of length t, Pt , capture local topology of a
network;

Define node dissimilarity measure to capture similarity between nodes;

Merge nodes using hierarchical clustering;

Select best partition by maximizing the modularity function
Q [Girvan and Newman, 2002].
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Multiplex Community Detection: Locally Adaptive
Random Transitions (LART) Algorithm

Facilitate the exploration of shared and non-shared communities.

LART is based on a multiplex random
walk [Domenico and Sole-Ribalta, 2014].

Contribution: we adapt the transition probabilities of the random
walk to depend on the local topological similarity between any pair of
layers, at any given node.

Result: the random walker spends longer times moving between nodes
in communities which are shared across layers.

Using properties of the random walk: introduce a dissimilarity
measure between nodes and use it in a hierarchical clustering
procedure to detect shared and non-shared communities.
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LART: Inter-layer weights

Definition: Inter-layer weights

ωi ;kl := |Ni ,k ∩Ni ,l |

where Ni ,k := {vkj : Aij ;k = 1} is the set of edges for vki .

Definition: Supra-adjacency matrix

A∗ :=


A1 W12 ... W1L

W21 A2

... ...

WL1 AL

 .

We require A∗ to be “well-behaved”, i.e. connected and
non-bipartite.

Use A obtained from A∗ by replacing the entry Aj with Aj + εI and
Wij with Wij + εI ; here I is the N ×N identity matrix and 0 < ε ≤ 1.
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LART: Transition Probabilities

The structure of M allows four possible moves that a random walker
can make when in node vki .

The corresponding transition probabilities associated to these four
possible moves are defined as

P(i ,k)(i ,k) :=
ε

κi ,k

P(i ,k)(i ,l) :=
ωi ;kl + ε

κi ,k

P(i ,k)(j ,k) :=
A(i ,k)(j ,k)

κi ,k

P(i ,k)(j ,l) :=0

where κi ,k is the multiplex degree of node vki in A defined as
κi ,k := ∑j ,l A(i ,k)(j ,l).
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LART: Node Dissimilarity Measure

Node Dissimilarity Measure - Same Layer

When vki and vkj are in the same layer, their dissimilarity is defined as:

S(t)(i ,k)(j ,k) :=

√√√√√ N

∑
h=1

L

∑
m=1

(
P t
(i ,k)(h,m)

−P t
(j ,k)(h,m)

)2

κ(h,m)
.

Node Dissimilarity Measure - Different Layers

When vki and v lj are in two different layers, Lk and Ll , we define the
dissimilarity as:

S(t)(i ,k)(j ,l) :=
√
s1 + s2 + s3

where

s1 :=
N

∑
h=1

( P t
(i ,k)(h,k)√

κ(h,k)
−
P t
(j ,l)(h,l)√

κ(h,l)

)2

s2 :=
N

∑
h=1

( P t
(i ,k)(h,l)√

κ(h,l)
−
P t
(j ,l)(h,k)√

κ(h,k)

)2
s3 :=

N

∑
h=1

L

∑
m=1;
m 6=k,l

(
P t
(i ,k)(h,m)

−P t
(j ,l)(h,m)

)2

κ(h,m)
.
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LART: Hierarchical Clustering

Advantage to using an agglomerative clustering to merge nodes in
communities: we ensure that the obtained communities are
connected.

We use the multiplex modularity QM proposed in [Mucha et al., 2010]
as a criterion to select the best partition:

QM(γ) =
1

2µ ∑
C∈π

[
∑

(i ,k),(i ,l)∈C
ωi ;kl + ∑

(i ,k),(i ,l)∈C
[Aij ;k − γk

di ,kdj ,k
2µk

]

]

where 2µ = ∑i ,j ,k Ai ,j ;k , di ,k = ∑j Aij ;k , π is the partition into
communities C , and γk is the resolution parameter for layer Lk .
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Simulations: Comparative performance

Compare the performance of LART to other algorithms:

Multiplex Modularity Maximization (MM).
Principal Modularity Maximization (PMM).
Multiplex Infomap (IM).
Apply WalkTrap algorithm on each layer. Merge communities based on
similarity measures - ST (for topological overlap) and SM (normalized
mutual information).

Five different simulation scenarios:

Test robustness to noise (S4) and uncovering hidden structures (S1) -
shared across all three (L = 3) layers;
Test ability to detect and distinguish between shared and non-shared
communities (S2 and S3) across three (L = 3) layers;
Mixture of different community structures (S5) across four (L = 4)
layers;

For each scenario: 150 synthetic multiplexes, community sizes vary
between [10, 100] nodes, within-community edge probability
0.25 ≤ p ≤ 0.40.
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shared across all three (L = 3) layers;
Test ability to detect and distinguish between shared and non-shared
communities (S2 and S3) across three (L = 3) layers;
Mixture of different community structures (S5) across four (L = 4)
layers;

For each scenario: 150 synthetic multiplexes, community sizes vary
between [10, 100] nodes, within-community edge probability
0.25 ≤ p ≤ 0.40.
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Simulations: Comparative performance

Table: Performance of various algorithms in five simulated scenarios (NMI similarity)

S1 S2 S3 S4 S5

LART 0.99 ± 0.02 0.89 ± 0.07 0.97 ± 0.03 0.98 ± 0.04 0.96 ± 0.06

MM 0.98 ± 0.04 0.81 ± 0.07 0.83 ± 0.04 0.97 ± 0.04 0.92 ± 0.09

IM 0.43 ± 0.07 0.64 ± 0.14 0.81 ± 0.11 0.60 ± 0.10 0.53 ± 0.09

PMM 0.95 ± 0.15 0.52 ± 0.16 0.68 ± 0.02 0.97 ± 0.07 0.84 ± 0.21

ST 0.69 ± 0.07 0.76 ± 0.13 0.83 ± 0.05 0.72 ± 0.04 0.71 ± 0.11

SM 0.68 ± 0.07 0.78 ± 0.12 0.84 ± 0.06 0.71 ± 0.05 0.72 ± 0.09

For LART and MM: report best result over resolution parameter
γ = 0.25, 0.75, 1, 1.25, 1.50, 1.75, 2, 2.25, 2.5, 2.75, 3.

Consider t = 3L.

ε = 1.
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Simulations: Comparative performance

Table: Performance of competing algorithms in five simulated scenarios for different inter-layer
weights (NMI similarity)

S1 S2 S3 S4 S5

LART 0.99 ± 0.02 0.89 ± 0.07 0.97 ± 0.03 0.98 ± 0.04 0.96 ± 0.06

LART(ω=1) 0.96 ± 0.10 0.79 ± 0.12 0.97 ± 0.04 0.77 ± 0.05 0.90 ± 0.13

LART(ω=0.5) 0.84 ± 0.13 0.85 ± 0.12 0.93 ± 0.07 0.73 ± 0.02 0.87 ± 0.10

LART(ω=0.1) 0.69 ± 0.07 0.88 ± 0.08 0.81 ± 0.04 0.72 ± 0.04 0.73 ± 0.10

MM 0.98 ± 0.04 0.81 ± 0.07 0.83 ± 0.04 0.97 ± 0.04 0.92 ± 0.09

MM(ω=1) 1.00 ± 0.00 0.62 ± 0.13 0.67 ± 0.02 0.98 ± 0.03 0.88 ± 0.18

MM(ω=0.5) 0.84 ± 0.12 0.61 ± 0.14 0.82 ± 0.01 0.80 ± 0.04 0.79 ± 0.16

MM(ω=0.1) 0.73 ± 0.06 0.62 ± 0.13 0.82 ± 0.01 0.78 ± 0.05 0.72 ± 0.14

IM 0.43 ± 0.07 0.64 ± 0.14 0.81 ± 0.11 0.60 ± 0.10 0.53 ± 0.09

IM(ω=1) 0.43 ± 0.07 0.64 ± 0.14 0.81 ± 0.11 0.60 ± 0.10 0.53 ± 0.09

IM(ω=0.5) 0.89 ± 0.13 0.89 ± 0.05 0.80 ± 0.11 0.94 ± 0.07 0.81 ± 0.10

IM(ω=0.1) 0.89 ± 0.13 0.89 ± 0.05 0.80 ± 0.11 0.94 ± 0.07 0.81 ± 0.10

IM(tele) 0.89 ± 0.13 0.89 ± 0.05 0.80 ± 0.10 0.94 ± 0.07 0.81 ± 0.10
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Simulations: Tuning parameters

LART performance is robust to parameter value γ - γ ∈ [0.75, 1.75]
provide similar results.

MM performance depends heavily on parameter value γ.

LART performance is robust to parameter value t - t ∈ [6, 15]
provide similar results.

Adding white noise slightly decreases results but performance is barely
affected by up to 10% of white noise edges.

These results are valid for different number of layers L = 2, 3, 4, 5.
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Conclusions

LART performs well for detecting shared and non-shared community
structures.

LART performs comparatively well to competing algorithms for
detecting communities shared across all layers.

LART is stable for different γ and t values.

The introduced inter-layer weights and corresponding locally adaptive
probabilities prove to be beneficial for shared and non-shared
community detection.
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Simulations: Comparative performance
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Simulations: Tuning Parameters
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Simulations: White Noise

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Best results for white noise over time and resolution parameter values for  NMIS measure

White noise − edge probability

N
M

IS

0 1/N 2/N 3/N 4/N 5/N 6/N 7/N 8/N 9/N 10/N

z.kuncheva12@imperial.ac.uk Community Detection in Multiplex Networks using Locally Adaptive Random WalksJuly 25, 2015 21 / 22



Simulations: White Noise
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